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1. Introduction

It is quite difficult to give analytical solutions of dynamical responses in non-linear dynamical
systems. With computers expansively used in science, numerical simulations as a useful tool play a
very important role on obtaining dynamical responses in non-linear dynamics, which help one
understand complexity in nature. However, the current digital computation is very passive, and
the approximation-based algorithms cannot provide all possible complicated responses existing in
dynamical systems, such as regular and chaotic motions caused by bifurcation and grazing etc.
This is also partially because of the singularity of solutions for the complicated dynamical
responses. Numerical simulations may find one of all possible solutions, but this solution may not
belong to the same solution branch because the singularity will lead to jumping or catastrophe
phenomena. The objective of this technical note is to find the symmetrical structure of solutions
for regular and chaotic motions in non-linear dynamical systems through the symmetry of
mapping structures. Once one of solutions in such non-smooth dynamical systems is obtained by
a numerical or analytical approach, another symmetrical solution can be directly predicted
through the solution symmetry property given in this technical note. In 1970, Masri [1] observed
the asymmetrical motion in the impact damper system and the rigorous stability analysis was
conducted as well. In 1990, Li et al. [2] used a numerical approach to get one of the asymmetrical
solutions for the impacting oscillator. In 2002, Luo [3] introduced a time-interval approach to
obtain two asymmetrical solutions analytically, and it was observed that the symmetry of two
solutions exists. However, the time-interval approach cannot be very efficient for higher-order
periodic motions. Once the motion becomes more complicated, it is absolutely necessary to
investigate the symmetry of solutions in such non-smooth dynamical systems for obtaining all
possible motions more efficiently. Therefore, in this technical note, the symmetry of solutions in
non-smooth dynamical systems with two symmetrical constraints is investigated to obtain all
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possible stable and unstable motions. It is found that an invariant transformation exists in regular
and chaotic motions relative to skew-symmetrical mapping pairs in symmetrical systems with
harmonic excitations. Only the main results are presented without any proofs in this technical note.

2. Problem statement

Consider a two-dimensional dynamic system consisting of three sub-systems in a domain
QcR? that is divided into three sub-domains Q, (p = 1,2,3) by a symmetrical constraint x, =
+E, g=1lor2,and Q2 = Up | £, as shown in F1g 1. For the pth domain, there is a continuous
system in form of

X =10, ) +gx, 0, 1), x=(x,x) €Q,, (1)

where g = (g1, ¢>)" are bounded, periodic functions with phase variable ¢ = Qf and a parameter
Vector = (1,7, ..., ) €R™ and the corresponding period is T =2=n /Q. The ) =

fz(")) eR? with system parameter vector n, = (yps s - upn) eR" are C"-continuous
(r>2) In all sub-domains Q, (p = 1,2,3), the dynamlcal system in Eq. (1) is continuous and there
is a continuous flow expressed by

xP(1) = P (xP(19), 1,m,,m) and  xP(z0) = DV (xP(10), 0, . 7). )
In this note, the following assumptions will be considered:

Al: This system possesses time-continuity.
A2: For a unbounded domain ©,, the vector field and the corresponding flow are bounded, i.e.,

7] + llgl|< K; (const) on Q, and [|®?||<K, (const) for te[0, ). (3)

A3: For a bounded domain Q,, the vector field and the corresponding flow are bounded at finite
time, i.€.,

If?)]| + |lgl| < Ki(const) on €, and || ®?| <o for te[0, o0). 4)

A4: The dynamical system is symmetrical in the symmetrical domains.

s X,
X 1

kel

(a) (b)

Fig. 1. Two symmetric domains in phase plane for two cases: (a) x; = + F and (b) x, = +E.
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AS5: The entire flow at least is C'-continuous or there is a transport law to connect two flows in
two different domains.
3. Switching planes and mappings

For description of motion in Eq. (1), two switching sections (or sets) are

Zi = {([iayi)lxk = ian = x]>]7éke{112}} (5)
and two singular points are
I+ = {00 = £E,y=x=0,j#ke{1,2}}. (6)

The two sets are decomposed as
Z+:ZIquuF+ and X" =X uX_ Ul (7)
where four subsets are defined as
IL = {ty)lxe = E,y = x> 0,j#ke {1,2}},
XU ={(tydlxi = E,y = x;<0,j#ke {1,2}}, (8)

20 =A{(t,y)lxk = —E,y = x;>0,j#ke{1,2}},
Z: = {([iayi)|xk: _E,yExj<Oa]7éke{152}} (9)
From four subsets, six basic mappings are
P2t 3t Pyt oxt, Pyt
P4ZZ:—>ZJ:, PS:ZiﬁZ:, P622i—>21, (10)
for x; = +E, and
PI:Z’_L—>ZI, PziZi—)Zi_, P3ZZI—>Z:,
Py:X7 37, Ps:X_ -3, Pg:X -3 (11)
for x, = +E.

From the definition of mappings, the mappings P, (¢ = 1,2,4,5) relative to one switching
section are termed the /ocal mapping, and the mappings P, (¢ = 3,6) relative to two switching
sections are termed the global mapping. The global mapping transports the motion from one
switching section into another switching section. The local mapping is the self-mapping in the
corresponding switching section. Six mappings are illustrated in Fig. 2.

To describe the complicated motion, the mapping structure of dynamical systems in Eq. (1) is
used herein. For simplicity, the notation for mapping is introduced as

Pnlnzmnk EPnloPnzo'“OPnk, (12)
where P, e{Pjlq=1,2,...,6} and n; = {1,2,...,6}. Note that the rotation of the mapping of

periodic motion in order gives the same motion (i.€., Py ny-cne> Pryeoompmys -+ » Pgny---m,_,)» and only
the selected Poincaré mapping section is different. The motion of the m-time repeating of mapping
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Fig. 2. Switching sections and basic mappings in phase plane: (a) x; = + E and (b) x, = + F.

Pyny...n, 18 defined as
PlenT"nk = (P}’ll oI)l’lzO QI)I’l/\»)o O(Pl’ll OPHZO oPl’lk) . (13)
m?s;ts
To extend this concept to the local mapping, define
Prlns E(P10P5)O”'O(P10P5) and P’;g E(P3OP())O"-O(P3OP()). (14)
m-sets m-sets

For the special combination of global and local mapping, introduce a mapping structure
Pn]nz-~-(n,-n/)’”---n/C = Pn1 OPnzo 0Pl o OPnk

nin;

:PnloPnzo---o(Pn’_oPnl)o---o(Pnio n[) o---oPnk. (15)
m—‘s,ets

From the definition, the motion for Eq. (1) can be very easily described through its mapping
structure accordingly.

4. Main results

The initial and final times (z; and #;, ) are used for all the mappings in Egs. (10) or (11), and the
corresponding phases are ¢; = Qt; and ¢, = Qt;,1. Eq. (2) gives

X (t41) = ®OP(1), ti1,mym) or xP(e ) = OV (), 9141, 1, ). (16)

From the foregoing equation, with a notation y; = (¢;, y:)T, the governing equations for mappings
from P; to Pg can be written down as

Vi = Pyi = F>0.pi0,0.yi01,m) =0, (17)

where p =1 (or 3) for ¢ =1 (or 4) and p =2 for ge{2,3,5,6}. From Assumption A4, p; = p;
since the system is symmetric.
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Definition 1. Under a transformation Tp : Py — Prod(g+2,6)+1 during (2M + 1)-periods with
(p(mod(q+2,6)+l) — (pgq) + (2M + I)TC al’ld ygmod(q+2,6)+l) — _ygq)’ (18)

1

if a relation

d(g+2,6)+1 d(g+2,6)+1 d(g+2,6)+1 d(g+2,6)+1 d(g+2,6)+1
F(mod(g+2,6)+ )(q,gmo (g+2.,6) ),ygmo (g+2,6) )a(PET? (g+2.,6) )’ygili) (¢+2.6) ),pp,n)
(@ (@

= _F(q)((pgq),ygq)’ Pii1>Vit1> Mps T (19

holds where p=1 for ge{l,4} and p=2 for ¢e{2,3,5,6}, then the mapping pair
(Py, Pmod(g+2,6)+1) 1s skew-symmetric. If a mapping pair is relative to the /local
(or global) mapping, such a mapping pair is termed the local (or global) skew-symmetric
mapping pair.

Note that integer M =0,1,2, ... and mod(-, -) is the modulus function.

Theorem 1. The six mappings P, (q = 1,2, ...,6) for the dynamical system in Eq. (1) are invariant
under the two actions of a transformation Tp, i.e., TpoTp: Py — P,.

When the six mappings go through the singular points, switching bifurcation may occur. Once
switching exists, the motion models switches from an old motion to a new motion and the
corresponding mapping structures are changed as well. The mapping structures for the post-
switching of mapping P, (¢ = 1,2, ...,6) are

switching
P, = Py,P, P, for(qg=1,24)5),

switching

switching
P, = PuoPuodg+1,6)°Pmodgrae for (¢ =2,9),

switching

switching
P, = P, oP, 1P, for (q=3,6),

switching

switching
P, = PuoPuodgi1.6°Pmodgi26 for (g = 3,6). (20)
switching
From the above discussion, the invariance of the post-switching under the transformation 7p is of
great interest. The grazing is a special phenomenon of the switching. Therefore, we have the
following theorem.

Theorem 2. For mappings P, (q = 1,2, ...,6) for the dynamical system in Eq. (1), if the mapping
pair (Py, Pmodg+2.6)+1) 1S skew-symmetric with a transformation in Eq. (18), the post-switching
mapping pair is still skew-symmetric with the same transformation.

Since the symmetry invariance of the post-switching of mapping exists, it implies that the
combination of the mapping P, (¢ =1,2,...,6) possesses a symmetry invariance under the
transformation 7p in Eq. (18). Therefore, to determine such a symmetrical invariance, a theorem
is presented as follows.
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Theorem 3. For mappings P, (9 = 1,2, ...,6) for the dynamical system in Eq. (1), if the mapping
pair (Pg, Pmod(g+2,6)+1) under (2M + 1)-periods is skew-symmetric with transformation in Eq. (18),
then the following two mappings,

Poasyneazaoymiios-oPeasymaazaoywr — and — Pygoymeisasymia© - o P3oyme 1645y 45

(k—1)-actions (k—1)-actions

are a skew-symmetric mapping pair under the same transformation as in Eq. (18).

We have discussed the symmetry invariance of combined mapping structures. The following
theorems will discuss the solution symmetrical structures. First of all, the symmetrical solution
relative to a symmetrical mapping Pgsyna32y71 is discussed first, and then the corresponding,
asymmetrical solution is investigated.

Theorem 4. Consider a non-smooth dynamical system with two symmetrical constraints in Eq. (1)
with six mappings P, (q = 1,2, ...,6). If the following two properties exist: C1: P, (¢ = 1,2,4,5) are
local mappings, and P, (¢ =3 and 6) are global mappings, and C2: the mapping pair
(Pys Prod(g+2,6)+1) is skew-symmetric, then the symmetrical solution relative to a mapping
Peusyrazaaymy = Yy under N-periods with a periodicity condition

Yitamia =Y 0F (Qiiomes,Vicomsa)' = (Q1 + 2Nm, i)' (21)
possesses a solution structure
mod(¢,,;, 22M + Dm)
— mod((2M + 1)+ MOd(@,  modams 21 4ms 4y 22M + 1)), 22M + ym),

Vitj = —Vitmod(m+2+j4m+4) (22)

forj=1{0,1,...,4m + 3}.

The foregoing theorem discussed the symmetrical solutions of period-1 motion associated with
the mapping Pgsyna3i2y71- This structure is quite stable. For instance if one investigated the
symmetrical period-1 motion of impacting oscillators (e.g., [4—7]), then one may think that this
motion may have period-doubling bifurcation. In fact, no period-doubling bifurcation exists (e.g.,
Ref. [3,8]). The symmetrical motion will convert into the asymmetrical period-1 motion with the
same mapping structures through the first saddle-node bifurcation and an unstable region. The
solution symmetry for such an asymmetrical period-1 motion is presented in the following
theorem.

Theorem S. Consider a non-smooth dynamical system with two symmetrical constraints in Eq. (1)
with six mappings P, (q = 1,2, ..., 6). If the following two properties exist: C1: P, (¢ = 1,2,4,5) are
local mappings, and P, (¢ =3 and 6) are global mappings, and C2: the mapping pair
(Py, Pmod(g+2,6)+1) 1s skew-symmetric, then the two branches of solutions for asymmetrical, periodic
and chaotic motions relative to a mapping

PeasyrazaoymiooPeasyazaoymy =y (k=0,1,..., 0)

Vv
2k
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under N-periods with periodicity condition (i.e., ¥ sts2y1) = Y;) possess a solution relation
mOod(@}, 1)1 22M + 1))
= mod((2M + D7 + mod(@} s 1) mod(ams 2.4 dmay 22M + 1D1), 22M + 1)m),
y}+,.(4m+4)+j = _sz'I+4r(m+)+m0d(2m+2+j,4m+4) (23)

for all r=1{1,...,25} and j={0,1,...,4m + 3}. Superscripts (1, 1I) denote two asymmetrical
solutions.

Theorem 6. Consider a non-smooth dynamical system with two symmetrical constraints in Eq. (1)
with six mappings P, (q = 1,2, ...,6). If the following two properties exist: C1: P, (¢ = 1,2,4,5) are
local mappings, and P, (q =3 and 6) are global mappings, and C2: the mapping pair
(Py, Pmod(g+2,6)+1) is skew-symmetric, then the solutions for regular and chaotic motion relative to
two mapping equations

Peasymazaoymie-- o Peasymazaoym1 y =y

Zk
and

PeasymazaoymioeoPeasynazaoy1y =y (k=0,1,...,0)

21(

under N-periods with periodicity condition Y, yeip,4m +2) = ¥; satisfy the following relations:
MOA(P}, 3y, 442y 22M + 1))

= mod((2M + )7 + mOd(PL, 2, +142) 1 mod mm +2-47:20m 4+ 2y 22 M + D), 22 M + D),
Y :'+2,ﬁ(m1 2+ — Y :'-I|-2r(m] +my+2)+mod(2m) +2-+/,2(my +ma+2))> (24)
or
M0d(P} 2y 4y 1211 22M + D7)

= mod((2M + D)7 + mOA(PE, 2, +142) 1 mod o +2-4720m 4+ 2 22 M + D), 22 M + D),

I 1
yi+2r(m1+mz+2)+j - yi+2r(m1+m2+2)+mod(2m1+2+j,2(m1+m2+2)) (25)

forallr = {1, ...,2%} and j = {0,1, ..., 4m + 3}. The superscripts (1, 1) represent the two mapping
structures.

The above results can be generalized in the following theorem.

Theorem 7. Consider a non-smooth dynamical system with two symmetrical constraints in Eq. (1)
with six mappings P, (¢ = 1,2, ...,6). If the following two properties exists: Cl: P, (¢ = 1,2,4,5)
are local mappings, and P, (¢ =3 and 6) are global mappings, and C2: the mapping pair
(Py, Pmod(g+2,6)+1) are skew-symmetric, then the solutions for regular and chaotic motion relative to
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two mappings

Peasynaazoymaie- - o Peuasynazqoyin 10 - o Peasymaazaoym1 y =y

k

and

Poasyniazaoyneioe - o Peasymazaaymeios o Peasymazaymy =y (k=0,1,...,00)

k

under N-periods with periodicity condition yi+zk =y, for a specific r = {1,2, ..., k},

| @mo+2mg+4)
are

mod | ¢' ,22M + Dn
423 (ma+tmo+2)+

s=1

=mod | QM + I)n +mod | " ,20M + D |,22M + D |,
i+2 Y (ma+ma+2)+mod(2m +2+.2(mn +my2+2))
s=1
yl r—1 - _,V” r—1 ” (26)
i+2 Z()n52+n1sz+2)+j i+2 Z(msz+n1sz+2)+mod(2m,1 +247,2(my1 +my2+2))
s=1 s=1
or
mod | " ,2QM + Dn
i+2 Z(m:2+ms2+2)+1
s=1
=mod| QM + D+ mod | ¢' ., ,20M + D |,22M + Dr |,
i+2 Z(m+mﬁ+2)+mod(2mr1 +247,2(mp +1m2+2))
s=1
11 I
y r—1 = _y r—1 ” (27)
2y (mo+mo+2)+) 42 (mo+mo+2)+mod(2myi+2+7,2(my +m+2))
s=1 s=1

where j = {0,1, ...,4m + 3}.

5. Conclusion

In this technical note, the symmetry of solutions in non-smooth dynamical systems with two
symmetrical constraints is discussed. The grazing does not change the symmetry invariance of
mapping structures in such dynamical systems, and the periodic and chaotic motions in such a
dynamical system possess the same symmetry invariance as the basic mappings. Based on this
investigation, the group structure of mapping combination exists. Thus, further investigations of
this issue should be carried out. This theory can be applied to piecewise, linear and non-linear
systems, impacting oscillator systems, friction-induced vibration systems, etc.
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