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Abstract

Starting with the basic dynamical equations for a rotating radial cantilever blade in a centrifugal force
field, a system of equations are derived for a fully-bladed flexible rotor (shaft and disk) supported by a set of
bearings at multiple locations. The dynamical equations include the effect of the rotary inertia and
gyroscopic moments as a result of both shaft bending as well as staggered blades flexing in-and-out of the
plane of the disk. The governing equations also account for internal material damping in the shaft and
the external damping in the bearing. In addition to the unbalance load at the disk location, the shaft may be
subjected to a torque and axial forces. In the analytical derivation, the blade tips are considered to be
rubbing against the outer case introducing Coulomb damping in the system. Transient response of the rotor
with the blades deforming due to rub during the acceleration and deceleration through the resonance is
discussed. Numerical results are presented for this highly non-linear impact dynamics problem of hard rub
with Coulomb friction. The effect of blade tip rub forces transmitted to the shaft are analyzed in terms of
the dynamic stability of the rotor.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In any high-performance turbo-machinery, rub is a commonly occurring problem. Higher
energy-efficiency of the engine is achieved by reducing the tip clearance between the rotor and the
stator components, but as the clearance is reduced; the probability of rub taking place during
small changes in the operating conditions also increases. It is known that the rub forces can be
extremely high causing severe damage, but due to the short duration involved, determining its true
magnitude has been a real challenge. Rubbing of rotating blade tips against the stationary outer
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case is a highly non-linear contact-impact event, and until now no one has attempted to solve it
analytically, covering its full dynamic characteristics.

In a jet engine high-pressure compressor and fan, the case distortion can also result in a blade or
a sector of blades rubbing against the case. Specifically, in acro-engines, the case distortion may be
caused either by a temperature gradient or due to various maneuvering loads usually during take-
off and landing of the aircraft. Unbalance forces can also start the blade tip-rub which may be
caused either by damage to the fan blade due to bird-strike or, due to sudden blade loss as well.
Dynamic response of blade and containment case during rub is greatly influenced by the amount
and nature of damping present in the system. Consideration of damping is an important aspect in
analyzing the dynamic characteristics of the blade—case interaction. The damping can be present
both as an internal damping due to material friction such as in viscoelasticity in the shaft and
blade material as well as external damping such as Coulomb friction at the blade-tip or other
joints and in the support system. The non-conservative nature of the damped system introduces
many complexities in the analysis [1], which one usually gets around by making several simplifying
assumptions. For instance, decoupling the equations of motion with non-uniform damping by
modal analysis [2,3] is one approach. In the finite-element method, it is a common practice to
represent the damping matrix [C] as a linear combination of the mass matrix [M] and the stiffness
matrix [K] as

[C] = o[M] + B[K].

The above assumption makes it difficult to analyze the effect of gyroscopic terms in a rotating
system, where the [C] matrix is in fact skew-symmetric. In this paper, we consider the dynamic
stability of a complete rotor system in a jet engine with its blade rubbing against the containment
case. Here, by using Galerkin’s method a direct matrix formulation of the non-linear dynamic
problem has been developed, which does not make any such simplifying assumptions, nor does it
need any transformation. Yet, it is general enough to include the effect of viscoelasticity, non-
uniform support damping as well as the gyroscopic terms. This paper analyzes the effect of
internal damping on the dynamic stability of an overhung rotor supported by a set of bearings at
multiple locations and deformable blades rubbing against a case at the other end (see Fig. 1). The
rotor shaft may be under a periodic sinusoidal axial force superimposed on a constant static axial
load and torque on the system. In a rotating machinery, such pulsating axial forces are usually
caused by misalignment. The rotor system considered in this paper is composed of a flexible
hollow shaft, a rigid disk, and a full set of flexible blades, a sector of which may be rubbing against
an elastically deformable outer surface. In this study, we consider two types of contact with the
outer containment surface: (1) the outer surface behaves like a rigid wall and the spinning shaft—
disk with bladed rotor as an impactor; (2) the inner surface of the outer case has a lining of a
relatively soft material like honeycomb, foam or, an abradable coating against which the blade tip
is allowed to rub.

The Coulomb friction between the blade tip and the outer surface introduces skew-symmetric
terms in the stiffness matrix for the rotor shaft, which, depending upon the amount of effective
damping present in the dynamical system, can initiate instability in the bladed-rotor shaft.

In rotordynamics, due to complexity of the non-linear analysis, the flexible shaft—disks of the
dynamical system are frequently reduced to much simplified two-degrees-of-freedom rotor models
made up of a set of lumped-masses and springs. Furthermore, due to large computation time
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Fig. 1. A typical fan rotor in a jet engine with hollow shaft: outside radius = r,, inside radius = r;.

involved, an attempt is usually made to obtain the solution only in the frequency domain, where
peak responses are determined at certain pre-determined harmonic excitation frequencies. Then,
transient response is computed by multiplying the harmonic response by a factor called “transient
overshoot factor””. Among the notable contributions on this topic, Plaut [4] analyzed the stability
of a simply-supported rotating shaft with axial load and damping in the system. Cohen and Porat
[5] used an asymptotic method to investigate the combination-resonance effect in coupled
transverse vibration of an unbalanced rotor. Yim et al. [6] studied the destabilizing effect of
tangential torque in the system. Sinha [7] established general conditions of rotordynamic stability,
when oscillating axial forces are combined with the torque in the shaft. Recently, Lee and Yun [§]
extended the stability conditions for three different types of end-conditions for the flexible shaft.
The dynamical effect of rub-induced instability in the rotors was first studied by Child [9].
Until now, almost all the research work dealing with the Coulomb damping in a rotating system
has been limited to the study of blades rubbing with different kinds of friction model. The macro-
slip model for Coulomb friction between a stress-stiffened rotating turbine blade rubbing against
a stationary surface has been used extensively by many researchers such as Sinha and Griffin [10].
Later on, Sinha [11] used a simple spring—mass system to calculate the optimal value of slip load
for a frictionally damped turbine blade subjected to random excitation caused by a white noise.
Wang and Shieh [12] determined the dynamic response of the rotating blades with velocity-
dependent coefficient of friction. Sanliturk et al. [13] used a harmonic balance method to
determine the amplitude-dependent complex stiffness of a friction damper to simulate damping in
a turbine blade. Berger and his colleagues [14] have used a mixed differential algebraic equation
approach to describe the slipping dynamics by differential equations and algebraic equations to
represent the interfacial sticking during the rub action. It should be noted that all these damping
models are relatively simple spring—mass system with a Coulomb-damper near the blade root with
a ground-constraint. Choy, Padovan and their colleagues [15—17] have studied a true rotor—case
rub phenomena and its effect due to friction in quite detail, however, they have neglected the



878 S.K. Sinha | Journal of Sound and Vibration 273 (2004) 875-919

effect of stress stiffening of blades due to rotation, which is a major parameter in pulse buckling
during rub.

The current paper analyzes the effect of a Coulomb-damper near the blade tip with the flexible
blade mounted on a flexible rotating shaft. Starting from the basic beam equations along with the
rotary inertia and gyroscopic effect terms, a complete set of coupled dynamic equations has been
derived for this problem. The shaft with overhung disk can have multiple bearing support with
varying amount of stiffness and damping in the x—y plane which are included in the equation by
using the Dirac’s Delta function.

2. Rotating cantilever beam formulation for flexible blades

Rotating turbine blade dynamics have been studied by several authors [18-21] in the past with
different level of complexities such as from the lumped mass to the Timoshenko’s beam
formulation and large deformations of the free-end, etc. In this analysis, we consider that N-
number of elastically deformable radial blades of outer radius ‘R’ with the stagger angle ‘f’ are
mounted on a rigid disk. We will assume that the shaft stiffness at the center of the disk is ‘K.
The blades behave like a cantilever beam—column of span length ‘L’ and are subjected to a
centrifugal force field generated due to the rotor spin velocity ‘2” with the blade tip rub load F,
acting along the beam axis. Thus, the lateral deflection in any typical jth blade with an in-plane
force F, (tension: + sign and compression: — sign) for a typical cross-section of the blade at a
distance ‘s’ from the root will be expressed as #(s, #). The tip rub load F, being a contact force
between two bodies, is always compressive and is active only when the gap between the blade-tip
and the outer case has closed. In other words, the non-zero value of F, being compressive in
nature will always have a negative sign (see Fig. 2a and 2b). Furthermore, it is assumed that the
minor principal moment of inertia of the blade cross-section coincides with the chord direction so
that under pure bending moment the blade lateral deflection #(s, t) takes place in the direction
normal to the chord with the neutral surface passing through the radial-chord plane. The equation
of motion in a local frame of reference attached to the rotating blade for lateral deflection #(s, t)
from beam bending formulation can be written as

(El)bn,ssss - (A)bo-,srl,s - (A)bo-n,ss + (pA)bn,tt + Clr/,té(s - L) =+ Kshqfr’?5(s - O)

= uF,cos po(s — L), (1)
where
R F, (R* =12 = 2rs — 5*)  (Fo),
_ 2 _ 2 ]
a(s) = Hr(p)bQ ¢dé+ ), (p)p€2 5 ),
0
7)o@+ ).

The blade material is also assumed to have its own internal damping the critical value of which is
defined as

C —L—z[EI A2 2)
¢ 7.52 p blade*
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Fig. 2. (a) Top view of the cascade of fan blades: mass density = (p),, cross-sectional area = (A4),, flexural rigidity =
(EI);, Coulomb friction = u(F,);. (b) Engine axis view of a typical blade deforming during rub.

For any viscous damping at the blade tip, it can be assumed that the viscous dash-pot at the blade
tip exists with a non-dimensional damping factor ‘(;” which is a fraction of the critical damping
parameter C, defined earlier, such that

C, = 2(,C..

If the outward radial movement of the blade tip exceeds the clearance with the outer case, a
compressive force (F,); along its radial axis is applied, such that

S 2mj Y . (2mj
jzl (Fa)/ COS (W + QZ) = _(Fcase(t))X, IZI (Fa)/ Sin (W + Q[) = _(Fcase(t))y- (3)

In the above equations, the vector sum of the radial contact load from the case ‘F..(¢)’ is treated
like a scalar and it is a function of time ‘#’. It should also be noted that F,,, is always normal to
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the inside surface of the containment ring. Thus in a full 360° uniform circumferential rub
situation, for all blades (Fa), will be non-zero, equal and compressive making the total sum of F,,
equal to zero. In the more common type of rub event of a local contact in certain spots, F., will
have a non-zero value.

Being a compressive load along the typical jth blade-axis, (F,); has a set of critical values, which
for a simple beam—column can be written as

o 2
(£ = 0,21

where n = 1,2, 3, ... represent different buckled mode shapes.

In the static Euler’s elastic buckling problem, this critical load is obtained by the lowest value of
n = 1. However, in the transient dynamic situation of tip-rub, the suddenly applied axial load is
many times greater than the static Euler load, causing the rotating blade to deform in higher
modes. The beam—column can survive these large axial loads, if it is only for short duration, which
is a typical scenario for a majority of the local rub in high-speed rotating machines [22].
Depending upon the damping and the coefficient of friction, certain conditions exist, when the rub
will tend to destablize the rotor, and will send it either into backward or forward whirl. As
mentioned earlier, in the present analysis, we assume a rigid case which can have a relatively soft
filler material on its inside surface with a stiffness of K,,;. In a deformable outer case, the local rub
generates a travelling wave with N, number of diametral modes for the containment ring. Due to
the travelling wave in the circumferential direction of the outer case, the net radial force from the
case F.4 would become a periodic force with a frequency ‘N £’ acting along the blade stacking
axis, such that

Fcase = Lmax COS(NC'QZ)'

In this situation, the tip-rub load F,,, may excite a ‘N.’ number of nodal diametrical modes on the
casing structure surrounding the rotating blades, the frequency of which may interact with the
blade and rotor natural frequencies causing rub-induced resonance in the stator—rotor system.
The periodic nature of the F., turns the equation of motion for the blade into a classical
Mathieu—Hill type of equation, showing the characteristics of parametric instability of the entire
dynamical system.

The boundary conditions for each individual blades are

n(0,0)=0, n'(0,0)=0, EIn'(L,t)=0
and, from the tip rub shear force at s = L,
EIN"(L,t) — Fan'(L, 1) = uF, cos .

Suppose, in the local co-ordinate system for the jth blade, the lateral deflection #(s,?) is
represented by the shape function

n(s, 1) = (Xo(0); + Y (Xu())(Ya(s));. (4)
n=1

Here, (Xo(?)); corresponds to the rigid-body displacement of the blade root caused by the transient
movement of the disk, and (X,(7));...’s are the participation factors of individual mode-shapes in
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determining the true deformed shape of the blade. Thus,
(0, 1) = (Xo(1));,

where

n(0,1) = [—u(/, t) sin (2% —+ Qt) + v(Z, t)cos <2—]7\TZJ + Qt> ] cos f3,

(Xo(); = i [ U,(1) sin <2N ) + V,(t)cos <2N]> ] cos f,

q=0

and where U,(¢), V,(?) are the components of time-dependent displacement of the disk in the
global x and y directions, respectively. The notations representing the shaft and disk deflection
terms have been listed in Appendix A (Nomenclature), and are also explained in Egs. (26) and
(27). The deformed axial location of any point at radius ‘7’ on the blade with slope of the shaft at
z=17as ¢, and ¢, is given by

{qoxr sin <Qt + 2%) @1 €OS (Qt + %)J (Xu(2)); sin B

= {(—U,Z)L,/r sin (Qt + 2%) (u-)|,—,r cos <Qt + %)] (Xu(0); sin . (5)

The axial movement of the blade introduces gyroscopic forces on the blade root, which is a
velocity-dependent term. The magnitude of this axial velocity component is written as

{(—i)iz)bﬂ sin (Ql + 2Nﬂ> (t12)].—,r cos (Qt + %)J (X, (#)); sin B

[ Z v, W () s1n<Qt+2W> Z U, W’(/)rcos(()t—l—%)] (Xu(0)); sin B. (6)

q=0

The dynamic terms such as displacement, velocity and acceleration associated with the transverse
movement of the blade are written as

n(s,t):[ Z U(z)sm( >+Z V(t)cos( )] 4(£)cos [3+Z(X O)(Yu(9));,  (7)

(s, t)=|— Z U,(t) sm< > + Z Vq(t)cos( ) W,(¢£)cos f + Z (Xn(t))j( Yu($)) (8)

q=0 n=1

ii(s, 1) = —Z U, (1) sm< ) Z q(t)cos< > Wy(l)cos B+ > (X)) (Yu(9));. (9)
L =0 i n=1

The assumed trial function for the lateral deflection #(s, #) in Eq. (4) is substituted in the beam—
column bending equation of motion (1). After defining a set of mode shapes or the displacement
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functions as Y,(s), which satisfies the geometric boundary conditions, we use the Galerkin’s
method to convert the governing partial differential equation (1) into a set of ordinary differential
equations in terms of time-dependent variables such as X, (7), U, (?), V,(?), etc. The external
forces in the equation of motion for the blade is caused by the friction force at the blade tip,
which is trying to deform the cantilever blade in the direction opposite to the direction of motion,
and its magnitude is uF, cos 5. As described earlier, the axial force F, being a contact-compressive
load in the equation, its non-zero value will always be negative. Thus, the pth mode shape
component of the external force vector on the right-hand side of the equation can be written as
ukF, cos BY,(L).

Due to shaft bending and disk rotation, the rotary inertia and gyroscopic effects introduce
additional velocity-dependent terms such as Xq(t), Un(f), Vu(f) in the equation. Thus, in the
matrix form using the standard summation convention of repeated indices such as *,,” and ,’, the
pth equation of motion for a typical jth blade is written as

[Mpm]xj 2 Um + [Mpm]yj Z I7m + [Cpm]xj z Um + [Cpm]yj Z Vm + [Mpq](Xq)j + [Cpq](Xq)j

m=0 m=0 m=0 m=0

+ [Komly Y Un+ Kol > Vin+ [Kngl(Xy); = p(Fy); cos BY,(L) (10)

m=0 m=0

and the additional terms for the support motion are
[Kp0]Uo + [Kpol,; Vo + [Cpoly; Uo + [Cooly; Vo + [Myoy; Uo + [Myol,,; Vo, (11

where

[Kpolyy = [—(ED), Y:/(O) - 7z2QZ(PA)b[(R + r)/2]] sin <2Nﬂ - ﬁ) ,

[Kpol,; = [—(ED), Y, (0) + m*Q*(pA),[(R + r)/2]] cos <2% - ﬁ),

[Mpol,; = — [(pA)b sin (2; >cos ﬁ/ Y, ds] = —(pAL), sin (i’\?) cos f = — My sin <2;j> cos f,

[Cpoly; = —Cisin <2%J) cos B/ Y,0(s — L)ds = —C;sin <2NJ> cos BY,(L),

[Mpol,; = [(pA)b cos <W‘]> cos [3/ Y, ds] (pAL), cos <2Nj) cos f = M) cos (2]7\7) cos 3,

[Cpolyy = G cos< )cos ﬁ/ Y,0(s — L)ds = C, cos <2N]> cos BY,(L).
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In the global frame of reference, the complete equation of motion of any typical jth blade of the
blade-cascade mounted on a flexible rotor—disk system reduces to

— Mb sin <2N ) Uo
ST _
+ | = ; (D i+ G cosﬂsm( ) Z ( cos[fcos(%) Uy

+

+

—(EI), Y"(0) sin (2—;] - ﬁ) — 12Q%(pA), sin <2% — ﬁ) [(R+7)/2]
Uy

. (2mj 2nj
_ [Zfﬁl (S2); + Krub} cos f3sin (%) + [Zfﬁl (S, — ,UKrub] cos fi cos (%)

My, cos <2NJ> 7
Z (ny cos f3 sm< > Z ( )i + Ci | cos fcos (%)

—(EI), Y, (0)cos <2N] — ﬁ) + 12Q*(pA), cos <2_]7\z]] — ﬂ) [(R+1)/2]

Vo

Vo
N

Z W,(0) / Yu(s) ds + W, (/)cos® (Nj> /0 ' Y (s)(s + 1) ds| U,

B [Z (S4)i + /“‘Krub} cos [ sin (2—;}> {ZN" (Sp); + Krub} cos f3 cos <2ﬂ>

omin(2)

Ctsm<2 >cos[3W(/)/ Y,uo(s — L)ds Z U

Q(pA), sin ff cos <%) /O Yy (s)(s+ 1) ds Y W)Uy
q=1

>

q=1

N L
(pA), cos( > !Z Wq(/)/ Yu(s)ds + W/(/) sin < NJ> /0 Y (s)(s + r?ds|V,

C,cos<2N)cos[3W(/)/ Yo0(s — L)ds Z Vv,

—(EDW)'(0) — T Q(pA), Wy(OI(R +1)/2] i <2ﬂ ~ ) U
—(ED), Y (O)Wy(£) + (ED), Y1) Wi(£) N !

. (2m , o
Q(pA), sin B sin (%) /O Y (s)(s + 1) ds ; WiV,
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<2nj )
os| ——p |V,
—(ED, Y, (O Wy(0) + (ED), Y, (0)W(7) N

0 L ) L
Ym Yn ds / Ym Yné(s - L) ds

(EI),, [E Y Y ds + (pA), @2 [ (s + 1) Y, Y. ds

X ) (X,
> | >h THQIL+ L% = 25— )Yy ¥ ds — Fy [“ Yo ¥/ ds |

—(EDW]'(0) + m*Q(pA), Wy(O)(R +1)/2]

>

g=1

+ (pA), (%), + G (X,

n=1

= — ulFy|cos ﬁYm(L)- (12)

In the above equation, all the terms related to the shaft such as (EI) and Wq, Uq, V,, etc. and
bearing damping and stiffness terms such as [D? ], [ny]l, [ y\c]la [ y}],, [S? 1;s [SYy],, [ fx]i, and

[Sfy]l, etc. will be explained in a later section. Here the lateral deformation of the blade is assumed

in the form of a shape function Y, (s) such that it satisfies all the forced boundary conditions
naturally, which is

Y.(s) = A1pS> + aoyS® + azns + sin(f,,), (13)
where f8, = (2n — 1)n/(2L). Thus,
Y(s) = 3ai,s® + 2az,s + as, + B, cos(B,s),

Y;il(s) = 6alnS + 2a2n - (ﬁn)2 sin(ﬁns),

Y, (s) = 6ai, — () cos(B,s),  Y,"(s) = (B,)* sin(,9).
On applying the forced and natural boundary conditions as Y,(0)=0, Y;(0)=0, and
EIY!(L)=0, EIY)"(L) — F,Y,(L) = 0, we get

a1, = ﬂnFa[Lﬁn Sin(ﬁnL) — 1]
M T S(ED e + 3FL2

(ﬁ )2 (ﬁ )’ B.F.LB,sin(B,L) — 1]L

L
T s (ﬁ ) 2(E1)blade + FaLz ’

ary, — 3a1nL +

sin(f, L) =

asz, = _ﬁn

One can choose a displacement function to satisfy only the geometric boundary conditions in
which case the coefficients are simplified as

(ﬁ)

ain =0, ay= sin(,L), az, = —p,.
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Thus, the global components of the blade axial forces acting in the radial direction of the rotor
shaft become either a function of 0 for acceleration or for a constant angular velocity Q,

(Fx); = (Fy); cos <% + 9) = (Fy); cos (2—]7:[] + Qt), (14)
F), = (F)ysin( 22 40) = (F) sin (22 + 0 15
(Fy); = ( a)jsnl(W—i_ ) = u)jsm<7+ Z)' (15)

3. Rotordynamic equations for shaft with rub

In this section, we will develop the governing dynamical equation for the rotor shaft in all its
complexities. The current approach of starting with the Euler—Bernoulli’s beam differential
equation is very similar to one used by several previous authors [23,24]. This method was extended
[25] for studying the whirl speeds and vibration modes of a flexible rotating shaft with gyroscopic
effect and simply-supported end-conditions. Using an identical formulation, the impact response
of an elastically-supported rotating disk—spindle system has been solved by Parker [26]. Lee and
Zei [27,28] have addressed the problem of continuous flexible shaft with bearing supports at
discrete locations in a closed form. For stability analysis of a flexible shaft, Khader [29] used the
energy method to derive the equations of motion of a cantilever disk—rotor system. In a recent
paper, Zheng and Hasebe [30] tried to determine the chaotic response and long-term transient
dynamic behavior of multi-degrees-of-freedom rotor-bearing system in the time-domain.

For the governing dynamical equation of the rotor shaft, which in general, is a long hollow
circular cylinder, we will focus on an overhung disk-rotor bladed system (see Fig. 3). The shaft
(inside radius =r; and the outside radius =r,) is spinning inside a bearing at one end
(z = z; = 0), and is supported at intermediate discrete axial locations (z = z;). As a general case,
these support bearing may not necessarily be symmetrical in the x—y plane and as such for any
typical ith bearing located at z = z;, their dynamic stiffness [$], and damping [D], in matrix form
are written as

St Sh
Shosb Db Db
[S]b — yx yy , , [D]b _ ;X -’bcy (16)
B XX D}’X Dyy i
b
Byy i

Here, [S? ],, [szy]i, [Sf,x]i, and [Sf,y]i have the dimensions of linear stiffness as force per unit length,
and [B? ], [B’ ], have the dimensions of bending stiffness as moment/unit radian. For short
bearings with no axial restraints, the [B? ]; and [Bgy]i will be zero, but for long-bearings with axial
load carrying capability the terms [B? ], and [Bf,y]i are non-zero. The reaction force at the bearing
support locations due to stiffness terms can be written as

(Foy =[S u(zi, 1) = Blou-(zi,0) — Shu(zi, 1)) at z =z, (17)

XX 7 Tes

(Fy)p = [=Shou(zi, 1) — B)w-o(zi, 1) — Shov(zi, )] at z =z (18)

yx 2
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Z-axis < D) . .
i*h Bearing

rub

14

Fig. 3. Fan rotor shaft supported on multiple bearings: number of blades = N, mass density = (p),, cross-sectional
area = (A), = n(r2 — r?), flexural rigidity = (EI),, Coulomb friction force: Fy = uKypv(, 1), Fy = —uKpu(Z, t). For the

i

ith bearing, stiffness = [S]i; and damping = [D]i. In case of air gap between the blade tip and the outer case, K., = 0.

It should be pointed out that we are carrying the damping terms [D?,];, [D%,];, [D}, ], and [D) ]; in
the bearing equations to keep the mathematical derivations general enough for all types of
bearings. However, in jet engines the rotor is supported on ball and roller bearings, which have
practically no damping as opposed to the journal bearings in which oil film provide significant
amount of damping for the lateral motion of the shaft. In Eqgs. (17) and (18), u(z;, t) and v(z;, t) are
the deflections of the shaft at the bearing support locations. We assume that the fan disk with all
the blades can be considered as a lumped mass ‘M’ located at z = / and having a diametral mass
moment of inertia as J. At this point, we introduce the notations for the shaft mass density as
‘(p),’, Young’s modulus as ‘(E),’, cross-sectional area ‘(4),” and its cross-sectional area moment of
inertia as ‘(/),’, and the critical viscous damping coefficient of the shaft ‘H’ as

2
H:/

—[EIpA]. (19)
I

The governing equations of motion in the stationary global frame of reference of x and y
directions, defined as u(z,¢) and wv(z, f) respectively, for the fan rotor spinning at the angular
velocity of 2 radians per second during the blade tip rub are

0
|:(E1)y + 2CH 5:| U2z + (PA)SU,U - Idu,zztt - 2IdQU,zzt + 2£HQU,2222 + T(t)v,zzz

XX 7Tes

Ny
— P(Hu .. + Z[Sﬁxu + Siyv + B Uz + Dixu,, + Diyv,z]é(z — zi)
i=1
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+ [Mu,tt - Ju,zztt - 2JQU,ZZT]5(Z - /)

+ Krub[(u - R(u, Z)z) + ,LL(U - R(U, 2)2)]6(2 - /) = CIx(Z’ t)a (20)
|:(EI)5 + 2€H E:| U zzzz + (PA)SU,n - IdU,zztt + 2Id~Qu,zzZ - ZCHQu,zzzz T(t)u,zz”
Np

— P(vz-+ Y [Sha+ Shv+ B v+ Dhuy + Dhyw 16(z — z))
i=1

+ [Mvy — Jvzzpp + 2T Qu -(]0(z — /)
+ Krub[(v - R(U: 2)2) - ,LL(M - R(M, 2)2)]5(2 - /) = qy(Z: t)' (21)

The presence of skew-symmetric stiffness terms due to Coulomb friction in Egs. (20) and (21)
highlights the destabilizing effect of the rub. In order to determine whether a particular rub is
actually destabilizing to the rotor or, if it can ride-through the rub action requires that the blade
tip movement be computed very precisely, which forces us to include the non-linear terms in the
blade-tip movement calculation. Due to bending of the shaft and the resulting rotation of the disk
and blades, the term containing the Coulomb friction effect at the blade tip, namely, R(u,z)2 and
R(v,_,)2 are truly non-linear, and are included for an accurate determination of the rub condition.
However under small rotation assumption, they can be reduced into linear terms with a rotation
factor ‘e’ as

R(u,z)2 ~eRu_, R(v,z)2 reRv;.

Depending upon the fan blade tip radius ‘R’ the typical value of the rotation factor ‘e’ will vary
anywhere from 0.01 to 0.1. In the linearization process under small rotation assumptions, for the
direct rub stiffness terms, we can write

(u-)*~0, (v.)*~0.

4. Mathematical derivations of external loads for different rub conditions

The most common external load in any rotordynamic problem is the rotating load vector due to
unbalance. During the normal operation of an aero-engine fan at a given speed, the gas loads Fg
on the blades apply a steady state load torque on the shaft. For any other speed this load torque is
proportional to the square of the speed. If the fan blade tip rub takes place under these conditions,
then both the torque due to Fz and Coulomb friction are opposite to the direction of rotation.
However, during the wind-milling operation the gas load F becomes the driving torque and the
Coulomb friction like always is acting opposite to the direction of motion trying to straighten the
blades.

The blade tip-rub introduces additional loads making the loading on the shaft much more
complex than a simple rotating unbalance. In the rotordynamic equations (20) and (21), all the
loads transferred to the shaft through the blades can be treated like external loads. When the tip
of the blades start rubbing against the inner surface of the containment structure, then depending
upon the magnitude of the radial load along the blade stacking axis (F,), the blade tips can either
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skate on the inner surface if it is sufficiently hard or, they can cut through the inner surface if it is
relatively soft. If ultimate shear strength of the inner surface is 7, and the radial incursion of the
blade tip or the interference with the inner surface is ‘¢’ then for a blade of the chord length ‘¢’ at
the tip, the condition for either skating or cutting-through can be established as follows: skating
will occur if F,<2tec, and cutting-through will occur if F, > 2tec.

If the inner surface material has been cut-through, then as the tip-rub progresses, the cut
material will be pushed away from the path of the rotating blade tip like by ploughing action. As
such, the blade tip rub produces the following loads on the rotor shaft.

(1) During skating of the blade tip on the inner surface with coefficient of friction ‘u ’and the
blade tip stagger angle ‘f’, the radial shear load on the shaft by a typical jth blade, the bending
load in the normal direction on a typical jth blade, and the torque on the shaft by a typical jth
blade are given, respectively, by

(Fa)y (Fa)ycos B, pu(Fa,(r+ L), (22)

(2) During ploughing action of the blade tip of the inner surface of the filler material with
density ‘(p),” and blade tip tangential velocity ‘QR’, the radial shear load on the shaft by a typical
jth blade, the radial incursion ‘¢’, and the bending load in the normal direction on a typical jth
blade are given by

(Fo)j.  (Fay/2te,  p(Fy);cos f,
Furthermore, the torque on the shaft by a typical jth blade is
L0)(QR cos )ec cos (r + L) = 2p)(QR cos BY*(F,);/2x)cos (r + L),
and the axial load on the shaft by a typical jth blade is
Lp)(QR cos B)*ecsin B = L(p) (QR cos B)*((F,);/27) sin f. (23)

Also, in the above equation, (Fy); is a function of time ‘7. Thus, the shaft sees only steady axial
pull due to the gas load on the blades Fg, however, it has both steady state and time-varying
torque terms in the left-hand side of Egs. (20) and (21):

P(f) = Py + P, = NFg sin f, (24)

N
T(i) = Ty + T, = NFg(r + 0.5L)cos B+ > u(Fa)(r + L). (25)
j=1

In a rigorous sense, the above relationship for P(¢) and T'(¢) shown in Egs. (24) and (25) are
correct only for a constant speed. During acceleration and deceleration of the rotor, €2 is no longer
constant and Fg as well as (F;); are also time-dependent, which make the entire dynamic even
highly non-linear. The additional load during the plowing action of the blade-tip against the
relatively soft filler material in the case imparts a pulse load on the shaft and should be treated
accordingly in the dynamical equation for the shaft.
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5. Application of Galerkin’s method to the shaft equations of motion

The solution of Egs. (20) and (21) may be assumed in the following form of time ‘¢’ and spatial
variable ‘z’:

u(z, t) = i Un(OW,(2) = Up(¥) + i Un(0[1 — cos a,2], (20)
m=0 m=1

oz, 1) = i V() Win(2) = Volt) + i Vo[l = cos 2], 27)
m=0 m=1

where o, = (2m — 1)n/(2/). Thus,

WO(Z) = 1: I/Vm(Z) =1- COS(OCmZ), W/;;1(Z) = O Sil’l(OCmZ),

Wylyll(z) = (Ocm)2 COS(O(mZ), W;:;/(Z) = _(‘Xm)3 Sil’l(O(mZ), W;;Il//(z) = _(O‘m)4 COS(O‘mZ)-

Applying the Galerkin’s method, one obtains a set of ordinary differential equations of which a
typical kth equation is

‘
/ R(u, v)Wy(z)dz = 0. (28)
0

Since the natural boundary condition of shear force equal to zero at the disk end is not satisfied
for z =/, the nth algebraic equation for the set of simultaneous equations is written as

ED U, [ W!"W,dz+ 20HU,, [ W"W,dz + (pA),Up, [ WuW,dz — I;U,, [ W' W, dz
N 0 m 0 m s 0 0 m

U 20QV [y WiW, dz + 2LHQV,y [y W' W, dz + TV o Wi W,y dz — P(6) Uy [y Wi W, dz
m=0

+ M (S U + S8 Vi + Db Uy + DVl [y W Wod(z — z)dz + M [BLUnl [y Wik Wod(z — ;) dz

+ MU W ()WL) + JU W (W) + 2TV W (W) 7
+ K [Un Wi OOYWi() + Wl Viy Wi OYWi(£) — eRV,,, W, (L)W (£))]

+ POUW, (OWi(l) = TOVu W, ()W, (¢)

— Fycos(0 + ¢)d(z — (YW, (¢) — (ED U W, (YW (£) + (ED U W, (O)W,(£)

7
= / R.(z)W,dz = 0. (29)
0
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| (ED Vi s W W, dz 4 20HV,y [o W W dz + (0A), Vi [ WuWo dz — LiV [ WEW, dz
oI R20QU, [y WiW, dz = 20LHQU,, [y Wi' W, dz — T() Uy, [y Wi W, dz — P(O)V,y [3 WiW, dz
"+ SNSE U+ SE Vi + D8, Uy 4 D, Vil fi W Wz — 2 dz + S0 [BE Vol J W Wiz — 2) dz
+ [MVuW(OWl) + TV W (OW(0) = 20QU W, ()W, ()]
+ Kol Vs Wil YW () = (Up Wi(O)W,(£) — eRU W, (O) Wi (/)]
+ POV W, (OWal) + T(OUn W, (H)W,(£)
— Fysin(0 + ¢)o(z — OYW(£) — (EDVu W (W) + (ED Vi W (O W,(£)

= // R, (z)W, dz = 0. (30)
0

The Galerkin’s method simplifies partial differential equations (29) and (30) into a set of coupled
second-order differential equations in terms of time-dependent variables. For determining the
Uy(t) and V(¢) terms in the assumed displacement functions. The rigid body equation is obtained
by setting n = 0, and using Wy(z) = 1 in the above set of equations, yields

(ED) Uy, [y W dz + 2LH U,y [y W dz + (pA)y Uy i Windz — 13U, f§ W1 dz
> —20,QV,, [{ Wi dz + 2LHQV,, [ W dz + T()V, [ W' dz — P()U,, [| W/, dz
" SIS U Sy Vi + DA U+ D Vo) fi Wond(z = 2 dz + SO LBY, Up o Wid(z — z1) d=
+ MU W) + K [UnWin(£) + tf(Vig Win(£) — RV, W, (£))]
— Fycos(0 + ¢) — (EDUn[ W,/ ()] + PO Un[W,,())] = 0, (31

(ED),V,, [{ W dz 4+ 2LHV,, [3 W dz + (0A), Vi o Windz — 1V, [ W/ dz
> 121,QU,, [{ W dz = 2LHQU,, [} W dz — T(t)U,, [i W' dz — P(t)Vyy [y WIdz
m=0 . . ) ;
+ M S8, U + S8, Vi + DL, U+ DBV [y Wind(z — i) dz + SN [BE, Vil fy Wind(z — ;) dz
+ MVm Wm(/) + Krub[Vm I/Vm(f) - :u( Um Wm(/) —eR Um Wr/n(f))]

— Fysin(0 + @) — (ED,Vul W, (O] + POVl W, (£)] = 0. (32)
On expanding the generalized co-ordinates such as U, and V,, we get
/ . Nb .
[(pA)S/ Wn dz + M:| UO + Z (D?CY)[ Wn(Zi) UO
0 i=1

Ny

+ D ISEWalzi) + (BL) W 0] + Ko Wal£) + P(OW;(£)| Uy
i=1
N], X Nb

+ ;(Dzy)i Walz) | Vo + ;(Sf;y),- Wozi) + 1Ky W) | Vo

o0

4 14
+ Z [(pA)s / WuW,dz — I, / W' W, dz + JW) (W) + MW, (O)Wu(£)| Uy,
0 0

m=1
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0 / Np
+ > lzaH /O w'W, dz+Z (D) W2y Waz) | Uny

i=1

3
—_

=

(EI), [ W W, dz — (ED, W (()Wo(/)

+ 3 (2 Wz Wizi) + (BL), W) Waz)] | Un
—P(t) [ W W, dz + POWL(OWill) + Ky Wi £)W(£)

+

o0

>

m=1

N;, /
> (D) Wiz Wilz) — 214Q / W W, dz + 2JpQW (OWNL) | Vin
i=1 0

=

>

1

“ [N (SL) Wiz Walz) + T(0) [y Wi W, dz — T(OW}(¢) W,z(f)] .
=L K[ Wl )W) — eRWL(OW(£)) + 2LHQ [ W' W, dz

/
m

m

N

R L . L
— (pA), Z sin <2%> LZ; Wu(£) /0 Y,(s)ds + W)(/)cos? <2%> /0 Y (s)(s + r)? ds] (Xq)j

J=1

v . N 27'[_] L , 5 .
+ QW (/) (pA),sin 8 Z cos (W) Z/o Y ()(s +r)” ds| (Xy);
J=1 g=1

N 2nj L
-G (0 = d(s—L)d
cosﬁW()jz;SIn(N) ;/0 Y (s)(s — L) ds

N —(ED, Y O)W,(¢) + (ED), Y, (0) W, (£)
j=

' Z1: —(EDW)(0) = B Q(pA) Wa( (R +1)/2]

(Xy);

sin <2% — [3) (Xy),

/f Dy N 2mj
= Fy [Wn + W, 7] cos(60 + ¢p)o(z — £)dz + Z (Fu); cos <W + 9) , (33)
0 Jj=1

Ny

> (D)) Wa(z)

i=1

Np
> (SE)Wlzi) — 1Koty W)

i=1

U() + Uy

Np

> (D5 Wa(z)

i=1

/
+ [(pA)S/ W,dz + M} Vo + Vo
0

Ny
+ Z} [(S2): Wa(z) + (BS,) Wi (2] + Ko Wl£) + P(OW(£)

Vo
o0 Ny / )
+ Z:l [Z (Dﬁx)l-Wm(z,-)Wn(z,-)+21dQ /0 W' W, dz = 2JpQW' ((YW!(£)| Uy,

i=1
w
>

m=1

lzfiﬂ (SL Wz Walz) — T(2) fy Wi W, dz + T(OW,,(/) W,;w] .
— uK[ Wl OWil6) — eRW (Y W() — 2LHQ [} W' W,y dz
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n
NgE

/ /
[(pA)S [ wiwadz =1 [ Wiz swiowio - uwo w0
1 0

3
I

n
e

m

Ny
lng / W' Wy dz+ > (D)) Wi(z) Wz |V,
i=1

(EI), [} W!"W, dz — (ED, W/ ()W(/)
+ S (SE )W) Wz + (B WO Wz | Vi
— P(1) [ WIW, dz + POW (W) + K Wil )W)

m

N i L
+ (pA), Z cos( ) [Z W, (/)/ Y,(s)ds + W!(/) sin < N]> /0 Y;(s)(s + r)2 ds] (Xq)j

=

n
[M]s

3
[N

1 . - . 27Zj L / 2 Y
+ QW (/) (pA),sin Z sin <W> Z /0 Y ()(s +r)” ds| (Xy);
j=1 q=1

Z / Y, (s)(s — L) ds

—(ED, Y (0O)Wi(2) + (ED, Y (O) W, (/)
— (EDW,'(0) + w2 (p )y Wi IR +1)/2]

+ thosﬂW(/)Z cos( )

N

(X,
>

.
> 0s (% - ﬁ) (X,),

/" D] . al (2
- [ Fy [W,, + W 7} sin(0 + ¢)3(z — /) dz + » _ (Fa);sin (W + 9). (34)
0

J=1

In these equations, the Coulomb tip friction term uK,,; is zero for a local rub, and is non-zero
only for a rare event of full 360° contact with the case. In addition to Egs. (33) and (34), the
following additional two equations are obtained to account for the rigid body motion of the

flexible shaft supported on multiple bearings:

Ny
Z (Sf)cx)l + Krub

i=1

Ny
[(pA)/ + Mp + N(pA), L1y + > [(DL,); + NCIUp +
i=1

Z (S ) + uKup

Uy

Nb

2, (P
Z [(pA)/ W, dz+M}Um+§:

m=

+ V() + Vo

Z (D) Wnlz) | U

0 Nb
+ ) [Z(S,‘;x» Win(z) + (BL) Win(z0) + K Win(6) + PO W, (0) | U,
m=1 i=1
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0 o | Ny
+ Zl Z (D5 Win(z) | Vi 2 ; (S2) W23 + 1Kot Wil )| V,

— (pA),L Z sin < ) (Xq)]

N N,
+ z Z (D4, + C, cosﬁsm( > Z ( ] cos f3 cos <2 )](Xq)j
=1

v ~(ED, Y}/ (O)sin (%’ - ﬁ) — w0 (pA), sin (% - /3) [(R+1)/2)

+ Z . N | (X9
=1 = {Zf\ﬁl (S8); + Kmb] cos f#sin <2%J> + {Zf\il (S;’x)i + uKm;,] cos f cos <2Nﬂ>
_ 3 27
= Fycos(0+ ¢) + Z (Fa); cos i +0), (35)
N, ‘ N, !
> D00 Uo+ | > (S0 — iKeun | U
i=1 i=1
N,
+[(pA)/ + Mp + N(pA)LIVo + > (D)), + NC IV + Z(Sb )i + Kous | V2
i=1
o0 Ny o0
+ z Z (wa)z I/Vm(Zz Um + Z Z (Sb )l m(Zl ,uKub I/Vm(/) m
m=1 m=1| i=1
+ Z [(pz‘l) / W dz + M:| Vm + 2 Z (Df;)) Wm(Zl)
m=1 m=1 [i=1
+ ) Z (S2 )i Win(zi) + (B Win(zi) + K Win(£) + POW,(O) | V,
m=1
+ (pA),L Z cos< >(Xq)
N T Ny j 2nj
+ Z (Db cos f3 sin (W) (Db ); + C;| cos ﬁcos< ) (Xq)
j=1 L i= 1
N —(EI), Y, "(0)cos (2—;] - ) + m2Q%(pA), cos (27 - ﬁ) [(R+71)/2]
+ Z i (Xq)j
i=1 b Ny b T
J — [ 1 (%) ,uK,ub} cos f§ sm< > [Zijl(Syy),- + K,,,b} cos f cos <7>

= Fysin(0 + ¢) + Z(F")J' sin <2Nlj + 0). (36)
=
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Eqgs. (34)—(36) represent the equations of motion for the shaft, and each N number of Eq. (12)
represent the equation of motion for individual blades. As an example, we will solve here the
dynamic stability of an overhung rotor supported on multiple bearings, namely, the bearing no. 1
located axially at z = z; = 0, the bearing no. 2 at z = z; and so on. The general equation of
motion for the entire rotor shaft including all the blades in a matrix form can be written as

[MI{f ) +[CHS ) + KON f} = {FQ)}. (37)

Here, time-dependence of the stiffness matrix outlines the non-linear characteristics of the
equation of motion. The inertia matrix [M] is always symmetric, however, the velocity-dependent
matrix [C] is a combination of symmetric and skew-symmetric matrix. If the damping in the
bearing [D], is not symmetrical then, in general, it can be any matrix. The skew-symmetric terms is
due to gyroscopic effect in a spinning rotor. The displacement-dependent matrix [K] can have
time-dependent term due to non-linearity. In a simple linear structure, it will be a symmetric
matrix, however, due to material internal damping terms and torque in the rotor, it will have
skew-symmetric terms. Moreover, due to the contact-impact load with the outer case, it will have
time-dependent non-linear terms. Hence, the matrix terms used in Eq. (37) can be broken into
following separate matrices.

[MI{f} +[[Clp + [Clal{ f } + ([K]s + [K];] — [[B], + [BLIW(O){f} = {F(1)}, (38)

where [M] is the mass matrix (symmetrical), [C], the damping matrix (symmetrical or non-
symmetrical depending upon the bearing), [C]; the gyroscopic matrix (skew-symmetric, causes
forward and backward whirl in the shaft), [K]g the stiffness matrix (generally symmetrical, but
may be non-symmetrical due to non-symmetrical bearing in the horizontal and vertical
directions), [K]; the instability matrix (skew-symmetric caused by the internal damping in the
shaft and also torque in the system), [B]; the time-dependent stiffness matrix (generally
symmetrical and causes parametric resonance due to the radial load on the blade tip and also due
to axial load on the shaft), [B], the time-dependent stiffness matrix (skew-symmetric and causes
parametric instability in the shaft, due to fluctuating torque in the system), and {F(#)} the column
vector containing external forces on the dynamical system.

It can be seen that in Eq. (37) the terms containing generalized co-ordinates in the column-
vector { f(¢)} have dimensions of length. Suppose, we consider ‘»’ number of modes on the shaft
and ‘n’ number of modes for each blade, then for brevity we can introduce the following notations
for the generalized co-ordinates { f(¢)}.

Rotor deflections:

J1() = Up(0), f(0=Ui0), [f5(t) = Ua(0), firom() = Upn(d),
S0 =V, fa() = Vi(D), [feo(©) = VaD), frrom(t) = Vin(2).
Blade deflections:
Ist Blade : f3+2m(t) = (Xl(l))la f4+2m(l) = (XZ(Z))I () f;1+2+2111(l) = (Xn(t))l'

2nd Blade : f310m(0) = (X1(0)a, furarom(®) = (X2(0);-.., fonr242m(t) = (Xou()),.
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3rd Blade : f2n+3+2m(t) = (Xl(t))S: f2n+4+2m(t) = (XZ([))3 ERRE] f3n+2+2m(t) = (Xn([))3-

Jth Blade : f(;—1yp312m(t) = (X](Z))j, JG-vnrarom(D) = (X2(0); -, Sins212m(0) = (Xu(D));-

(N — Dth Blade : fiv—2pnr3r2m(®) = (Xi(D)y_15 fiv-2pnrarom(@) = X(D)y_; .-
Jov-vni242m() = (X)) y_1-

Nth Blade : fiv—1ni312m() = (X1(D)y, fiv—pnrarom(®) = (Xo(D))y ...,
an+2+2m(t) = (Xn(l))N
In the above notation for the X terms, the first index refers to the mode shape number for the

blade and the second index is the corresponding blade number. Thus, {f}' =

NG fafsfefifs ... fuvioioms and () denotes derivative with respect to time ‘#’. The non-
zero terms of the matrices [M], [C], [K] and [B] are

Np
. [Kia] = [Z (S2,); + uKmb] ,
i=1

Ny
[Ki1] = [Z (S2.); + Ko
i=1

>

Ny Np
[Ka1] = [Z(S;x)i — 1Ko |, [Kap] = [Z (SV.); + Koup
P P

[Komi11] = [Z( ),-Wm(zi)+(Bix),-W,;;(z,-)+K,ﬁume</)+P(z)W,;(/)],

Ny
[Koms2,1] = [Z (S0 Win(zi) — 1Ky Win(£ )] ,
i1

K2m+1 2 [Z (S m(Zi) + /-LKrub Wm(/) )
Ny

[Kom+2,2] = [Z(Sﬁy)i Winlz0) + (B Win(zi) + Koo Winl£) + POOW, (/)] ,
i=1

l !
[Kams1241] = (ED), [ /0 W Wy dz — W) me)] — P(1) [ /0 W Wy dz — Wi(Z) Wm(/)]

Ny
+ Y USLW @) Wan(zi) + (BLW S CO W] + Ky Winl )W (),

14 4
Kanszagia =D [ 07,0z = womwo| - o [ wiw, oz = wyow, o)

Ny
3 (S W) + (B )W GO W)+ Ko Wl VW0,
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/ l
(Ko 12g12] = 2LHQ / W W, dz + T() [ / W W, dz - W;(@W/n(/)]
0 0

Ny
+ KWl YW (£) = eRW(OWl) + Y (S0 )i W) W (z0),
i=1

4 4
Kozl = — 2HE [ W)Wy dz = T0) [ | wrwnaz—wio W,;(/)]

Ny
— WKW YWinl0) = eRWOWi()) + Y (o) Win(z) Wo(20).
i=1

Skew-symmetric non-diagonal terms of the stiffness matrix [K] are
[Komi22n11] = —[Kont12me2ls [Komi12n42] = —[Kons2.2m11]-
Symmetric non-diagonal terms of the stiffness matrix [K] are

[Kom+i120+1] = [Kons12m+1)s  [Koms2.2n42] = [Kont2.0m+2]s

[Ml,l] = [MZ,Z] = N(pA)bL + Mp + (pA)Sf,
Y
[Mipmi1] = [Mopi1,1] = [(PA)S/ W, dz + M},
0
/
[(M2om+2] = [Mami22] = [(pA)S / W,, dz + M},
0
1 /
[Mzgi12mi1] = (pA), / W Wy dz = Iy / W Wy dz + JW, (OW(0) + MW (OW(0),
0 0

/ /
[M2n+2,2m+2] = (pA)s / Win W dz - Id/ W,;I, W dz + JW;;(/) W;g(/) + MWm(/) Wn(/),
0 0

[Ci1] = N.C; +

Ny
> (D)
i=1

Here, N, represents the number of blades which are rubbing at any given instant.
Nb Nb N/7

[cm]—Z(DW [Czl]—Z( v [sz]—NCerZ( b )i

Np

Ny Ny
[Cromi] =Y (Do) Wnlz),  [Cramsi] Z (DL )Wz [Cromial =Y (DL Winlzy),
i=1 i=1

Nb

Ny
[Coomia] = Z ( DiWm(z),  [Comyrn] = Z (D2 )iWn(zi),  [Coms1n] = Z (Diy),- Wu(zi),
i=1 i=1
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N}, Nh
[Comioi] = Zl (DS )iWn(z),  [Comian = Zl (D) Win(z0),
/ Np
(Coperamet] = 2LH [ WIW,dz 4> (DL Wl Wi
0 i=1
/ Ny
[Cagiaomsa] = 20H /0 WIW,dz+ S (D)) W) W20,
i=1
/ Ny
[Coyr10mi2] = —21119/0 Wy Wy dz +2JpQW, (W (/) + Z(Diy)i Win(z) W(z:),
i=1
! N,
(Comiangi1] = 210 /O WIW, dz — 20pQWLOWIE) + S (D2 ) W) W20,
i=1
/ Np
[Cogsaomer] = 21,2 / WIW, dz — 20QWLAOWI) + 3 (Db W) Wz,
0 i=1
/ Ny
[Comi12g12] = 21,02 /0 WIW, dz + 20pQWLOWIO + S (DY) W) W20,
i=1
N

. (27 2nj
[M( ;- 1ynt3+2mily = —Mp sin <Wj>, [(M(j-1yn+3+2m2], = M) cos <—]>,

. (2mj L
(MG s3], = — (pA) sm(—)[ wie) [ vies) ds
(Dt 3+2m3 psin| ; | /0 1

: L
+ W|({)cos* (%) /0 Yi(s)(s + r)? ds],

2nj L
[M(j-1ynt312mal, = (pA)y cos (%) LZ; wi(/) /0 Yi(s)ds

: L
+ W|(/)sin’ (%) /0 Yi(s)(s + 1) ds],
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[M(j—tyns3+2m142ml = — (pA), s1n< ) [Z Wm(f)/ Yi(s)ds

. L
+ W! (£)cos? <%) /0 Y(s)(s + 1) ds],

[M(] Dn+342m, 2+2m]y - (pA)b COS< > [Z Wm(/) / Y (S) ds
2mj\ [t
+ W/ (/) sin? (ﬂ> / Yi(s)(s + 1) ds],
N J Jo
L
[M( ;- vynr3+2m(j—Dnr3+2m] = (pA), [ /0 Y\ Y, ds},
L
(M- vyns32m(j—Dnratam] = (PA), { /0 Y ds}

L
[M(j—1ynt342m, jns2+2m] = (pA),, [ / VY, ds} ,
0

[K(jf 1)n+3+2m,1]x

—(ED), Y"(0) sin (— - ﬁ) 7 0(pA), sin (% - ﬁ> (R +1)/2]

_ [Z (S2); + Krub cos f sin <2]$]> (Sﬁx)i N ”K""b} cos fcos <217\17]> |

[K(j—1n+3+2m2],

—(ED), Y{"(0)cos (— — ﬁ) + 12 Q%(pA),cos (% - ﬂ) [(R+71)/2]

[ (S5 + k| COSﬁSl‘l(NJ) + [ S S+ K cos °°S<%> |

[K(j—1nr3+2m3ly =

—(ED, Y"(O)W1(£) + (ED, YT () W{(/) “in (27tj )
—(EDW'(0) = B (p A Wi (IR +1)/2]

—(ED, Y"(O)W1(¢) + (ED), Y (0)W{(¢) (zﬂ - ﬁ>
—(EDW'(0) + n*Q*(pA), W1 (OI(R + 1) /2]

~(ED, Y/ OWll) + ED, Y{OW,(0) ] (zﬂ_ ﬁ>
~(EDW () = BQp A Wl (R + 1)/ 2]

s m

[K(j—Dn+3+2mal, =

[K(j—ne3+2m142m]y =
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2nj
OS (W — >,

(EI)b [E YY" ds + (pA), 2 [ (s + )Y, Y] ds

—(ED, Y"(O) W) + (ED, Y] (O)W,,(0)

[K(j-Dnt3+2m242m], = —(ED,W" (/) + QP (pA), Wi(OI(R +1)/2] Cc

[K( = Dn+3+2m,(j— Dnt342m] = (p A)b

JEQrL+ 12 = 265 — )Y ¥ ds — (o), X Vi Y!ds |
(EI),, [X Y1 Y3 ds + (pA), 22 [ (s + )Y, Y3 ds 1

K- m,(j— m| = s
Rzl (pA)b fo QrL+ L* —2rs — %) Y, Y5 ds — (Fu(2)); fOL Y, Yy ds

(EI», Jo YY" ds + (pA), @ [ (s + 1) Y1 ¥, ds

[K(jfl)n+3+2m,jn+2+2m] = A ,
b )b fo QrL+ L = 2rs — s1) Y1 Y, ds — (F,(1)); fOL YY, ds

cos f3sin <2]7\;j> Z (D )i | cos fcos <%>] ,

| cos f8 sm( )

—C,cosﬁWl(/)mn( )fo Y16(s — L) ds

Nb

> (DL + G

i=1

[Ci-n3+2m1]y = [

Ny
> W),
i=1

[C(j—l)n+3+2m,2]y = [_

Z ( Wi+ C cosﬁcos(%)],

[C—ns3+2m3)s =

b

—Q(pA), sin ﬂW’(/)cos( ) fo Yi(s)(s + r)* ds

C, cos ﬁWl(/)cos< > fo Y16(s — L) ds
[Cj-Dnt3+2mal, =

b

— Q(pA), sin fW{(¢) s1n< > fo Yi(s)(s + r)* ds

—C;cos BW,u(?) s1n( ) fo Y16(s — L) ds
[C-Dn3ram1e2mly = ,

—Q(pA), sin pW, (/)cos( >f0 Yi(s)(s + r)* ds

C, cos ﬁWm(/)cos< ) fo Y16(s — L) ds
[Clj-Dnt3+2ma+2m], =

—Q(pA), sin W) (/) sm( > fo Yi(s)(s + r)* ds
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L
[Ci=tyn3+2m( j—nt3+2m] = C; { / Y1 Y16(s — L) dS}
0

L
[Ci=Dyn3+2m( j—nta+2m] = C; { / Y1 Y20(s — L) dS}
0

L
[C(jf1)n+3+2m,_1’n+2+2m] = Ct |:/ Yl Yn(S(S - L) ds} .
0

For generating the mass, stiffness and damping matrix terms outlined above, the displacement
functions are

. (2n—1
Y. (s) = 1S + aops® + azps + sin <M> ,

2L

Wiu(z) =1 —cos <w>,

LZ
My = (pA),,L, Ct = 2Cb ?[EIpA]}l)l/azde

In the above derivations of the blade stiffness matrix terms, it is assumed that the displacement
function Y, (s) satisfies all the geometric as well as force boundary conditions. However, in
the Rayleigh—Ritz method, it is not necessary to satisfy the force boundary conditions by the
displacement function. Thus, if Y,(s) is limited to only geometric boundary conditions, then the
typical blade stiffness matrix term should be modified as follows:

[K( Jj— 1)’1+3+2m,jn+2+2m]
(ED), foL YY" ds 4 (pA),Q° fOL(S +1r) Y, Y ds

(pA),@°
2

In all the above relations, Mp is the mass of the disk and M), is the mass of each blade mounted on
it, whereas [M; ;], with double subscripts, denotes the elements of the [M] matrix. Here, it should
be noted that while [M] is a symmetric matrix, other matrices [C], [K], [B] are combinations
of symmetric and skew-symmetric parts. Furthermore, terms containing dynamic coefficient of
friction u are making the non-diagonal stiffness terms skew-symmetric, which is attributed to
introduce instability in the dynamical system. However, terms containing dynamic coefficient of
friction u are non-zero only for a relatively rare case of full 360° rub, hence all tip rubs are not
necessarily unstable. The dynamic stability of the rotor can be determined either in a frequency-
domain or in a time-domain.

The frequency-domain stability criteria can be used only for linear or quasi-linear type of
dynamic problem, where it is possible to write the [M], [C], [K] and [B] matrices explicitly without
any reference to the displacements such as the effect of gaps or clearances in the system. However,
the frequency-domain stability conditions provide a good insight in a complex rotordynamic

JE@rL+ L2 = 2rs — ) Y1 Y ds + (F.(0O)[Y1(D) YI(L) — Ji YY) ds]
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problems, where whirl instability can be initiated due to the excitation of certain mode shapes in
the rotor due to infrequent rubbing of blades. These instabilities which may occur at certain speed
ranges of the rotor can be either a simple or parametric resonance type of instability in the flexible
rotor—blade system.

In the time-domain stability determination, one uses the direct time marching-forward-
integration technique, which is a preferred approach in a true non-linear dynamical problem with
clearances and varying coefficients of friction as a function of speed. In this method, if the radial
excursion of the rotor at certain locations such as at bearing supports, is increasing monotonically
over a period of time, which can be in the range of milliseconds to seconds, then it is considered
unstable. The instability is being caused because the energy being fed into the dynamical system is
not being dissipated fully by the effective damping present in the flexible rotor—blade system. The
direct time-integration method is problem specific and as such does not provide a generic stability
conditions to be used for some other rotor. In the following section, we will discuss the stability
characteristics of the flexible rotor—blade systems during different tip rub scenarios.

6. Determining rotor stability characteristics in the frequency-domain

The method for establishing the stability criteria in the frequency domain for a flexible rotor
was developed and presented by the author [7,31] earlier in full detail. The method is summarized
in this paper for completeness. The set of equations of motion (38) in matrix form can be written
as

[MI{f} +Clp +[Clal f } + ([K]s + [K];] — [[Bl; + [BLW(){f} = {F(0)}.

Here, /(¢) can be assumed to be made up of integral multiples of the rotation speed € (i.e., period
of the forcing frequency = 27/Q). Then, from the Fourier cosine series expansion, we have

o0

() = Z cq cos(gQt),

g=1,2,3..
where

[ w(ocos(qQi) dr
T T cos(q@ryde

Thus, Eq. (38) for any particular harmonic of the rotational speed Q2 can be written as
[M{f} +[[Clp + [ClGI{ f } + ([K]s + [K];] — [[B]; + [Bllcos(¢QO){ f()} = {F()}. (39)

Eq. (39) can be identified as a set of modified coupled Mathieu—Hill equations with additional
contributions from the velocity-dependent coefficient matrix [C]. It can be seen that the skew-
symmetric part of the [K] matrix contains hysteretic damping H in the shaft material and the
tangential torque Ty causing instability in the dynamical system. Furthermore, the presence of
non-zero [B] matrix creates parametric instability in the rotor. The solution of Eq. (39) is sought
in the form of a product of two functions: first an exponential function with a characteristic
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exponent 4 and the second a periodic function with period as (i.e., 2n/Q),

{f()y =" @ + i {a }sinQayt) + {by tcosax ) |, (40)
k=123..

where w; = kQ/4 and where {a;} and {b;} are time-independent Fourier coefficients.
Substitution of the series representation of {f(z)} shown in Eq. (39) enables us to use the
method of harmonic balance. In this scheme, we collect the coefficients of e, e sin(2wy?),
e cos(2wy 1), respectively, and equate them to zero. This yields the following set of homogeneous
algebraic equations:

(A’[M] + A[C] + [K]){bo} — [Bl{ha} = {0}. (41)

These systems of equations can be rearranged with three different matrices, namely, [P], [@] and
[R] as the coefficients of the ascending powers of /4 in the form

([P] + 2[Q] + 2’ [R){X} = {0}, (42)

where the column vector {X} contains the unknown Fourier coefficients [32] such as by, ay, by, etc.
The eigenvalue of Eq. (42) can be solved easily by first converting the equation into a “‘state” form
by introducing a new column vector {Y} = A{X} as

0 mo ), ) w
(R —(RIQ1] | Y vy

where [I] is an identity or unit matrix. The general solution of this set of equations results in
eigenvalues 4 with complex roots such that one can write A = A, +i4;, where i = \/_——T The
positive and negative signs of the real part of the eigenvalue (4,) indicate the unstable and stable
behaviors of the rotating system. The real and imaginary parts of the eigenvalues A, and 4; enable
us to determine the effective logarithmic decrement as

0=-2n [}—'] . (44)
44l

The dynamic system will be stable only when the effective logarithmic decrement for each mode is

either zero or positive. In the dynamic stability problems, the usual interest is in identifying the

unstable zones, i.e., the boundary frequencies (roots of Q) of the “Principal Instability Region”

for the system governed by the Mathieu—Hill equation (39) are determined by finding the

eigenvalues of the matrix

0 0 1] 0
0 0 0 ]
1 1 (45)
2[M] (2[K] + [B) 0 0 —2[M][C]
0 2M]~'2[K] - [B) 2[M]'[C] 0

Since all the matrices [M], [C],[K] and [B] are fully defined and [I] is the standard unit matrix, the
complex eigenvalue problem described by the above matrix is easily solved by using the IMSL-
EISPACK routine. By computing the roots of 4, the global conditions of the rotor stability with a
known value of internal damping { and coefficient of friction u can easily be determined for any



S.K. Sinha | Journal of Sound and Vibration 273 (2004) 875-919 903

combination of Py, P, and Ty, T;. The dynamic stability of a bladed-disk rotor system can also be
checked in a time-domain solution by the direct-time integration scheme used in the following
section.

7. Numerical solution for rotor stability in the time-domain

The transient response of a decelerating or accelerating rotor is of great interest in any
rotordynamics problem. The two most common techniques for integrating the equations of
motion and computing the displacement and velocity response of a dynamical system are (1)
Newmark’s [-method: it is an unconditionally stable implicit numerical scheme, which is
commonly used for determining the long-term transient response in the area of structure
dynamics; (2) Fourth order Runge—Kutta Method. it is an explicit technique and is commonly used
for computing short-term transient response of non-linear dynamical problems, usually with pulse
and impact type of loading.

In this paper, the above system of non-linear transient equations are solved in the time domain
by a still more accurate sixth order Runge—Kutta numerical integration scheme. The equation of
motion outlined in Egs. (37a) and (37b) easily account for time-varying rotational speed, because
in the Runge—Kutta method the instantaneous speed is updated continuously even at the mid-
time-point. In order to apply this method, the system of equations are written as

Mljfj + Cljf] + Kl]f] = Fi - (FC(ISL’)[)

Ji= E[Fi = (Fease); — Cii f; — Kiji fil,
- 1 . .
(fj)tJrAt = ﬁ[(Fi)tJrAt - (Fcase)i,z - (Cijfi)t - (Kljfj)t] (46)
ij

In this equation, 1/Mj; represents the terms in the inverse of the [M] matrix, and the radial contact
load from the rigid case (F,u); is determined by the penalty method, where all the radial
deformation is in the blade tips, and the case acts like a rigid wall. The external force column vector
[F]; contains the terms pertaining to unbalance force components such as (1,Q%)cos(0 + ¢) —
(Fease) (m, Q%) sin(® + ¢) — (F.ase)ys .., in the global x—y directions, and the blade tip forces due to
friction —u(F,), cos f, —u(F,), cos f, ..., —u(F,)y cos f, etc. in the local tangential directions. In
the numerical integration algorithm of the non-linear equations of motion, the number of blades
rubbing the case ‘N,’, the radial load on these blades (£,); and the corresponding coefficient of
friction p are updated according to the direction of instantaneous velocity of the tip of the
respective blades. During the time-marching forward solution, the computer program also keeps
track of the bearing loads, and if any of the bearings generate higher loads than its load carrying
capacity, it is considered failed at that instant and is taken out of the analysis from then onwards.
The velocity ( ﬁ), 1A and displacement ( f;),, , terms in a finite-difference form may be written as

(fl')t+At = (fl)t + Al(ﬁ),+A;,

(fi)z+Ar + (fz)t

5 + XA () ar

(ﬁ)t+At = (fl)t + At
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The initial conditions for the integration are established by determining the steady state forced harmonic
response for a nominal, rotating unbalance load vector. The harmonic response (displacement) f” for a
force F = Fpge® = (m,Q%)e with an angular velocity Q is determined by the following equations:

f :fnwxel(QtJrql)a Fr = Fmax COS(QZ), Fi = Enax SIH('QI)’
—[M]Q* + [K] —[C]@

U {m, Q%)
= . 47)
[C]Q —[M1Q* + [K] | | {3} {—m, 2}

The phase difference for each mode with respect to the rotating unbalance load vector ‘Y’ is written as
Y = tan~'[£,/f,]

The sample numerical results are generated for a typical fan rotor with parameters listed in
Table 1. For the numerical results, all linear dimensions are non-dimensionalized with respect to
the blade tip radius of R = 150 cm, and the forces are normalized with respect to the radial force
produced by 1 g (unit mass) unbalance at the outer radius.

7.1. Steady state response

The numerical scheme for computing the mass and stiffness matrices is verified and checked by
determining the eigenvalues of a cantilever hollow cylindrical shaft with a rigid disk mounted at
the free-end (see Fig. 4). Egs. (33)-(36) are easily reduced to the more familiar form for a
cantilever shaft, rotating at constant angular velocity of Q, of span-length # mounted with a free-
end rigid disk (disk mass = Mp and diametral mass moment of inertia as Jp):

o0

l/

m=1

Mé%

—+

(ED), [ WI"W, dz — (ED,W!"()Wy(() U
+Kub Wm(/) 4 (/) "

3
Il

[M]s

> RJpQW, (YWY, +21 (1Ko [Wol YWl £) — eRW (YWD
= Fy [Wn(/) + W) %] cos(Qr), (482)
i:l 270 QW (YWD ijl KWl YW(£) — eRW (O WO U
; i [mA)S / Wl dz 4 IoWLOWL) + MpW(0) Wm} 7,
X - (ED), [ W W, dz — (ED),W!"(/) Wn(/)] v
m:l Ko Wil YW,(0)

= Fy [Wn(f) + W,;(/)%] sin(Q). (48b)
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Table 1

Details of the parameters considered for the sample rotor used in the discussion
M, Mass of one blade

Mp Mass of the disk

Dy Axial length of the rigid disk

R Blade tip radius

r Blade root radius = disk outer radius

L Blade length

(A), Blade cross-sectional area

)y Blade area moment of inertia

K. Case filler material stiffness

4 Length of the shaft

o Outside radius of the shaft

¥i Inside radius of the shaft

(p), Mass density of the shaft material

p Blade stagger angle at the tip

Speed

Q Rotor initial steady state spin velocity (rad/s)

m, Mass moment of unbalance about engine axis

¢ Circumferential location of the unbalance at time ‘2’ = 0 (constant)

N Number of blades on the rotor

Ny Number of discrete bearings supporting the shaft

Z; Bearing support locations

Usratic Static coefficient of friction between the blade tip and the outer case inner surface
Hayn Dynamic coefficient of friction between the blade tip and the outer case inner surface
(E), Elastic Young’s modulus of the rotor shaft material

(E), Elastic Young’s modulus of the blade material

c Blade chord

10 kg

150 kg

25 cm

150 cm

50 cm

100 cm
5000 mm?
0.5E6 mm*
10 MN/m
350 cm

7.0 cm
5.5cm
7.833 g/cm’
60°

3000 r.p.m.
314.159 rad/s
1E6 g cm

0

28

3

0,300 cm, 325 cm
0.1

0.01

200 GPa
117 GPa

35 cm

Fu= mrQ2

Torque =T(1) :

P()= NFusin

R — Displacement

I W\ =y

Fig. 4. External forces and the first flex deformation of the cantilever shaft with rigid disk: flexural rigidity of the
shaft = (EI),, mass per unit length of the shaft = (pA),, mass of the disk = M), diametral mass moment of inertia of

the disk = Jp, torque = NFg(r + 0.5L)cos 8 + Zj]\;, (1uFo);R.
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The computed non-dimensional natural frequency parameter ¢ for varying disk mass Mp are
summarized in Table 2. The non-dimensional frequency parameter ¢ is defined such that

¢ e,
"2\ (pa),

The computed values of & for the static condition matches well with closed form solution given by
Harris and Crede [33]. The tabular data illustrates the fact that lower flex frequencies move down
rapidly with the increasing mass, however, for higher flex modes the change is not significant. The
effect of increasing mass moment of inertia of the disk ‘Jp’, is shown in Table 3. It is obvious that
the effect of increase in ‘Jp’ for the lower mode is again more pronounced than for the higher
modes, where the non-dimensional natural frequency parameter & become asymptotic very quickly.

The two system modes identified for the above rotor are: 14.86 Hz (891.5 r.p.m.) and 44.49 Hz
(2669.5 r.p.m.). The typical mode shape is shown in Fig. 5. The harmonic lateral response at the
bearing no. 3 support for a nominal unbalance with the rigid-disk are illustrated in Fig. 6. The
effect of gyroscopic terms are plotted in Fig. 7 by listing the forward and backward whirl
frequencies for the first and second flex bending modes at different rotational speeds €2.

Before analyzing the transient response of the rotor, we have also investigated the steady state
dynamic response of individual blades on this rotor during the rotating and non-rotating
conditions. The dynamic buckling characteristics of each blade with its root clamped at the top of

Table 2
Computed non-dimensional frequencies ¢ of a cantilever shaft with rigid overhung disk of concentrated point mass Mp
Disk-mass First flex Second flex Third flex Fourth flex Fifth flex Sixth flex
(Mp/Ms)
0.00 3.5160 22.0351 61.7052 120.9317 199.9649 298.7559
0.10 2.9678 19.3563 55.5245 110.7328 185.4243 279.7140
0.25 2.4766 17.8520 53.0221 107.5703 181.7910 275.7414
0.50 2.0163 16.9018 51.7063 106.0816 180.1953 274.0769
0.75 1.7431 16.4846 51.1823 105.5178 179.6080 273.4753
1.00 1.5573 16.2505 50.9011 105.2217 179.3031 273.1653
2.00 1.1582 15.8613 50.4528 104.7583 178.8309 272.6872
3.00 0.9628 15.7201 50.2958 104.5986 178.6695 272.5239
4.00 0.8415 15.6472 50.2159 104.5176 178.5882 272.4415
5.00 0.7569 15.6026 50.1674 104.4687 178.5393 272.3917
6.00 0.6936 15.5727 50.1349 104.4359 178.5065 272.3579
7.00 0.6439 15.5511 50.1116 104.4124 178.4830 272.3334
8.00 0.6035 15.5348 50.0940 104.3948 178.4656 272.3154
9.00 0.5699 15.5220 50.0804 104.3810 178.4520 272.3008
10.00 0.5414 15.5119 50.0694 104.3700 178.4411 272.2888
15.00 0.4438 15.4810 50.0365 104.3368 178.4088 272.2525
35.00 0.2918 15.4455 49.9988 104.2980 178.3744 272.2000

Non-dimensional frequency factor & = w,/?, [0Ds. shaft mass ‘M, = (pA?l)y; frequency: w, = £/ EDs rad/s; w, =

e (ED,’ AVATY S
1)< s
G 72\ o, HE.
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Table 3

Effect of mass moment of inertia of the disk on the non-dimensional static frequencies & of a cantilever shaft with rigid
overhung disk of mass Mp (For a typical value of Mp/Ms = 15,Jp = diametral mass moment of inertia of the disk
about its mass center)

(p(jtzg) First flex Second flex Third flex Fourth flex Fifth flex Sixth flex
0.000 0.4438 15.4810 50.0365 104.3368 178.4088 272.2525
0.025 0.4429 10.5528 27.3565 65.3865 125.7987 207.5618
0.050 0.4421 8.2670 25.2366 64.5455 125.3496 207.2700
0.500 0.4297 2.9697 23.3562 63.8173 124.9521 207.0110
2.500 0.3753 1.5359 23.1966 63.7546 124.9166 206.9938
5.000 0.3284 1.2499 23.1767 63.7465 1249152 206.9867

10.000 0.2654 1.0755 23.1668 63.7419 124.9148 206.9845

25.000 0.1906 0.9767 23.1603 63.7388 124.8836 206.9536

50.000 0.1456 0.9428 23.1596 63.7357 124.8525 206.9135

(+D1/2

Fig. 5. A typical dynamic mode shape of a bladed rotor with multiple supports.

the disk in terms of its frequency and the critical compressive buckling load is considered in
Table 4. Here, we see that the speed has significant effect on the first and second flex mode
frequencies of the blade, but relatively minimal effect on the higher modes.

7.2. Transient response during deceleration through resonance

The transient response of this rotor is considered under an assumed condition of an unbalance
created due to the sudden blade loss from the disk during normal operation of 3000 r.p.m. After
the blade is lost the engine stalls and the rotor starts decelerating until it comes to a complete stop.
During the deceleration, as the rotor passes through its resonance the disk goes through large
radial excursion causing the blades to rub momentarily against the outer case. The transient
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Fig. 7. Campbell diagram showing gyroscopic effect of the polar mass moment of inertia of the disk and blades on the
rotor shaft natural frequency for a typical case of Mp/M, = 15 with ratio of the disk/shaft polar inertia = 50 [-———,
forward whirl (first flex); — - — - —, backward whirl (first flex); ——, forward whirl (second flex); ———, backward
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response of this rotor for a typical blade-loss condition is analyzed by numerically solving the
coupled equations of motion (46). The computed vertical dynamic response of the bearing no. 3 is
shown in Fig. 8.

It can be seen that the peak dynamic response during deceleration does not occur at the same
speed corresponding to the system mode frequencies, rather it takes place at a lower speed, which
depends upon the rate of slowing down of the rotor. The opposite happens during acceleration,
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Table 4
Dynamic buckling characteristics of each blade with its root clamped at the top of the disk
Flexural mode Frequency Critical compressive buckling load (MN)
(a) Stationary (b) 3000 r.p.m. (a) Stationary (b) 3000 r.p.m.
Non-dimensional Frequency Non-dimensional Frequency
frequency (Hz) frequency (Hz)
parameter ¢ parameter ¢
First flex 3.5160 42.927 6.7116 81.942  0.1446 0.4892
Second flex 22.0351 269.028  25.8109 315.127 1.3011 1.8937
Third flex 61.7052 753.362  65.6918 802.034  3.6142 4.2267
Fourth flex 120.9317 1476.460 125.1833 1528.369 7.0834 7.7416
Fifth flex 199.9649 2441.380 204.5480 2497.336  11.7098 12.3959
Sixth flex 298.7559 3647.524  302.7786 3696.637 17.4925 18.2613
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Fig. 8. Analytically computed transient response of a decelerating fan rotor after the blade loss.

where the peak response takes place at a higher speed. This is a generic characteristics of an
accelerating and decelerating system as shown by Kammer and Schlack [18].

8. Results and discussion
8.1. Transient dynamic response of the rotor

The rotor model described in Section 7 of this paper is used to study the effect of various
parameters affecting the rub load. The effect of varying filler stiffness is highlighted in Fig. 9,
where the ratio of the tip clearance of the hard surface to the blade tip radius is kept constant as
0.0467 (Rigid Case Gap = 7 cm, R = 150 cm). The rotor radial movement exhibits 2 distinctly
different peaks, the first at 450 m/s tip velocity and the second at 370 m/s. The transient radial
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Fig. 10. Transient radial response of the disk center (movement of rotor center beyond 5 cm due to blade tip pulse
buckling) with and without the blade rubbing against the fan case after the blade-loss [, tip clearance = 12 cm;
tip clearance = 5 cm].

Bl

movement of the rotor is computed for 3 different values of filler material stiffness, namely, 5, 10
and 20 MN/m in addition to the first case with a free air gap and without any filler material in the
fan case. The hard rub of blade tip against the outer case would occur at a filler stiffness less than
2 MN/m. During the hard rub, the blade tips deform and the disk center still keeps on moving
towards the case. Depending upon the ductility of the blade material the blade tips may plastically
curl, or if it is brittle then it may be machined under grinding action. The effect of changing tip
clearance is shown in Fig. 10 by plotting the radial movement of the fan rotor after the blade-loss
for two different tip clearance values of 5 and 12 cm. The free unimpeded radial movement of the
rotor at the disk-center with this much amount of unbalance wants to be 12 cm. Obviously, a tip
clearance less than 12 cm would result in the blade tips rubbing against the case, resulting in the
dynamic pulse buckling at some critical value of the radial load from the case. For example, with
5 cm of tip clearance the rotor disk-center moves up to 6.5 cm from the center of rotation due to
tip buckling of the blade resulting in radial movement of the blade-tip by 1.5 cm. During this
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Fig. 11. Transient radial response of the disk center with and without the blade rubbing against the fan case after the
blade-loss.

movement of the blade the sum of the radial load from the fan case to the blade tips goes up to
30 MN (see Fig. 11) with first contact lasting for about 0.06 s. It should be noted that this is the
analytically computed highest possible radial load on the rotor due to the simplifying assumption
of elastic buckling and the blade geometry being completely radial. In reality, the blade tips will
deform plastically, once the load is large enough to yield the material and will bend backward
easily due to the blade geometry not being completely radial and as such the peak dynamic load in
most rub situations will be somewhat lower, but would spread over a longer period than 0.06 s.
The instantaneous dynamic stiffness of the rotor during rub changes, but the first elastic contact
results in an equivalent blade segment elastic stiffness of 1749 MN/m. However, if the free radial
movement of the rotor through the air gap is also taken into account for the effective stiffness
calculation, then the numerical value of the effective blade segment elastic stiffness reduces to
190 MN/m. The transient orbit of the fan disk-center after the blade-loss is shown in Fig. 12.

For understanding the effect of changing blade tip clearance on the contact load, the same rotor
model was run for the air gap values of 1, 2, 4, 5, 7, 10 and 12 cm. The computed values of peak
contact load and the peak radial movement of the rotor in a non-dimensional form as a function
of non-dimensional tip clearances are shown in Fig. 13. The plot shows that as the clearance is
increased, for a given unbalance of a blade-loss, the radial movement of the rotor increases almost
linearly and the contact load decreases with a change in the slope of the curve. From these data,
one can compute the effective dynamic stiffness of a segment of rub blades on the rotor during the
hard rub as

Effective stiffness = (Contact load)/(Total radial movement of the rotor center — tip clearance).

The above relationship is used to plot the curve shown in Fig. 14 from the contact load data of
Fig. 13. For most part the blade segment is dynamically more flexible with the increasing
clearance. There appears to be a non-dimensional tip clearance value of 0.013 at which the
dynamic elastic stiffness value of the blade segment peaks. The peak radial contact load is also



912 S.K. Sinha | Journal of Sound and Vibration 273 (2004) 875-919

Patrar~3
=R v

»”

g . N
s 3 }
c
o
[} oy
o &
g -0j06 0 -0j02 0.p2 P4 0.06
._2

=0-02
2 \_//

faWa¥]
=IO

ane
=Croer

Non-dimensional (UR)

Fig. 12. Non-dimensional orbit of the fan disk center after the unbalance created due to blade loss at 9 o’clock position.

50 0.1

g 45 0.09 o

[}

4 — 008 &
£ LT 27
= - 007 & 2
g 35 ‘\ ~ 5 g
o — - € !g
R 006 EF
S = T~ -~ g =
< = 005 ® o

B3I - 05 2
£= T N %
5 2 - AN ouZ@
o - L tE
g 15 — e N 003 & g

-
¥ + AN om $
8 N\ e
a5 0.01
~
0 e 0

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
(Tip Clearance/Blade Tip Radius)
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analyzed for changing stiffness values of the filler material K,,,. We have studied its effect for two
different values of K, = 10 MN/m and 20 MN/m in addition to free air gap, i.e. K., = 0 (see
Fig. 15). As expected, the contact load decreases as the filler material stiffness increases (e.g., for
non-dimensional tip clearance of 0.03 the non-dimensional force decreases from 11.5 to 6.5). It is
caused because the rotor outward radial velocity during the hard rub decreases, or the rotor is
slowed down faster as the filler material gets stiffer.
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The dynamic stability of the same rotor under Coulomb friction has been analyzed for a 360°
rub (see Fig. 16). An occasional hard local rub against the case may not be destabilizing. In these
situations the rotor can momentarily withstand frictional torque even with a high coefficient of
friction. The numerical solution has shown that for an impulse type of torque, the rotor
experiences relatively large radial excursion, however it recovers within a few milliseconds and
goes to normal steady state rotation. The presence of damping in the bearing support [D], matrix
plays a significant role in making the system dynamically stable. But, in 360° rub, even a very
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Fig. 16. Dynamic instability developing in a fan rotor with 360° rub with a nominal unbalance (dynamic coefficient of
friction at the blade tip fygmic = 0.01).

nominal unbalance and a low dynamic coefficient of friction (gg,mic = 0.01) quickly grows into
large radial excursion. In generating the data for Fig. 16, it is assumed that the driving torque is
maintaining a constant speed of the rotor. For a given spinning r.p.m. of the rotor, it becomes less
stable with increasing torque and more stable with increasing damping.

One of the most interesting observations is that the load torque has much more stabilizing effect
at higher speeds on a rotor than a driving torque. As a matter of fact, the rotor becomes stable
with the increasing load torque and less stable with the increasing driving torque. An increasing
load torque will decelerate the rotor whereas an increasing driving torque will accelerate it. After
the blade loss, the frictional torque with the case can cause a very rapid speed drop of the rotor
shaft. A correct estimate of transient dynamic load is necessary for the design of the supporting
structure.

9. Concluding remark

The paper presents an analytical method to illustrate the non-linear dynamic effect of blades
rubbing against the rigid outer case in a rotating machinery. An attempt has been made to
quantify the magnitude of the contact load, and it is shown that during the hard rub against the
outer case, the sudden impact load can go up by an order of magnitude over the unbalance load.
For a typical rotor blade, the radial load from the case to the blade tip can last for 0.05 ms with a
peak magnitude reaching up to 30—40 MN. However, it is recognized that the analytically
predicted dynamic contact loads in this paper provide an upper bound of the axial load magnitude
on the blades due to following two underlying assumptions: (1) Plasticity is not considered and
blades remain elastic for the entire duration of impact. (2) Geometrically blades are considered
like a cantilever beam of uniform cross-section in the undeformed configuration. Blades are
allowed to deform in the lateral direction either due to tangential friction load at the tip, or pulse-
buckled deformation under axial impact load.
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Due to these two assumptions, the actual contact load will always be lower than computed here
for the elastic condition. The method can be refined to take into account the yield stress and
elastic—plastic deformation of the blade material. The actual blade cross-section is not a flat plate
rather it is made up of an airfoil cross-section, thick in the middle and thin at the lead and trail
edges. Furthermore, the typical blade is not straight radial either, rather it is twisted as one moves
from the root of the blade at the disk-top to the tip of the blade. The current method can be
extended further to consider more realistic geometrical representation of the blade by simply
replacing the blade stiffness terms for a twisted and curved beam, which can be derived easily as
shown by the author earlier [34].

In addition, a locally rubbing blade tip can be considered under Hertzian contact, which is non-
linear in nature. In the present analysis, the blade is considered to deform due to lateral buckling,
but the local deformation is neglected. During the hard-rub against the fan case, the contact
loading is very similar to Hertzian contact, where the contact force F,.. is proportional to the
blade tip radial-deflection ¢ such that

Fcase = )‘llb(5)3/2'

Appendix A. Nomenclature

ay, by time-independent Fourier coefficients

(A), cross-sectional area of shaft = n(r2 — r?)

(A), cross-sectional area of the blade

B, time-dependent stiffness matrix (symmetrical due to axial load on the shaft)

B, time-dependent stiffness matrix (skew-symmetric due to fluctuating torque in the
system)

Cp damping matrix (symmetrical or non-symmetrical depending upon the bearing)

Cq gyroscopic matrix (skew-symmetric, causes forward and backward whirl in the
shaft)

c blade chord length at the tip

C general damping matrix

C. critical damping parameter (viscous) in the blade

o value of dash-pot viscous damping at the blade tip

[Ci/] a typical ith row and jth column term in the velocity-dependent matrix

Dy axial length of the rigid disk

Db, Db, damping in the bearing support

e non-dimensional factor used to linearize the effect of blade rotation

(EI), flexural rigidity of the rotor shaft

(ED), flexural rigidity of the blade

F, axial load on the blade (in the global radial direction)

Fg gas load perpendicular to the blade pressure surface on each blade

FU I’}’lrQ2

F(r) column vector containing external forces on the dynamical system

f(@ column vector containing generalized co-ordinates of the dynamical system
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nth term of the time-dependent generalized co-ordinates (length unit)

critical damping parameter in the shaft

diametral mass moment of inertia of the shaft (per unit length)

= (pA)(r; +17)/4

polar mass moment of inertia of the rotor shaft (per unit length) = 21,
diametral mass moment of inertia of the disk and all N-blades

diametral mass moment of inertia of the disk

radial stiffness of the outer case filler material during rub

lateral stiffness of the shaft at the disk center

general stiffness matrix

stiffness matrix (generally symmetrical, but may be non-symmetrical due to non-
symmetrical bearing in the horizontal and vertical directions)

instability matrix (skew-symmetric caused by the internal damping in the shaft
and also torque in the system)

a typical ith row and jth column term in the stiffness matrix

span length of the cantilever blade

span length of the shaft

mass matrix (symmetrical)

a typical ith row and jth column term in the mass matrix

mass of the disk only

mass of each blade = (pA4),L

mass of the disk and all N-blades = Mp + N(pA),L

mass moment of unbalance

number of discrete bearings supporting the shaft

number of diametral modes in the casing

number of blades on the rotor

steady state axial load on the shaft

time-dependent axial load on the shaft

axial force due to gas load on blade and rotating unbalance of Fy (+ sign:
tension or, — sign: compression). For large disk movement, this axial force on the
shaft is highly non-linear and the cone angle in the containment ring also
produces an axial load component = NFgsin f§ + u [Fy cos(0 + ¢) — (cos ¢ —
u sin (p)Fcase] + U,Z[FU Sil’l(@ + d)) - (Sil’l ¢ + pcos @)Fcase]

[Fu cos(0 + ¢) — (cos ¢ — psin @) Fease]o(z — /)

[Fu sin(0 + ¢) — (sin ¢ + pcos @) Fease]d(z — £)

blade tip radius

blade root radius = disk outer radius

matrices in the ascending powers of 4

blade local co-ordinates in the global direction

stiffness in the bearing support

torque due to gas load on the blade and tip rub friction (torque has + sign for a
driving torque that is in the direction of rotation, and has — sign for the direction
opposite to the rotation) = —NFg(r + 0.5L) cos f — uRF s

steady state torque on the shaft
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Vin(0)

Wu(2)
Xo(t), X1(2),...

Y,(s)
z
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time-dependent torque on the shaft

transient deflection of the shaft in the global x direction
time-dependent generalized co-ordinates for deflection of the shaft
(x direction)

transient deflection of the shaft in the global y direction
time-dependent generalized co-ordinates for deflection of the shaft
(y direction)

displacement function or mode shapes of the rotor shaft
time-dependent generalized co-ordinates for dynamic deflection of the blade
displacement function or mode shapes of the cantilever blades
axial co-ordinate of a point on the shaft

blade stagger angle (radian) i.e., angle between the blade chord and the engine
axis (axis of rotation) at the blade tip

effective logarithmic decrement as a measurement of damping

Dirac Delta function for z = z;

radial incursion of the blade tip in the case filler material during rub (interference)
non-dimensional damping factor for the blade material

lateral deflection of the blade

angle of the rigid body rotation of the shaft about the spin axis at time ‘#’ from
time ‘0’ (0 = Q¢ for constant angular velocity ‘Q’)

eigenvalues

real and imaginary parts of the eigenvalue

dynamic coefficient of friction between the blade tip and the outer case
non-dimensional beam frequency parameter

mass density of the case filler material

Pshase (mass density of the shaft material)

ultimate shear strength of the case filler material

circumferential location of unbalance at time ‘¢’ = 0 (constant)

angle of the shaft center eccentricity in the fixed frame of reference during the
blade tip rub with the case (a function of time ‘¢’)

phase difference

differential operator

natural frequency (rad/s)

rotor spin velocity (rad/s) = (d6/dr)

refers to material and cross-section data with respect to the blade
refers to ith row and jth column term of the respective matrix
refers to a typical jth blade in a cascade of N-blades

refers to a typical term in Fourier series

refers to number of modes on the shaft

refers to number of modes on the blade
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q refers to a typical term in Fourier series
s refers to material and cross-section data with respect to the shaft
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