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Abstract

Foundations of posts such as lighting columns can suffer damage or deteriorate over time, rendering the
post unsafe. Quick, inexpensive and non-intrusive measurement procedures are required to monitor
periodically their structural integrity. This paper investigates the behaviour of beam-like structures with a
view to identifying a suitable monitoring technique for post foundations. In this initial study a lighting
column is modelled as a uniform rigid beam that is constrained by collocated equivalent translational and
rotational springs. Expressions are derived for the equivalent spring constants as functions of foundation
profile and depth.
Modal and static responses are presented as functions of foundation properties. The inverse problem of

identifying the foundation stiffnesses from response measurements is discussed. A simple method is
proposed based on quasi-static stiffness measurements obtained from impact tests. The method is validated
using measurements of a laboratory scale structure.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Engineering structures are designed to withstand in excess of the dynamic and static loads they
may be expected to experience during their life spans. However, damage inflicted on a structure or
deterioration due to age or misuse will reduce a structure’s load-bearing capability. Non-
destructive testing (NDT) methods are required to test periodically or monitor continuously the
integrity of safety-critical structures. The considerable research effort that is directed into this
activity reflects the enormous potential and actual losses that can be attributed to structural
failure.
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Lighting columns, whilst modest in many ways compared to some large and costly civil and
aerospace structures, pose a real threat to personal injury [1]. The challenge of developing an
NDT technique for lighting columns differs from aircraft and highway bridges, for example, due
to their abundance and lower unit value. Any assessment technique must be simple, inexpensive,
quick to carry out and preferably requiring minimal specialist skills. Fortunately, lighting columns
are comparatively simple structures that are conducive to simple and physically interpretable
analysis and measurement.
Vibration response as an indicator of structural change has been advocated for many years.

Modal parameters (natural frequencies [2,3], mode shapes [4,5] and loss factors [6]) are popular
because they are global properties of the structure, so can detect the existence of damage from
sensors far removed from the damaged area. However, modal parameters are less able to provide
localised information such as the damage site [7]. In practice, changes in modal parameters due to
damage can be either immeasurably small or indistinguishable from non-damage events such as
environmental changes, load conditions, and so on [8,9]. At the other end of the frequency
spectrum ultrasound techniques give localised information close to the measurement location but
are insensitive to damage elsewhere due to signal attenuation. Comprehensive reviews of NDT
methods [10] and vibration based techniques in particular [11,12] are available in the literature.
To the best of the authors’ knowledge there are no publications relating specifically to damage

assessment of lighting column foundations. However, a number of researchers have considered
similarly constrained one-dimensional structures. Pines investigated the detection of fungal decay
in wooden telegraph poles by measuring the reflection coefficient of axial waves [13]. Assessment
of the internal decay of living trees has been attempted from natural frequencies of circumferential
modes [14] and impulse response functions [15]. Choy et al. used changes in natural frequencies to
locate damage in a beam such as a pavement or rail track resting on an elastic foundation [16].
Purekar and Pines used dereverberation techniques to estimate flexural wave propagation from
transfer functions of rotor blades [17].
In this paper a lighting column is modelled as a rigid beam which is partially embedded in an

elastic foundation. The analysis may be extended to include flexibility of the beam but is beyond
the scope of this initial study. Damage is assumed to occur only in the foundation causing changes
in the equivalent stiffness in translation and rotation at the constrained end of the beam. The
sensitivity of the beam’s modal and static responses to foundation parameters is presented. A
simple technique for identifying foundation stiffnesses from quasi-static stiffness measurements is
presented and validated through laboratory experiments.

2. Discrete spring model of foundation

2.1. The model

The simplest and most suitable first approximation to a partially embedded post is a rigid beam
constrained at one end by translational and rotational springs, as shown in Fig. 1. The beam is
taken to be uniform (which determines the rigid body inertia of the system) and the springs are
assumed to be linear with equivalent translational and rotational stiffnesses of kt and kr:
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Deterioration of the foundation can be expected to affect both kt and kr in general. The special
case when both quantities change in the same proportions is trivial for a rigid beam and
corresponds to a simple scaling of the system. Instead, only disproportionate changes between kt

and kr are considered and the normalised rotational stiffness is defined as

g ¼
kr

ktL2
; ð1Þ

where L is the entire length of the beam. This parameter is used in the following analyses in order
to non-dimensionalise the equations of motion.

2.2. Modal response

Assuming rigid body motion in one plane, the simple model shown in Fig. 1 has two degrees of
freedom (DOFs). Taking fx;LygT as the DOF variables, where x is the translational displacement
at the centre of mass and y is the rotational displacement, then either equilibrium of forces and
moments or Lagrange’s equations can be used to derive the following stiffness and mass matrices:

K ¼ kt

1 � 1
2

� 1
2

1
4
þ g

" #
; M ¼ m

1 0

0 1
12

" #
; ð2Þ

where m is the mass of the beam. Fig. 2 shows the two natural frequencies as a function of
normalised rotational stiffness, g: The frequencies have been normalised by

ffiffiffiffiffiffiffiffiffiffi
kt=m

p
: The nodal

points of the corresponding mode shapes are shown in Fig. 3.
For small values of g (low rotational stiffness), the natural frequencies and mode shapes show

asymptotic behaviours. The lower frequency mode is proportional to the square root of rotational
stiffness and is a pure pitching motion about the constrained end. Consequently, only the
rotational spring deforms significantly and so the system can be represented by a simply
supported beam with an associated equivalent inertia of 13mL2; as shown in the bottom left
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Fig. 1. Rigid beam constrained at one end by translational and rotational springs.
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schematic of Fig. 4. Conversely, the frequency of the higher mode is independent of rotational
stiffness. The mode shape is a pitching motion with a nodal point at 2

3
L such that the restoring

moment is dominated by the translational spring. The mode can be represented simply by the
equivalent mass of the beam at its end, namely m=4; supported by the translational spring, as
shown schematically in the top left corner of Fig. 4.
For large values of g different asymptotic behaviours are observed. The lower frequency mode

becomes independent of rotational stiffness which is now large enough to suppress any significant
rotation. The nodal point tends to minus infinity indicating a pure sidewards motion. The system
can be represented by a sliding condition as shown in the bottom right schematic in Fig. 4. The
natural frequency is determined by the translational spring constant and the overall mass of the
beam, m: In the higher frequency mode, the translational spring becomes negligible and the beam
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Fig. 3. Mode shapes of rigid beam constrained at one end as a function of normalised rotational stiffness.
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is constrained only in rotation, see Fig. 4 (upper right). Consequently, the beam pitches about its
centre of mass. The frequency is proportional to the square root of rotational stiffness and
inversely proportional to the square root of the inertia about the beam’s midpoint, namely 1

12
mL2:

Between these distinct regions of dynamic behaviour is a transition region where these idealised
representations of the system break down. It is only in this region that the mode shapes are
sensitive to changes in rotational stiffness. Note also that the natural frequencies do not cross in
the transition from one region to the other. This is consistent with the fully populated form of the
stiffness matrix in Eq. (2) which prevents repeated roots.
It is not possible to ascertain from this analysis which region of modal behaviour typifies actual

lighting columns. However, it is clear that if either region prevails in practice then one natural
frequency is proportional to the square root of the translational stiffness and the other is
proportional to the square root of the rotational stiffness. It can be concluded that the natural
frequencies are only moderately sensitive to changes in the stiffnesses of the foundation.

2.3. Static response

This section considers the static response of the rigid beam shown in Fig. 1. Assume that we
may measure—either by static or dynamic means—the translational response Xs at one point on
the beam due to a static force F at another point. The sensor and force are located at distances ls
and lf ; respectively, from the constrained end. Then the static response can be related to the
translational and rotational spring deflections, x and y; as follows:

Xs ¼ x þ lsy: ð3Þ

Introducing equilibrium of forces and moments this can be rewritten as

Xs ¼
F

kt

þ
lslf F

kr

: ð4Þ
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The static stiffness is given by the static force per unit displacement,

K ¼
1

1

kt

þ
1

kr=lslf

: ð5Þ

The system is equivalent to two springs of stiffness kt and kr=lslf in series. When either the sensor
or force position is at the constrained end of the beam then only the translational spring is seen
and, in theory, its stiffness coefficient can be determined by a single measurement. Note also from
Eq. (5) that the static stiffness is proportional (equal) to kt in this region. Therefore, static stiffness
is a more sensitive measure of deterioration in translational stiffness than are natural frequencies
(see Section 2.2). However, static stiffness measured here will not observe any defect in the
foundation that affects only the rotational stiffness.
As the force and response positions move towards the free end of the beam then the

contribution of the foundation’s rotational stiffness to the static stiffness increases. In practice, the
force and sensor locations are limited by the height of the post ðlf ; lspLÞ; but in theory at least the
static stiffness will become dominated by and proportional to the rotational spring stiffness as lslf
becomes (perhaps unfeasibly) large. The static stiffness, if measured here, is insensitive to changes
in the foundation’s translational stiffness.
The effect on static stiffness of the measurement position and the foundation properties is seen

more clearly by non-dimensionalising Eq. (5) as follows:

K

kt

¼
1

1þ 1=ðg=b2Þ
; ð6Þ

where g ¼ kr=ktL
2 is the normalised rotational stiffness parameter defined earlier, and

b ¼
1

L

ffiffiffiffiffiffiffi
lslf

p
: ð7Þ

The parameter b is the geometric mean of the force and response locations when expressed as a
fraction of the beam length, and is bounded between 0 and 1. In the case of a point measurement b
is simply the (normalised) distance of the measurement from the constrained end.
Fig. 5 shows the normalised static stiffness given by Eq. (6) as a function of g=b2: An increasing

abscissa corresponds to an increase in rotational stiffness or a movement lower down the post of
the force and/or sensor.
The dominance of the response by one or other of the two springs in series is characterised by

the curve’s asymptotes. When g=b251 the static stiffness is controlled by the rotational spring and
is therefore dependent on the measurement location. When g=b2b1 the static stiffness is
dominated by deformation of the translational spring which is not affected by the force position.
One wishes to conclude from Fig. 5 whether static stiffness measurements may be used to

observe the translational and/or rotational stiffness of a foundation. However, it is not possible to
draw such a conclusion without first establishing bounds on the parameter g=b2: In practice, the
entire range of 0pb2p1 may not be achievable, either because small values require measurements
to be taken below ground level or because large values require measurements at impracticable
heights. Furthermore, the preceding analysis provides no insight into what values of normalised
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rotational stiffness, g; are typical or achievable. The next section explores an alternative model of
the foundation, the analysis of which will resolve this issue.

3. Continuous elastic model of foundation

3.1. General model

The model developed in the previous section is conceptually simple and, by appropriate non-
dimensionalisation, is useful in characterising in general terms the response of a constrained rigid
beam. Distinct regions of behaviour were observed in both the modal and static response that can
be related directly to the physical parameters of the system. The normalised rotational stiffness, g;
which defines the relationship between the rotational and translational stiffnesses, was found to be
the key parameter that governs which response characteristic prevails.
The model developed in this section explores the relationship between rotational and

translational stiffness of a continuous elastic foundation of depth l: Typical and upper bound
values for g are obtained thereby providing insight into the feasibility of detecting damage via
modal or static response measurements.
Fig. 6(a) shows a rigid beam constrained along length l of one end by an elastic medium. The

foundation is taken to be axisymmetric so that the equivalent stiffness due to compression of the
foundation medium is the same in any direction radial to the post. Shear effects are neglected. A
strip-wise approach is adopted whereby the stiffness per unit length of the foundation is denoted
by wðzÞ; where z is the distance from the constrained end of the beam. The inertia and damping of
the elastic medium are neglected. There exists an elastic centre at which the translational and
rotational motions of the beam are not coupled by the elastic foundation. The continuous model
can be represented by discrete translational and rotational springs of equivalent stiffness
collocated at the elastic centre, as shown in Fig. 6(b).
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Denoting the location of the elastic centre as ze; then by definition a sidewards translation, Xe;
at this point will produce zero spring moment. Taking moments about the elastic centre givesZ l

0

wðzÞXeðz � zeÞ dz ¼ 0: ð8Þ

Therefore, the elastic centre can be found from evaluating

ze ¼
Z l

0

wðzÞz dz

�Z l

0

wðzÞ dz: ð9Þ

The equivalent stiffness of translational and rotational springs placed at the elastic centre can be
found by equilibrium of forces and moments to be:

kt ¼
Z l

0

wðzÞ dz; kr ¼
Z l

0

wðzÞðz � zeÞ
2 dz: ð10Þ

3.2. Specific foundation models

The relations developed in the preceding section are valid for any stiffness profile, wðzÞ; within
the assumptions of the model. In this paper, two special cases are considered: a uniform
distribution, and the distribution that maximises rotational stiffness.

3.2.1. Uniform stiffness profile

An algebraically convenient—and perhaps not entirely inappropriate stiffness profile is one that
is constant with depth, i.e., wðzÞ is a constant. Then Eq. (9) can be evaluated simply to confirm the
intuitively obvious result that the elastic centre occurs at the mid-depth of the foundation,
ze ¼ l=2:
Hence, the equivalent translational and rotational stiffnesses can be evaluated from Eq. (10):

kt ¼ wl; kr ¼ 1
12

wl3: ð11Þ
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Combining these expressions gives

kr ¼ 1
12

ktl
2: ð12Þ

Eq. (12) shows that the rotational stiffness is proportional to the translational stiffness and the
square of the foundation depth. The constant of proportionality, p say, is a function of the
foundation profile and is given by p ¼ 1

12
when the profile is uniform.

It is convenient to express Eq. (12) in the following form:

kr

ktL2
¼ 1
12
#l 2; ð13Þ

where #l ¼ l=L represents the proportion of the beam embedded in the foundation.
The parameter kr=ktL

2 in Eq. (13) is the normalised rotational stiffness, g; defined in Section 2,
although the equivalent springs are now collocated at the elastic centre rather than the
constrained end of the beam.
Now that a relationship between rotational and translational stiffness has been established it is

possible to consider the modal and static response of the model as a function of normalised
foundation depth, #l; which is bounded between 0 and 1. First, it is convenient to establish an
upper bound on the foundation profile constant, p:

3.2.2. Maximum rotational stiffness profile

Suppose that the total equivalent translational stiffness of the foundation is fixed, but that the
distribution can be varied. Then the rotational stiffness is at a maximum when the spring
distribution delivers point forces at either end of the foundation. This situation is depicted in
Fig. 7. In terms of the continuous foundation model of Section 3.1 the stiffness per unit length of
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the foundation becomes:

wðzÞ ¼ dð0Þk1 þ dðlÞk2 ð14Þ

where d denotes the Dirac delta function and k1 and k2 are the discrete spring stiffnesses at either
end of the foundation. Evaluation of the equivalent stiffnesses and the elastic centre is possible by
substituting wðzÞ into Eqs. (9) and (10), but unnecessarily cumbersome. Returning to first
principles the following expressions can be derived more simply:

ze ¼
1

1þ a
l ð15Þ

and

kt ¼ k1 þ k2; kr ¼
a

ð1þ aÞ2
l2kt; ð16a;bÞ

where a ¼ k1=k2: The normalised rotational stiffness, g; follows from Eq. (16b)

g ¼
kr

ktL2
¼ #l 2

a

ð1þ aÞ2
; ð17Þ

where #l ¼ l=L represents the proportion of the beam embedded in the foundation, as defined
earlier. The function a=ð1þ aÞ2 appearing in the normalised rotational stiffness is the foundation
profile constant, p; and tends to zero when either k1-0 or k2-0: Physically, these two cases
correspond to a single discrete spring at only one of the ends of the foundation. In either case one
would expect the beam to be unconstrained in rotation.
It can also be shown that the foundation profile constant a=ð1þ aÞ2 attains a maximum value of

1
4
when a ¼ 1; i.e., when the springs are equal in stiffness. This idealised case is useful insofar as it
represents an upper bound on the normalised rotational stiffness,

g ¼
kr

ktL2
p1
4
#l 2: ð18Þ

By comparing Eqs. (13) and (18) it can be seen that a uniform stiffness distribution gives one third
of the maximum achievable rotational stiffness.
Besides defining a bound on the achievable rotational stiffness from a continuous elastic

foundation, this somewhat unrealistic foundation profile is realisable, repeatable and controllable
in a laboratory and therefore ideal for the purposes of experimental validation. The design and
measurement of a rig featuring discrete translational springs with variable separation is the subject
of Section 5.

3.3. Modal response

This section considers the free vibration of the system shown in Fig. 6(b). Recall that this
system models the continuous elastic foundation depicted in Fig. 6(a) by discrete translational and
rotational springs at the elastic centre.
The intention here is to evaluate the sensitivity of the modal parameters to changes in

foundation profile, or equivalently, the ratio of rotational to translational stiffness. (The case
when rotational and translational stiffnesses change in proportion to one another is trivial in that
both frequencies change with the square root of stiffness and the mode shapes are unaffected.)
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Taking fx;LygT as the DOF variables, where x is the translational displacement at the centre of
mass and y is the rotational displacement, then the mass and stiffness matrices can be derived by
equilibrium or Lagrange’s equations giving

K ¼ kt

1 � 1
2
ð1� #l Þ

� 1
2
ð1� #l Þ 1

4
ð1� #l Þ2 þ g

" #
; M ¼ m

1 0

0 1
12

" #
; ð19Þ

where the equivalent stiffness of the translational spring, kt; is a function of foundation depth and
is given by Eq. (10).
The modal parameters for the general system described by Eq. (19) are presented for the two

foundation profiles discussed in Section 3.2. The uniform profile and the discrete translational
spring profile give rise to a normalised rotational stiffness of 1

12
#l 2 and 1

4
#l 2 respectively.

Fig. 8 shows the natural frequencies of the two modes as a function of foundation depth. The
frequencies have been normalised by the heave frequency of the beam when fully buried in a
uniform foundation, i.e.,

ffiffiffiffiffiffiffiffiffiffiffiffiffi
wL=m

p
:

Following the discussion in Section 2.2 for the simple beam model constrained at its end, and
recalling that g is proportional to #l 2; one might have expected Fig. 8 to have shown two distinct
regions of modal behaviour. The first of those regions is apparent where the lower frequency
mode is controlled by the rotational spring and the higher mode is controlled by the translational
spring. Note that the translational stiffness is proportional to foundation depth so the frequencies
increase with #l 3=2 and #l 1=2 respectively. The second region, where the lower frequency mode is
controlled by the translational spring, does not arise although transition towards this behaviour is
evident when the beam is predominantly buried.
The effect of foundation profile for a given translational stiffness is clearly seen in Fig. 8. The

frequency of the lower mode is increased by a factor of about
ffiffiffi
3

p
for the threefold difference in

rotational stiffness between the two foundation profiles. The higher frequency mode is largely
unaffected by foundation profile.
Of academic interest is when the post is fully buried ð#l ¼ 1Þ: The stiffness matrix in Eq. (19)

becomes diagonal giving rise to an uncoupled system. In the case of a uniform foundation the
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roots are repeated owing to a coincidental factor of L2=12 between mass and inertia and also
translational and rotational stiffness.
Fig. 9 shows the location of the nodal points of the mode shapes as a function of foundation

depth. For shallow foundations (#lo0:3; say) the mode shapes are similar for the two different
foundation profiles. The lower frequency mode pitches about a point close to the constrained end
of the beam and the higher frequency mode pitches at about two third of the beam’s length. This
result is consistent with the simpler model discussed in Section 2 of a beam with point constraints
at its end.
For deeper foundations ð#l > 0:3Þ the difference in rotational stiffness of the two foundation

profiles becomes apparent. In the case of the uniform foundation the nodal points of both modes
continue to migrate away from the constrained end of the beam. In the limit when the beam is
fully buried the mode shapes pitch about the free end and one-third of the beam’s length. In the
case of the point stiffness foundation the locations of the nodal points reach a maximum at about
#l ¼ 0:45: As #l-1; one mode transforms into a pitching motion about the midpoint of the beam
and the nodal point of the other tends to negative infinity indicating a pure heave mode.
If the three-fold difference in rotational stiffness between the two foundations were considered

realistic of actual degradation or damage one might conclude that when #l > 0:3 changes in
foundation profile may be monitored by tracking nodal points. However, for more moderate
changes in rotational stiffness this approach may be discarded unless the post is predominantly
underground.

3.4. Static response

Section 2.3 considered the static response of a rigid beam constrained at one end by equivalent
translational and rotational springs. The continuous elastic foundation differs from this idealised
case only in that the equivalent springs must be located at the elastic centre rather than the end of
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the beam. The static stiffness is again given by

K ¼
1

1=kt þ 1=ðkr=lslf Þ
ð20Þ

although the sensor and force locations, ls and lf ; are now measured from the elastic centre.
Substituting for kr ¼ pktl

2 where p is the foundation profile constant gives

K ¼ kt

1

1þ lslf =pl2
: ð21Þ

It is convenient to define h as the geometric mean of the sensor and force locations normalised
by the foundation depth, i.e.,

h ¼
1

l

ffiffiffiffiffiffiffi
lslf

p
: ð22Þ

In the specific case when the response and input force are at the same point then h is the distance
of the point measurement above the elastic centre expressed as a multiple of foundation depth.
The normalised static stiffness is given by

K

kt

¼
1

1þ h2=p
ð23Þ

which can be thought of as two springs in series of normalised stiffness p=h2 and unity. The
individual spring constants and their sum in series are plotted as functions of h in Fig. 10. Results
are presented for the two specific foundations considered in Section 3.2: (a) discrete springs at the
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bottom and top of the foundation ð p ¼ 1
4
Þ; and (b) a uniform stiffness distribution ð p ¼ 1

12
Þ: In

both cases the elastic centre is at the mid-depth of the foundation so a point measurement at
ground level corresponds to a value of h ¼ 1

2
:

Fig. 10 shows that if it were practical to conduct a point measurement underground at the elastic
centre ðh ¼ 0Þ then only the translational spring would be apparent. However, non-intrusive
measurements can only be taken above ground level ðhX1

2
Þ where the rotational spring contributes

significantly to the static stiffness. The translational spring will be most apparent for foundations
profiles with a high rotational stiffness, the discrete translational spring profile defining the upper
bound. In this limiting case, shown in Fig. 10(a), deformation of the rotational spring accounts for
50% of the translational response at ground level and dominates the response when hX1 to 11

2
:

Fig. 10(b) illustrates that for a uniform foundation profile the static response at any point on the
exposed length of the beam is controlled by the rotational spring. The rotational stiffness may be
estimated (under-estimated) from a single measurement towards the free end of the beam.

4. Identifying foundation stiffnesses from dynamic measurements

4.1. Modal or static response?

Section 3 considered the behaviour of a rigid lighting column embedded in an elastic foundation
and discussed the suitability of modal and static response measurements for identifying
foundation stiffnesses. It has been shown that the lower and higher frequency rigid body modes
are controlled by the rotational and translational foundation stiffnesses, respectively, over almost
the full range of foundation depths. The natural frequencies can be expected to vary with the
square root of deterioration in foundation stiffness.
It was also established that the static stiffness of the system is controlled by two springs of

stiffness kt and kr=lslf in series where ls and lf are the sensor and force locations. In theory, two
measurement positions may be chosen such that first the translational spring and then the
rotational spring dominates enabling identification of each coefficient individually. Furthermore,
static stiffness measurements are proportional to changes in foundation stiffnesses. Consequently,
this paper explores the use of static stiffness measurements to determine the integrity of a
foundation. However, the discussion in Section 3.3 warns that these benefits may be compromised
by practical limitations on where and, in particular, how close to the foundation’s elastic centre
the static stiffness may be measured.

4.2. Identifying foundation stiffnesses from static response

In this section we consider the feasibility of inferring kt and kr from two point static stiffness
measurements, i.e., when the sensor and force are collocated. Suppose that we measure the
response per unit static input force at normalised distances h1 and h2 from the elastic centre and
denote them by X1=F and X2=F : Then referring to Eqs. (20) and (22),

X1

F
¼
1

kt

þ
h21

kr=l 2
;

X2

F
¼
1

kt

þ
h22

kr=l 2
: ð24Þ
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In matrix form

X1

F
X2

F

8><
>:

9>=
>; ¼

1 h21

1 h22

" # 1

kt

1

kr=l2

8>><
>>:

9>>=
>>;; ð25Þ

where 1=kt and 1=kr=l2 are sought and the foundation depth l is assumed known.
Providing that the two measurements are taken at different positions ðh1ah2Þ then the matrix

of measurement positions is non-singular and invertible, albeit potentially ill-conditioned.
Therefore, we may invert Eq. (25) to obtain the equivalent spring constants:

1

kt

1

kr=l2

8>><
>>:

9>>=
>>; ¼

1 h21

1 h22

" #�1 X1

F
X2

F

8><
>:

9>=
>;: ð26Þ

The foundation profile constant p; can be calculated from the ratio of the two estimated
quantities:

p ¼
1=kt

1=ðkr=l2Þ
: ð27Þ

This estimate of p can be expected to be lower than the theoretical upper bound of 1
4
established in

Section 3.2.2. The normalised rotational stiffness can then be calculated from g ¼ p#l 2:
It must be ensured that the matrix in Eq. (25) is not only invertible but also well conditioned. If

poorly conditioned then the estimates for kt and kr may be severely corrupted in two ways:

(i) small measurement errors in the static stiffnesses will be amplified greatly in the inferred
values for kt and kr; and

(ii) inaccuracies in the matrix itself will heavily bias the estimates for kt and kr: This can occur due
to inaccuracies in identifying the exact measurement locations relative to the elastic centre,
whose position is uncertain (inclusion of the elastic centre as an unknown parameter would
result in a non-linear estimation problem which is beyond the scope of this paper).

The condition of the inverse problem can be determined by applying equal row weighting to
Eq. (25) and then taking the ratio of the matrix’s larger to smaller singular value. This condition
number is presented here as a qualitative measure of how sensitive the stiffness estimates are to
measurement noise. A value of unity indicates optimal conditioning.
In accordance with recommendations from Section 3.4 one would be well advised to choose one

measurement at ground level ðh1 ¼ 1
2
Þ to best observe the translational spring, and vary the

location of the second measurement, h2; so as to ensure that the inverse problem is well
conditioned. The condition number of the resulting inverse problem as a function of h2 is shown
in Fig. 11. Also shown is the condition number when the lower of the two measurements is at one,
two and three times the foundation depth above ground level (beam length permitting). It is
apparent that, with one measurement at ground level, the problem is well conditioned providing
that the second measurement is at least one foundation depth above ground level ðh > 11

2
Þ: There is

little benefit to be gained from measuring beyond twice the foundation depth ðh > 2 12Þ: The
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stiffness coefficients may still be estimated when the lower measurement is taken at one
foundation depth above the ground. However, the lowest achievable condition number is
increased by a factor of four or more, depending on the exposed length of the lamppost available
for the second measurement. The stiffness estimates can be expected to be more susceptible to
both measurement errors and the assumed location of the elastic centre. As the lower
measurement is moved to two and three foundation depths above ground level then measurements
of an order of magnitude more accurate are required in order to yield comparable stiffness
estimates.

5. Experimental validation

5.1. Rig design

A rig was developed to represent a rigid beam constrained by discrete springs at distances 0 and
l from one end. This arrangement represents the maximum ratio of rotational to translational
stiffness, as described in Section 3.2.2. The rig comprised a stiff, massive frame to which the beam
was hung from two discrete springs, as shown in Fig. 12. The beam was mounted upside-down to
ensure static stability at low foundation depths. The springs took the form of two nominally
identical short cantilevers whose bending stiffness was chosen such that the rigid body modes of
the beam did not exceed 100 Hz: The fixed end of each cantilever was attached to a rigid shaft
passing through a pair of journal bearings thereby eliminating the torsional stiffness of the
cantilevers. One spring/shaft arrangement was fixed at one end of the beam and the other was
moved along the length of the beam to vary the spring separation and hence the effective
foundation depth.
Both the frame structure and the beam were required to behave rigidly in the frequency

range of interest. The frame was designed using Finite Element analysis to ensure that its first
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flexible mode was above 300 Hz: The beam was chosen to be a 600 mm long aluminium T-section
with a first bending mode in the direction of excitation at about 250 Hz: In the lateral direction
the beam is effectively clamped at ‘ground level’ resulting in an unacceptably low bending
frequency for small foundation depths. This mode was shifted out of range by adding a third
spring of high axial stiffness but very small bending and torsional stiffness at the otherwise free
end of the beam.

5.2. Experimental procedure

Modal parameters and static stiffness values were deduced from appropriate frequency
response function measurements obtained from tap tests.
To determine the natural frequencies, the beam was impacted at about 20% of its length from

the constrained end to ensure excitation of both modes whilst avoiding excessive excitation and
ringing of the lower frequency mode. The accelerometer was placed at the tip of the beam. The
nodal points were determined by adjusting the impact location until each of the modes in turn was
no longer excited. This procedure was repeated for foundation depths ranging from 5% to 100%
of the beam length.
Static stiffness measurements were taken at a single foundation depth of 30%. Point FRF

measurements were taken at a range of locations along the whole length of the beam including
below ground level. Although unreachable in practical applications, the static stiffness
measurement at the elastic centre ð1

2
#l Þ was particularly significant as a direct measure of the

translational stiffness of the foundation.
Determining static stiffness values from dynamic measurements is not trivial due to poor signal

to noise at low frequencies. A study into how this may be best achieved is beyond the scope of this
paper. Instead, a single technique has been adopted here for the purposes of validating the
theoretical model. Recall that the receptance between the jth and kth DOFs of a viscously damped
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N degree of freedom system may be expressed as a modal summation:

aj;k ¼
XN

i¼1

cj;ick;i

ðki � o2miÞ þ iðociÞ
; ð28Þ

where ki; mi; ci and fcgi are modal stiffness, mass, damping and displacements for the ith mode.
Then the point static stiffness at the jth position along the beam may be deduced by equating j and
k; setting o to zero and truncating the series to include just the two rigid body beam modes. The
static stiffness is given simply by

Kj ¼
X2
i¼1

ki

c2j;i
: ð29Þ

Conventional modal analysis techniques were used to extract the required modal parameters from
the measured FRFs for substitution into Eq. (29).

5.3. Measured modal response

Fig. 13 shows the two measured natural frequencies of the beam as a function of foundation
depth. An initial prediction is also shown as a dotted line. Notwithstanding the choice of linear
axes, this prediction differs from that presented in Fig. 8 only in that the translational stiffness, kt;
of the rig is constant rather than proportional to foundation depth. Fig. 14 shows the nodal points
of the two modes. The discrepancy between predicted and measured frequencies and mode shapes
is stark. In Fig. 13, the rotational stiffness can be seen to rise much more steeply with foundation
depth than predicted. This feature is a manifestation of the rig and is attributable to the rotational
stiffness of the cantilever springs. When the beam moves rigidly the cantilevers deform due to
forces applied at their free ends. Rotational motion of the beam requires the cantilevers to deform
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by differing amounts. If the beam were flexible in torsion then the two cantilever springs would be
able to deform independently and assume different end slopes. However, since the beam is rigid in
torsion then the beam applies a moment on the cantilever springs in order to constrain the springs
to have the same end slope. Consequently, rotational motion of the rigid beam is also constrained
by the rotational stiffness at the tips of the springs. It is shown in Appendix A that this effect
increases the rotational stiffness from 1

4 kt
#l 2 to kt

#l 2: The effect is simulated in Figs. 13 and 14 by
setting the foundation profile constant, p; to unity. The modes that are dominated by rotational
stiffness are now closely predicted.
Two modest discrepancies remain in the prediction of the natural frequencies. The frequency

of the second mode is over-estimated because the equivalent mass of the springs and associated
fixings have been neglected. The effect of adding a 10 g lumped mass to each spring location
is also shown in Figs. 13 and 14. The natural frequency is improved significantly although
there is a modest deterioration in the prediction of the nodal points. The lower natural frequency
is also under-predicted for shallow foundation depths ð#lo0:3Þ: This discrepancy can be attributed
to the additional spring which was attached to the free end of the rigid beam. Although very
flexible in bending its large moment arm contributed significantly to the rotational stiffness when
the foundation springs were close together. Consequently, the third spring was replaced with one
that was more flexible for the subsequent static stiffness tests presented in the following section.

5.4. Measured static response

Fig. 15 shows the measured static stiffness of the beam as a function of measurement position.
Also shown is the static stiffness predicted by the model. A foundation profile parameter of unity
has been chosen which accounts for the interaction effect of the springs, as discussed in Section
5.3. Despite some scatter arising from the indirect calculation procedure outlined in Section 5.2,
the experiment provides adequate validation of the theoretical model. Note that the static stiffness
peaks at about 15% of the beam’s length which is the mid-depth of the foundation and hence the
nominal position of the elastic centre.
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5.5. Identification of foundation from static response

The static stiffness results presented in the previous section show that the translational stiffness
of the rig’s foundation, kt; is about 7000 N=m; and that the rotational stiffness is given by
kr ¼ p#l 2L2kt where p is unity. However, in practice it is not possible to deduce kt by measuring the
static stiffness at the elastic centre of the foundation. This section demonstrates the procedure
outlined in Section 4.2 for inferring the translational and rotational stiffnesses from two
measurements taken above ground.
In Section 5.4, measured static stiffnesses were presented for 15 measurement locations along

the beam. Only nine of these locations would be accessible in practice, including one at ground
level. Of the many combinations of selecting two measurements from which to estimate the
unknown stiffnesses only those combinations that included the ground-level measurement were
investigated. Fig. 16 shows the estimated translational stiffness and foundation profile parameter
when each of the other eight measurements was used in conjunction with the ground level
measurement. When the second measurement is near the free end of the beam the estimated
parameters are comparable to the known values. The discrepancy between the estimated and
directly measured translational stiffness, for example, is about 10% which is of the same order of
magnitude as the errors in the individual measurements (see Fig. 15). However, when the two
measurements are closer together errors arise that are considerably larger than the errors in the
individual measurements used in the estimation process. This is due to poor conditioning of the
inverse problem as described in Section 4.2.

6. Concluding remarks

The dynamic and static response of a uniform rigid beam constrained at one end by
an elastic foundation has been investigated. A simple model of the foundation has been adopted
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in order to establish a relationship between the rotational and translational stiffnesses.
The rotational stiffness is proportional to the square of the foundation depth and the
constant of proportionality is dependent on the foundation profile. A bound has been
established for this constant, although experimental results emphasise that this bound is
only valid when the foundation can be modelled by independently acting translational
springs.
A modal analysis of the model has concluded that, unless the beam is predominantly buried, the

two rigid body modes of the beam are well separated in frequency. The lower frequency mode is a
pitching motion about a point close to its buried end and is controlled by the rotational stiffness
of the foundation and the beam’s inertia. The higher frequency mode is a pitching motion about a
point around one-third of the beam’s length from the free end and is controlled by the
translational stiffness of the foundation and the mass of the beam. Neither natural frequency is
very sensitive to changes in foundation stiffness.
The static stiffness, whilst more problematic to measure, is more sensitive to changes in

foundation stiffness. Consequently, static stiffness measurements may be a suitable indicator of
changes in the integrity of the foundation. A simple inverse technique has been presented by which
the stiffnesses of the foundation in translation and rotation can be quantified from two point
static stiffness measurements. The inverse problem is found to be well conditioned when the two
measurements are well spaced, especially for shallow foundations. The technique has been
successfully demonstrated on a laboratory rig.
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Appendix A. Modelling spring interdependence

In the experimental rig, the beam is supported by two nominally identical cantilever springs of
length Ls and stiffness k ¼ 3EI=L3s ; where E and I are the Young’s modulus and second moment
of area of the cantilevers respectively. These springs provide restoring forces of F1 ¼ kx1 and
F2 ¼ kx2 where x1 and x2 are the deflections at the tips of the cantilevers, as shown in Fig. 17.
When the beam pitches, then x1ax2 which requires the springs to assume different end slopes.

However, if the beam spanning the springs is rigid in torsion then the condition f1 ¼ f2 is
enforced by the beam applying equal and opposite moments M1 and M2 to the ends of the
springs. Consequently, the deflection of the springs due to these moments must be included in the
equations of motion.
The spring forces and moments are related to the spring tip deflections by the following

equations:

x1

f1

( )
¼ As

F1

M1

( )
;

x2

f2

( )
¼ As

F2

M2

( )
; ðA:1Þ

where As is a flexibility matrix given by

As ¼

L3s
3EI

L2s
2EI

L2s
2EI

Ls

EI

2
664

3
775: ðA:2Þ

Inverting the flexibility matrix, and recalling that the combined translational stiffness of the two
springs, kt; is twice 3EI=L3s ; then the stiffness matrix may be written as

Ks ¼ kt

2 �Ls

�Ls
2
3

L2s

" #
: ðA:3Þ

Eq. (A.1) can be rewritten as

F1

M1

( )
¼ Ks

x1

f1

( )
;

F2

M2

( )
¼ Ks

x2

f2

( )
: ðA:4Þ

Applying the following two constraints:

f1 ¼ f2; M1 ¼ �M2 ðA:5Þ
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Eq. (A.4) can be simplified to give

F1

M1

( )
¼ Ks

x1

f1

( )
;

F2

�M1

( )
¼ Ks

x2

f1

( )
: ðA:6Þ

Adding the second rows together and rearranging gives the end slope of both springs

f1 ¼ f2 ¼
3

4Ls

ðx1 þ x2Þ: ðA:7Þ

The strain energy is given by

V ¼ fx1 f1gKs

x1

f1

( )
þ fx2 f2gKs

x2

f2

( )
: ðA:8Þ

Substituting for Ks from Eq. (A.3), and f1; f2 from Eq. (A.7) gives

V ¼ 1
2

ktð2x21 þ 2x
2
1 �

3
4
ðx1 þ x2Þ

2Þ: ðA:9Þ

The deflections of the two springs can be related to the state variables, x and Ly; as follows:

x1 ¼ x � 1
2

Ly; x2 ¼ x � ð 1
2
� #l ÞLy: ðA:10Þ

Substituting for x1 and x2 from Eq. (A.10) into Eq. (A.9) gives

V ¼ 1
2

ktð2ðx � 1
2

LyÞ2 þ 2ðx � ð1
2
� #l ÞLyÞ2 � 3

4
ð2x � ð1� #l ÞLyÞ2Þ: ðA:11Þ

Using Lagrange’s equation the stiffness matrix can be derived:

K ¼ kt

1 � 1
2
ð1� #l Þ

� 1
2 ð1�

#l Þ 1
4 ð1�

#l Þ2 þ #l 2

" #
: ðA:12Þ

By comparing Eq. (A.12) with Eq. (19) it is apparent that the effect of constraining the end slopes
of the cantilever springs to be equal is to increase the normalised rotational stiffness, g; from 1

4
#l 2

to #l 2:

Appendix B. Nomenclature

a receptance
b geometric mean of sensor and force locations/beam length
g normalised rotational stiffness
y deflection of rotational spring
c modal displacements
a ratio of discrete spring stiffnesses
ci modal damping
F force
h; h1; h2 geometric mean of sensor and force locations/foundation depth
K static stiffness
K, M stiffness and mass matrices
k1; k2 discrete spring stiffnesses
ki modal stiffness
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kr rotational stiffness
kt translational stiffness
l foundation depth
L beam length
#l foundation depth normalised by beam length
ls; lf sensor and force locations
m beam mass
mi modal mass
p foundation profile constant
wðzÞ spring stiffness per unit foundation depth
x deflection of translational spring
Xs; Xe; X1; X2 translational displacements
z height from constrained end of beam
ze location of elastic centre
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