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Abstract

Preloaded springs are used in many mechanical systems such as suspension systems and linkages, as well
as household items such as clothing clasps. Usually, the preload has no effect on small amplitude dynamic
responses which occur about the mean preloaded position. However if the system has opposing preloaded
elastic elements, where unloading is limited by restraints such as central rods which preserve the preload,
then the preload has a dramatic effect on a system’s dynamic response. When such a system is set into free
oscillation, the period of motion steadily decreases as the amplitude diminishes. Until now the authors have
not seen this behavior described elsewhere.

The present work is motivated by the modelling of joysticks which are used to actuate hydraulic systems
in a wide variety of mobile construction and forestry equipment. Their use for long periods of time may
lead to repetitive strain injuries in an operator’s upper limbs, neck and back. In order to assess the total
force required to move a joystick, the stiffness, damping and inertia characteristics must be determined. A
mathematical model for joystick dynamics is presented and the effect of restrained spring preloads on the
changing period of free vibration is explained. In addition, procedures to estimate the non-symmetric non-
linear damping from experimental data are described. By simulating the dynamic response in MATLABTM,
the damping is fine-tuned by comparing the joystick’s simulated free oscillation response with its
experimental response. Finally, the torque waveform required to perform a simple joystick motion is
estimated. The methods developed in this paper could be applied to any lumped-parameter mechanical
system where there are opposing restrained preloaded elastic elements.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

In its simplest form, the idealized mechanical system under consideration is shown in Fig. 1.
The system is similar to an impact pair [1] where the central mass may move through a small
clearance space to make contact with massless damped springs. In this case, however, the central
rod passing through each spring is designed (for example with threads), so that each spring may be
given an initial compressive preload. The unloading of each spring is limited to this initial preload.
The effect of the clearance in this system is relatively minor and could be zero. The primary
emphasis in this paper is on the effect of the pair of restrained springs, which causes the period of
free vibration to diminish as the amplitude of motion decreases. Also of interest are procedures
used to estimate a non-linear damping model for such a system.

The system shown in Fig. 1 could represent a variety of applications. One could imagine such a
system as a snubber for pipes or tubes or as components of an electrical switch. For small contact
forces, the spring deflection would be negligible; large deflections would occur only when the
contact force exceeds the compressive spring preload. In this way the cental mass would remain
centered, unless a significant excursion from center is required.

The motivation for the present work is the study of joysticks used in North American mobile
construction and forestry equipment to control the positions of various hydraulic actuators by
controlling the flow of hydraulic fluid through servo-valves. Joysticks, such as the one shown in
Fig. 2, have universal joints which permit rotation about two horizontal axes with a range of
motion of about 720�. Under the swash plate (cam) there are four spring-loaded plungers with
hemispherical heads. Each plunger is connected to a valve stem assembly having two preloaded
helical springs. If the joystick is rotated about one axis, for example, one plunger is depressed a
distance approximately proportional to the angle of rotation.

The machinery operator must exert force on the joystick to make it move. There may be 20,000
such moves in a typical operator’s work shift [2]. It is thought that the use of joysticks over
extended periods can lead to repetitive strain injuries in an operator’s upper limbs, neck, and back
[3]. The present study was part of an experimental study [4] of arm and joystick motions and the
forces involved in joystick use. The experimental set-up is shown in Fig. 3.

The force required to move a joystick can be considered to have stiffness, damping and inertia-
related terms. Characterizing the stiffness term requires quasi-static load–deflection measurements
of the spring assembly. The inertia term requires measurement of the joystick mass, center of mass
and mass moments of inertia. The assessment of the damping term is more difficult and requires
dynamic experimental testing. For most mechanical systems, the damping can be estimated from
its frequency response or from the logarithmic decrement method applied to its free vibration
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Fig. 1. Simple mechanical system with opposing restrained preloaded springs.
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response. For a joystick (or any system with opposing restrained preloaded springs), the large
spring preloads result in its natural oscillation frequency being highly amplitude dependent so that
traditional damping estimation methods cannot be used.
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Fig. 2. Joystick geometry (boot removed).

Fig. 3. Subject and retroreflective marker placement in excavator cab/joystick mock-up.
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2. Free oscillation response

Typical joystick free oscillation behavior is illustrated by the angular displacement, velocity and
acceleration time histories shown in Fig. 4. The right-hand joystick from a new excavator was
initially held at its extreme backward position and then released. It was instrumented with two
independent measurement systems. Small retroreflective balls were fastened to the joystick so that
a 6-camera video VICONTM imaging system could record the joystick’s instantaneous position.
The three-dimensional displacement data for each retroreflective ball were obtained at a sampling
rate of 60Hz.The positions of the ball at the top of the joystick and two balls on the base allowed
vectors to be defined where x was horizontal and in the primary direction of motion, y was
horizontal and perpendicular to the direction of motion, and z was vertical. The small y direction
VICON results (2–3% of peak x motion) confirmed that the joystick motion was essentially
planar. Using the x,z- projections of the vectors, the angular position of the joystick was found
using a vector dot product. The angular displacement waveform was interpolated to give 600Hz
data point spacing and then digitally filtered, forward and reverse, through a low-pass fourth
order Butterworth filter with a frequency cutoff at 13Hz. The angular displacement waveform
was then numerically differentiated using a 5-point rule to obtain the velocity waveform shown in
Fig. 4(b). The angular acceleration waveform in Fig. 4(c) was obtained using a similar process
with a 3-point rule. In addition, a small accelerometer (B&K Type 4393V) was fastened to the
front of the joystick near the top. Its signal was amplified by a charge amplifier (B&K Type 2635)
and sampled at 1800Hz. Its acceleration, divided by its distance to the universal joint pivot, is
shown in Fig. 4(d).

Several features of the responses shown in Fig. 4 are striking. As expected, the signal amplitudes
steadily decrease, however, untypical of most mechanical systems is the steady decrease in the
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Fig. 4. Typical joystick angular responses during free oscillation: (a) displacement; (b) velocity; (c) VICONTM

acceleration; (d) accelerometer acceleration.
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period of oscillation. This sort of behavior is more typical of bouncing balls or objects rocking
about their edges [5,6], although in this case damping occurs throughout the motion rather than
due only to a coefficient of restitution at each impact. The pattern of pairs of peak values in
Fig. 4(a) is interesting. For example, the first positive and first negative full peaks have nearly the
same amplitude. This pattern appears to repeat for subsequent pairs of peaks. This implies that
the stiffness and/or damping are not exactly the same on the two sides. Also interesting are the
portions of nearly constant acceleration and consequently nearly constant velocity slopes during
each period of free motion.

The spikes in the acceleration from the accelerometer (see Fig. 4(d)) are due to the small impacts
as the joystick passes through the neutral position and the plungers stop and start moving on each
side. The spikes in the accelerometer data and the high-frequency ringing shown in Fig. 4(d)
corrupt the acceleration signal, so that integrating results in invalid velocity and displacement
waveforms. Also the changing orientation of the accelerometer introduces a small gravity
acceleration component along the axis of the accelerometer [7], which also introduces errors into
its velocity and displacement waveforms. The gravity component is maximum at the extreme
joystick positions and has been estimated to be about 6% of the peak acceleration.

Despite the instrumentation limitations, it is clear that the free oscillation behavior of this
single-degree-of-freedom system with opposing restrained preloaded springs is rather complex.
There appears to be little literature on the effect of restrained preloaded springs. Chen and Chang
[8] considered the frequency response of a preloaded single-degree-of-freedom system but the
springs were not restrained to maintain their preloads, so that the effect of decreasing period is not
observed. Johnson et al. [9] consider the effect of spring preloads in the touch trigger probes on
the error characteristics of coordinate measuring machines (CMMs).

In the present paper, the effect of restrained spring preloads on the changing period of free
vibration is explained and procedures to estimate the non-linear damping from experimental
waveforms (such as Fig. 4) are described. A mathematical model for the joystick dynamics is
presented. By simulating the transient response of the joystick in MATLABTM, the damping is
fine-tuned by comparing the joystick’s simulated free oscillation response with its experimental
response. An error analysis shows the preferred damping values, as well as the sensitivity of the
system to different damping values. Finally, using displacement data for a typical forward and
return joystick motion by an operator, the components of the required torque waveform are
estimated. The methods developed in this paper could be applied to any lumped-parameter
mechanical system with opposing restrained preloaded elastic elements.

3. System model

The equation of planar motion for a joystick in free oscillation is obtained by summing the
moments about the pivot as shown in the free body diagram in Fig. 5 and equating the external
torques to the product of the mass moment of inertia J and the angular acceleration. The equation
of motion is given by

J .yþ C ’yþ Ms ¼ mgh sin y; ð1Þ

where y is measured from the neutral position, J is the mass moment of inertia about the pivot, C

is the damping coefficient or damping function, Ms is the moment caused by the contact force at
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either plunger, m is the joystick mass, g is the acceleration of gravity and h is the height of the
center of mass above the pivot.

As the cam surface rotates about the pivot, the point of contact with the actuator moves along
the surface. The essential geometry and the two components of the normal contact force, fH and
fV are shown in Fig. 6, where the actuator is treated as a contact point and its curvature is
neglected. The contact friction force is not calculated explicitly; instead, all friction forces and
moments are treated as sources of energy dissipation and are lumped into the damping term of
Eq. (1). The fixed length a is the distance from the pivot center to the axis of each actuator
assembly and b is the vertical distance from the pivot center to the lower cam surface; a and b are
illustrated in Fig. 2. The distance x is the total deflection of the spring assembly plus any
clearance. The horizontal and vertical components of r are given by

r cos y ¼ a � b sin y; r sin y ¼ x � b þ b cos y: ð2a;bÞ

Solving for x gives

x ¼ ajtan yj þ bð1� 1=cos yÞ; ð3Þ

where for convenience x is taken as positive for any y. The moment Ms is defined by the moments
of the components of the normal contact force, fV and fH, about the pivot,

Ms ¼ afV þ dfH ; ð4Þ
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where the moment arm of fH is d ¼ x � b: Noting that fH ¼ fV tany; where fV is the force acting on
the spring assembly fx, and accounting for the sign change of the afV term in Eq. (4) gives the final
form for the actuator moment which is valid for any y:

Ms ¼ fa ðsignðyÞ þ d tan ygfx ð5Þ

3.1. Preloaded stiffness modelling

Fig. 7(a) schematically shows the arrangement of an actuator plunger and its balance and
return springs. Its typical static load–deflection behavior shown in Fig. 7(b) was measured using
an InstronTM testing machine. The actual load–deflection curve has two very steep portions and
two gradually rising portions. The initial steep slope is due to the compressive preload in the
return spring. The applied force fx must overcome the large preload in the return spring before
any significant deflection occurs. After about 3mm displacement, the actuator rod bottoms out
and the second steep slope shows that the preload in the balance spring must then be overcome. In
the final stage, the effective stiffness is the sum of the two spring stiffnesses. The overall stiffness of
the system clearly decreases with increasing compression distance. A fitted cubic polynomial curve
has also been plotted in Fig. 7(b) in order to illustrate this reduction in system stiffness.

The effect of the compressive preloads on the load–deflection curve is similar to that of a bolted
joint, whose behavior depends on both the stiffness of the bolt and the stiffness of the clamped
material [10]. For example, as the pressure increases in a pressure vessel with a properly designed
bolted–on head, the bolt tension will increase slightly, but the compression force in the clamped
material will diminish much more, since its stiffness is much greater than that of the bolt. Bolted
joint failure occurs when the compression of the clamped material becomes zero and the joint
opens. The spring system shown in Fig. 7(a) operates under the same principles, but unlike a
bolted joint, in this case the stiffer material is in tension and the desired behavior occurs when the
joint opens.

Fig. 8(a) illustrates the load condition in the preloaded return spring when there is no external
force. The compressive force in the spring is balanced by an equal tensile force in the housing
surrounding the assembly. Since the housing stiffness kh is much greater than the spring stiffness
ks, the housing elongation xho is much less than the initial spring deflection xso. When an actuator
force fx occurs, the tensile force in the housing rapidly decreases and the spring force increases
slightly as illustrated in Fig. 8(b). The actuator, housing and spring forces are in equilibrium so
that

fspring ¼ fx þ fhousing: ð6Þ

If fx is less than the preload force, then it is related to the actuator displacement x by the sum of
the housing and spring stiffnesses,

fx ¼ ðkh þ ksÞx: ð7Þ

When khx exceeds the preload, the tensile force in the housing becomes zero, and the actuator
force is simply given by

fx ¼ ksðxso þ xÞ: ð8Þ
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Large deflections can now occur for small increases in actuator force. A similar behavior occurs
when the actuator rod bottoms out and the tensile force in the rod due the compressive preload in
the balance spring must be overcome.

The piece-wise continuous load deflection curve for each actuator assembly has been modelled
as a series of four linear spring stiffnesses as shown schematically in Fig. 7(c). The clearance of
0.075mm is exaggerated in the figure. The corresponding starting displacement and stiffness
values are shown in Table 1. The spring preloads are very important to the response of the
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actuator system and cause the interesting decreasing period during free vibration. As the
oscillation amplitude decreases, the average stiffness of the system increases, giving a higher
natural frequency. The lower stiffness values in the backward direction shown in Table 1
contribute to the larger than expected negative angular displacement peaks shown in Fig. 4(a).
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(a)

(b)

(c)

Fig. 8. Spring preload effects: (a) with no external force, fx ; (b) when fxospring preload; (c) when khx>spring preload.

Table 1

Modelled spring displacements and stiffnesses

Forward Backward

Displacement Stiffness Displacement Stiffness

i xi (mm) ki (N/m) xi (mm) ki (N/m)

0 0.075 430,000 0.075 659,000

1 0.1985 2625 0.1595 1191

2 2.932 1,028,000 3.054 1,112,000

3 2.943 5600 3.063 4090
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3.2. Inertia values

The mass moment of inertia of the joystick about its pivot was calculated from its geometry and
also measured experimentally using a simple swing test. The latter was done by inverting the
joystick and supporting it at the pivot. Its natural period of motion was obtained using a
stopwatch. By modelling the inverted joystick as a compound pendulum, J is given by
mgh=ð2pfnÞ

2; where fn is the pendulum swing frequency. The mass and mass moment of inertia of
the joystick handle are shown, along with other geometrical constants, in Table 2.

3.3. Non-linear damping modelling

There are several sources of damping in the joystick during free oscillation. Oil in the universal
joint, between the plunger tips and the swash plate, and between the plungers and their guide walls
should result in viscous damping. There is also some air-resistance damping. Viscous damping
would tend to cause exponentially decreasing displacement amplitudes, whereas dry Coulomb
friction damping would cause linearly decreasing peaks [11]. For the present case where the period
of oscillation decreases, this effect is difficult to judge. Since the damping is expected to play a
secondary role in the torque waveform and also for convenience, a viscous type of damping is
assumed. Separate estimates of damping for positive and negative motions are needed, which
precludes the use of the Hilbert transform to estimate the damping.

For a linear system with viscous damping and no preloaded springs, the envelope of the
damped free response would be a simple exponential decay function and the peak angle values
and peak times would be related by

ypeak

�� �� ¼ yð0Þ e�xontpeak ; ð9Þ

where y(0) is the starting angular position at time zero. The exponential decay argument xon is
C=ð2JÞ for a simple linear rotational system. Although Eq. (9) is based on a constant natural
frequency, it will be used here to extract experimental estimates of C. By substituting experimental
values of ypeak and tpeak; estimates for C can be obtained by rearranging Eq. (9).

Cexp ¼ �
2J

tpeak

ln
ypeak

�� ��
yð0Þ

� �
: ð10Þ

By plotting Cexp and ypeak values from data such as shown in Fig. 4(a) on log–log scales, best fit
straight lines for the positive and negative peaks provide functions of the form Cexp ¼ Ajypeakjn:
Since this function allows the damping to vary with response amplitude, it is assumed that this
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Table 2

Joystick inertia and geometrical constants

Joystick mass 0.87 kg

Mass moment of inertia 0.01135 kgm2

Pivot to center of mass 8.2 cm

Pivot to top 26.6 cm

Pivot to plunger contact (a) 23.98mm

Pivot to cam surface (b) 5.0mm

R.J. Rogers et al. / Journal of Sound and Vibration 274 (2004) 73–8982



expression could be used for the continuous functions CexpðyÞ ¼ Ajyjn: Since different actuator
assemblies are involved for positive and negative values of y, different values of A and n are used
for positive and negative values of y. A similar approach can be used with the angular velocity
data shown in Fig. 4(b), giving the expression Cexpð’yÞ ¼ Bj’yjm: Since the displacement and velocity
expressions each account for all the damping, if they are combined, the A and B coefficients must
be multiplied by weighting coefficients, i.e.,

Cexpðy; ’yÞ ¼ aAjyjn þ bBj’yjm; ð11Þ

where aþ b ¼ 1:
The log–log plots for four data sets shown in Fig. 9 indicate fairly good straight line

approximations with slight negative slopes, except for the highest abscissa values. The results in
Fig. 9(a) indicate that for the particular joystick tested, there is more damping for positive y than
for negative y and, except for the highest peaks, the damping tends to increase slightly as the
amplitude of oscillation decreases. Unlike the displacement data, the velocity data for positive and
negative y overlap, as shown in Fig. 9(b), so that the same values of B and m may be used for all
the velocity peaks. For simplicity, linear regression was used and gave the following coefficients
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for Eq. (11): Apos ¼ 0:086 N ms; npos ¼ 0:084; Aneg ¼ 0:032 N ms; nneg ¼ �0:23; B ¼ 0:051 N ms
and mneg ¼ �0:26: Note that the negative values of the exponents, n and m, can lead to very high
values of Cexp when either the angular displacement or angular velocity approach zero. The
relatively low fractional exponents also suggest that a constant value of damping coefficient may
give satisfactory results.

4. Simulation results and error analyses

In order to obtain a solution to Eq. (1), programs [4,12] were written in MATLABTM using
fourth order Runge–Kutta numerical integration. Initial position and velocity values were taken
as the average experimental values shortly after release. A small constant time step of 0.001 s was
used, except near the steep slopes in the load–deflection curve, where the time step was divided by
10. Various values for weighting factors, a and b, were tried and compared with the measured
responses of Fig. 4(a) and (b).

Fig. 10 shows typical simulation waveforms for a ¼ 0:9 and b ¼ 0:1; along with one set of
experimental waveforms. Also shown are simulation results with a constant damping coefficient
C ¼ 0:045 N ms: By inspection, both simulations match the form of the experimental waveforms
quite well. The characteristic decrease in oscillation period is shown quite well. The simulated
velocity waveforms have sharper peaks than the experimental velocity waveforms obtained by
differentiating the VICONTM displacement waveforms.

Error analyses were performed in order to find the optimum values for a and b (or for constant
C). Since the waveforms have both decreasing amplitude and decreasing period, the following
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Fig. 10. Typical joystick free motion angular responses: (a) displacement; (b) velocity; (c) acceleration. Experimental

(solid), simulation with damping function (long dashes), and simulation with constant for C ¼ 0:045 (short dashes).
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average relative errors were defined for the peak angular displacement values and the times at
which they occurred:

edisp ¼
1

n

Xn

i¼i

yi � #yij j
#yi

; etime ¼
1

n

Xn

i¼i

ti � #ti

�� ��
ð#ti � #ti�1Þ

; ð12a;bÞ

where yi and #yi are the ith simulated and experimental peak angular displacements occurring at
times ti and #ti; respectively. The experimental values are the averages of four trials. Nine peaks
(n ¼ 9), including both positive and negative peaks, were used. A similar process was used to
estimate the errors in the velocity waveforms with n ¼ 10: These relative errors may be expressed
as percentages by multiplying by 100.

Fig. 11(a) shows how these relative errors for peak angular data vary with a for the nonlinear
damping and Fig. 11(b) shows the errors for various values of constant damping. From the
displacement waveforms, the minimum peak-time error is 5.1% for a ¼ 0:9; while the peak-
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displacement error has a minimum of 11.9% for a ¼ 1: Similarly for constant damping shown in
Fig. 11(b), the minimum peak-time error is 5.4% for C ¼ 0:045; while the minimum peak-
displacement error is 13.6% for C ¼ 0:050: All of these errors are quite small which demonstrates
that the simulations match the experimental waveforms quite well. Similar trends and values were
obtained for the errors in the velocity waveforms. The error results show the simulation error is
not very sensitive to the choice of damping model and that even the constant damping works quite
well.

As a verification of the mathematical model, the total energy of the system was calculated
during the simulations. The gradual decay of total energy with time is shown in Fig. 12 for
a ¼ 0:9: The total energy decreases in steps with the plateaus corresponding to times near zero
velocity and therefore low damping. Fig. 12 also shows the estimated total energy using the
experimental data. Although somewhat similar to the simulation energy, the experimental curve
shows rises in energy which are physically impossible. This effect is due to underestimation of the
peak experimental velocity and kinetic energy values because of limitations in the numerical
differentiation of the displacement waveforms.

Finally, in order to see the discontinuities in the damping function given in Eq. (11), it has been
plotted against time in Fig. 13. The largest discontinuities occur at the times of zero velocity and
small discontinuities occur when the displacement is zero. It is interesting that these discontinuous
damping coefficient values appear to have very little effect on the simulation. One can also see that
the constant damping value of 0.045Nms approximates an average value for the damping function.

5. Application

When a subject such as shown in Fig. 3 moves the joystick, the subject must exert a force on it.
The resulting torque acting on the joystick can be modelled by introducing a torque T to the right
hand side of Eq. (1) and then solving for T,

T ¼ J .yþ C ’yþ Ms � mgh sin y: ð13Þ
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In order to see the influence of each term in the equation, a typical displacement waveform for
simple forward and return motion by a subject was obtained using the VICONTM camera system
[4]. The velocity and acceleration waveforms were then obtained as described earlier in this paper.
The resulting waveforms are shown in Fig. 14. Although the displacement waveform appears
quite smooth, the velocity and acceleration waveforms show some oscillation.

By substituting these waveform values into the acceleration, velocity and displacement-related
terms in Eq. (13), the resulting torque components were calculated and are shown in Fig. 15. The
main contributors to the total torque, shown in Fig. 15(d), are the stiffness (Ms � mgh sin y) and
inertia related terms. The damping torque values shown in Fig. 15(b) are relatively small (roughly
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10%). It is interesting to see that the nonlinear damping model gives roughly double the damping
torque compared to the constant damping model (dashed curve).

6. Conclusions

The stiffness, damping and inertia characteristics of a mechanical system with opposing
restrained preloaded springs have been modeled. A joystick, which is used to actuate hydraulic
systems in a wide variety of mobile construction and forestry equipment, has been used as an
illustrative system since knowledge of its stiffness, damping and inertia characteristics enable
studies of actuation forces by human operators to be conducted.

The restrained preloaded springs allow for minimal deflection until the applied force exceeds
the spring preload. The interaction of the housing (or rod) stiffness and the helical spring stiffness
is shown to be conceptually similar to a bolted joint. The restrained preloaded springs are
responsible for the decreasing period during decaying free vibration, since as the amplitude of
motion decreases, the average stiffness becomes higher.

A simple method has been used to estimate amplitude-dependent damping which allows for
different stiffness and damping properties for positive and negative motions. Weighted non-linear
dependencies on angular displacement and velocity are used.

The simulation results show that the mathematical model can represent both the decreasing
amplitude and decreasing oscillation period quite well, demonstrating that the model accurately
represents the essential characteristics of the system. Error analyses of the angular displacement
peak values and their occurrence times enabled optimum values of damping weightings to be
obtained. Although the simulation is not especially sensitive to the choice of the damping model,

ARTICLE IN PRESS

Fig. 15. Torque components for force motion: (a) stiffness; (b) damping: with damping function (solid), with constant

C ¼ 0:045 (dashed); (c) inertia; (d) total.
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the best results are obtained when damping proportional to angular displacement is dominant,
with very similar results being obtained with constant damping.

Using a displacement waveform generated by a subject for simple forward and return motion,
velocity and acceleration waveforms were generated and the corresponding components of the
torque applied to the joystick were produced. The results showed that for this case, the inertia
torque was comparable in size to the displacement-related torque and that the damping torque
was much smaller and of the order of 10% of the total torque.

Although this paper discusses a hydraulic actuation joystick, the analysis and methods could be
applied to any system with opposing restrained preloaded springs.
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