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1. Introduction

The present work is motivated by a desire to investigate the effect of thickness and length ratios
of the resistively shunted piezoceramic-host beam system on its ability to induce damping. Are
there any optimal length and thickness ratios for which the additive damping due to piezoceramic
resistive shunting is a maximum? Are these thickness and length ratios influenced by the boundary
condition?

Electrical passive shunting of piezoceramics bonded to beams has been investigated in the past
[1-3]. The analytic vibration models represent the damping and stiffness due to electrical shunting
of the piezoceramic as a complex frequency-dependent modulus similar to that used in viscoelastic
solids [2]. Steffen and Inman [4] have applied techniques developed for optimization of dynamic
vibration absorbers to optimize the parameters of a resonantly shunted piezoceramic bonded to a
beam. The analysis of damping in composite plates with multiple resistively shunted piezoelectric
layers has been developed by Saravanos [5]. These studies have focused on analytical and
experimental investigation of the additive damping, and change in resonance frequencies, due to
resistive and resonant shunting. Chaudhry and Rogers [6] have studied the problem of optimal
thickness ratio of the PZT-host beam in terms of actuator induced surface strain. For the static
case, they arrive at a host beam/PZT thickness ratio of 2.75. However, they could not arrive at
any conclusive results for the dynamic case, as well as investigate the effect of boundary
conditions on the optimal thickness ratio.

The present work reviews the effect of thickness and length ratios in the specific context of
maximizing additive damping due to resistive shunting of the PZT. The effect of boundary
conditions on these optimal values of thickness and length ratios are also examined. Analytical
results are presented supported by experimental evidence.
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2. Modelling of shunted piezoceramic materials

The modelling of shunted piezoceramics bonded to structures has been dealt with elsewhere [2],
and here we present the essential steps. The mechanical impedance of the shunted piezoceramic
can be obtained, in non-dimensional form, for uniaxial loading in the jth direction, as
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In the above, 4; is the area of the plezocerarmc element whose normal is in the jth direction, L; is
the length of the piezoceramic, C;V = (1 — k;ZF)CF is the mechanical compliance of the
shunted piezoceramic wherein ij 1s the mechamcal comphance with short-circuit electrical
boundary conditions, and s is the Laplace variable. One can non-dimensionalize this as the ratio
of the mechanical impedance of the shunted piezoceramic to the mechanical impedance of the
piezoceramic with open-circuit electrical boundary condition:

e 250 (kD)

7T Z0%) - B2 @

where k;; is the electromechanical coupling coefficient, Z;J?L is the total electrical impedance of the
PZT with the shunt impedance non-dimensionalized to its open-circuit values. The mechanical

impedance, ZjME, is in general complex and frequency dependent and can be represented as
Z" = Ey()[1 + o). (3)

Shunting devices such as resistors act as an energy dissipater on the electrical side. Electrical
resistive shunting of a piezoceramic bonded to a host structure is equivalent to a viscoelastic
damping treatment of the same host structure [2]. The non-dimensional mechanical impedance of
a resistively shunted piezoelectric is given by
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where C,; is the capacitance of the piezoceramic, R; is the resistance of the shunt resistor, and
p; = RiCyiw is the non-dimensional frequency. The loss factor and the frequency-dependent
storage modulus are
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In order to study the effectiveness of piezo-resistive shunting in controlling the dynamics of a
vibrating system, the dynamics of the host structure is modelled by a single vibration mode. The
piezoceramic is then coupled in parallel to this one degree-of-freedom (1-DOF) system.
The modal velocity of the vibrating system with piezoceramic can be expressed in the Laplace

domain as
F(s)
Ms + (K /s) + Z}E(s)

v(s) = (6)
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where Ms is the impedance associated with modal mass of the host structure, K/s, is the
impedance associated with the modal stiffness of the host structure, and Z;;ES (s) is the impedance
associated with the resistively shunted piezoceramic. The above modelling of the resistively
shunted piezoceramic bonded to the host structure assumes a linear electro-mechanical coupling
leading to a linear visco-elastic model of the overall structural dynamics.

3. Results and discussions

Analytical as well as experimental studies were carried out to study the variation of additive
damping due to resistive shunting as a function of thickness and length ratios. Analytically, the
additive damping was evaluated from the poles of the response transfer function equation (6). In
Fig. 1, the variation of additive damping, at optimal shunt resistance, as a function of the ratio of
beam thickness (#;) to piezo thickness (z.) is shown for different ratios of beam length (/) to
piezoceramic length (L). These values of additive damping are for the first mode of vibration of
the cantilever beam. In all these studies, the location of the piezoceramic on the beam was not
varied. In Fig. 1, it is clearly seen that greater the length of the beam, higher is the strain induced
in the PZT, and consequently, the added damping is more. However, for a given ratio of
piezoceramic length to beam length, the additive damping is a maximum at a thickness
ratio (#5/t.) of 2.73. In order to validate the above analytical results experimentally, five
different duralumin cantilevered beam models were tested with surface bonded piezoceramic
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Fig. 1. Variation of added damping for different (beam/PZT) thickness ratios with variation in the PZT length
(L)-beam length (/) ratio.
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patches. Table 1 lists the dimensions and physical properties of the aluminum alloy beams and
PZT patches. Sine-sweep and random excitation tests were conducted to determine resonance
frequencies and change in the natural frequencies of the beam with open- and short-circuited
piezoceramic layer. The results of these experiments are summarized in Table 2. The damping was
estimated by computing the energy dissipated in one vibration cycle when the beam was excited by
an electro-mechanical shaker at the first resonance frequency [7]. The damping estimated by this
technique was also compared with that obtained from the circle-fit method [8, pp.158-162], and
the values obtained by integrating the force—velocity over one vibration cycle compared very
favorably with the circle-fit method (the error was less than 10%). The experimental values of
added damping due to optimal resistive shunting are shown as data points in Fig. 1. These
experimental values agree well with analytical results shown there. In order to investigate whether
the optimal thickness ratio is dependent on the mode of vibration, we analytically simulated the
variation of additive damping due to resistive shunting as a function of the thickness ratio for the
second and third modes of a cantilever beam. The placement of the piezoceramic patches for the
second and third mode are as shown in Fig. 2. The results of this simulation are shown in Fig. 3.
In Fig. 3(a), we have shown the effect of thickness ratio on additive damping for the first mode of
the cantilever beam with the PZT patches near the root, Al, and at another location A2. Note
that though the maximum values of additive damping are different, the thickness ratio at which
this maximum value occurs is still the same, namely 7 = 2.73. Figs. 3(b) and (c) show the
variation of additive damping as a function of thickness ratio for mode number two and three.

Table 1

Cantilever beam and PZT dimensions and properties

Parameter Beam-1 Beam-2 Beam-3 Beam-4 Beam-5 PZT

Material Duralumin ~ Duralumin  Duralumin  Duralumin  Duralumin  SP-5H (Sparkler)
Length (m) 0.155 0.178 0.242 0.270 0.291 0.050

Width (m) 0.030 0.030 0.027 0.026 0.026 0.025

Thickness (m) 0.0009 0.0009 0.0015 0.003 0.003 0.0005

Young’s modulus (GPa) 70 70 70 70 70 69

Density (kg/m®) 2700 2700 2700 2700 2700 7500
Capacitance (uF) — — — — — 0.058

Coupling coefficient (k3;) — — — — — 0.36

Table 2

Experimentally measured parameters for resistive shunting (I-mode)

Parameter Beam-1 Beam-2 Beam-3 Beam-4 Beam-5
Natural frequency (shorted) (Hz) 28.13 21.13 21.37 38.10 30.27
Natural frequency (open) (Hz) 28.25 21.25 21.60 38.33 30.53
Loss factor (with PZT shorted) 0.0186 0.0194 0.0213 0.0156 0.0224
Coupling coefficient & (theory) 0.079 0.102 0.165 0.182 0.197

Optimal resistance (KQ) 90 120 120 70 80
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Fig. 2. Strain mode shapes of cantilever beam with locations of PZT patches on them.

The PZT patches were bonded at different locations as shown in Fig. 2. Once again the maximum
additive damping values obtained are different, but the thickness ratio at which this maximum
value occurs is still 7 = 2.73. From Fig. 3(c), note that the additive damping due to optimal shunt
resistance is relatively higher than for mode numbers one and two. In general the values of
additive damping due to optimal shunt resistance of the PZT are dependent on the mode in which
the beam is vibrating, the location of the PZT, and the dimensions of the PZT. However, the
optimal thickness ratio at which this maximum value of additive damping is realized is
independent of all these.

The simulations were now repeated for beams on simple supports, and beams with both
ends fixed. Fig. 4 shows the location of the PZT patches for the beam on simple supports.
Figs. 5(a)-5(c), show the variation of additive damping as a function of thickness ratio for mode
numbers one, two, and three, respectively. Once again, the results follow the same trend as that of
the cantilever beam. The optimal thickness ratio is still 77 = 2.73. Fig. 6 likewise show the location
of the piezoceramic patches for a fixed-fixed beam, and Fig. 7 details the variation of additive
damping as a function of thickness ratio. In this case too, the optimal thickness ratio is 7= 2.73.

The results arrived here agree in part with those of Chaudhry and Rogers [6]. They consider the
problem of static strain actuation using a piezoceramic, and arrive at the optimum thickness ratio
of 2.75 in terms of the bending surface strain induced on the substructure. This result is almost the
same as what we have obtained. However, they seem to be inconclusive about the effect of inertia
loads on the optimum thickness ratios in terms of frequency response of the beam with PZT
bonded to it. The effect of boundary conditions is equated with the application of an applied load,
and optimum thickness ratio for maximum surface strain is stated to decrease with the increase in
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Fig. 3. (a) Added damping as a function of thickness ratio for cantilever beam 1st mode with PZT at, different locations,
(b) added damping as a function of thickness ratio for cantilever beam 2nd mode with PZT at different locations,
(c) added damping as a function of thickness ratio for cantilever beam 3rd mode with PZT at different locations.
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Fig. 4. Strain mode shapes of simply supported beam with locations of PZT patches on them.

external load for a given actuation voltage. However, one should be careful in applying these
conclusions to the case of electrical shunting of piezoceramics since here one is interested in the
mechanical strain induced at the beam—piezo interface due to mechanical motion alone. That is,
we are not considering the actuator induced surface strain in the substructure.

In order to explain the optimal thickness ratio for maximum additive damping due to resistive
shunting, at a given PZT to host beam length ratio (L//), we investigated the effect of surface
strain on the beam due to bending as a function of thickness ratio. Note that the electric field
induced in the piezoceramic is directly proportional to the strain induced in it, which in turn is
proportional to the curvature. The bending strain in the beam per unit bending moment,
evaluated on the surface of the beam, at a given station x on the beam, for arbitrary boundary
conditions, is given by

K 1+1/T
= ; )
M(x, 1) = 12 8
6+ ET +— + 7

where x is the curvature, M(x,7) is the bending moment, E = E,/E,., and T = t,/t.. This
expression holds true whether the beam is statically excited or undergoing vibration. The
maximum bending strain per unit moment as a function of thickness ratio is then

e/ M (x, 1))

o7 =0 = ET*+2ET?—6T*>—16T-8=0. (8)
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Fig. 6. Strain mode shapes of fixed-fixed beam with locations of PZT patches on them

In the case of aluminum and PZT, E~ 1, and the optimal thickness ratio is then T = 2.73. Note
that the voltage generated by the PZT is proportional to the strain induced on the surface of the
beam that is then dissipated across the shunt resistor resulting in additive damping. So this
analysis explains the results we obtained earlier by numerical and experimental simulations for
various modes of vibration and with different boundary conditions for an Euler—Bernoulli beam.
Therefore, for Ex 1, the maximum value of induced strain in the PZT will occur at 7 = 2.73. This
optimal thickness ratio is independent of the mode of vibration as well as boundary condition.
However, the induced strain value at this optimal thickness ratio will depend on the mode as well
as the boundary condition. In the case of PZT bonded to the surface of a beam made of mild steel,
Ex3, and the optimal thickness ratio 7 = 1.67. However, the use of PZT with mild steel will
result in lower induced strain per unit moment at the PZT—beam interface, relative to aluminum,

since k/M(x, ) will decrease with increase in E.

4. Conclusions
The effect of thickness and length ratios of piezoceramic-host beam on additive due to resistive
shunting of the piezoceramic is investigated for different boundary conditions and mode shapes. It
is shown that the additive damping, for a given beam length to PZT length ratio, is maximum for
beam thickness to PZT thickness ratio equal to 2.73. This optimal thickness ratio is valid for all

modes of vibration and all boundary conditions of the beam.
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