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Abstract

This paper investigates numerically the modal properties of damped 2-degree-of-freedom (d.o.f.)
representations of crowd-occupied civil engineering structures, such as grandstands. In particular, it
attempts to explain observations of some curious changes in natural frequencies and damping in
measurements made by other researchers in the past when such structures were occupied compared with
when they were empty. Natural frequencies, mode shapes, modal masses and damping ratios are examined
parametrically for a range of ratios of frequency, mass and damping coefficients of two single-d.o.f. systems
connected in series representing the ‘human’ and ‘structural’ vibration behaviour. It is found that a damped
2-d.o.f. model of a crowd-structure system can explain (1) damping increases, (2) additional modes of
vibration and (3) increases as well as decreases of natural frequencies observed on real-life grandstand
structures due to crowd occupation. Therefore, a mathematical framework for simplified dynamic response
analysis of assembly structures based on equivalent 2-d.o.f. dynamic modelling of crowd-structure
interaction may be a prudent way forward.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Crowd-structure dynamic interaction [1-3] is currently a major issue in the safety and
serviceability of civil engineering assembly structures [4,5]. It is now well established that crowds
not only induce significant dynamic forces, but also alter the dynamic properties of the occupied
structure. Consequently, there are two questions related to the crowd-structure dynamic
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interaction:

1. what are the dynamic forces applied by a crowd of people, and
2. what are the effects of a crowd on the dynamic properties (natural frequencies, modal mass,
modal stiffness and damping) of the structure it occupies.

This paper deals with the latter issue only. This issue is particularly important in the case of
structures, such as grandstands, where crowds can cause significant changes of the properties of
vertical and horizontal modes of vibration [1]. Occupants often, but not always, reduce natural
frequencies of civil engineering structures [1-3]. Most remarkably, in one case it was reported that
they reduced the natural frequency of the fundamental vertical mode of a relatively light
temporary grandstand from about 16 Hz to about 5 Hz [2]. However, crowds also have the
potential to increase existing natural frequencies and even create new modes of vibration [1,2].
Furthermore, it is widely acknowledged that human occupants increase damping of civil
engineering structures. A mathematical framework which would explain analytically all these
experimental observations is, unfortunately, quite weak and inconsistent in the published
literature. Therefore, the aim of this paper is to formulate a consistent but simple methodology for
interpreting and modelling the effects of human-structure dynamic interaction on assembly
structures.

Currently, it is common in civil engineering design practice to model human occupants just as
additional mass. This can be represented as a rigid mass my added to the mass mg of a s.d.o.f.
system (Fig. 1a), which represents the relevant mode of vibration of an empty civil engineering
assembly structure. This simple way of modelling humans can explain observed decreases of
natural frequencies, but not increases, or the appearance of additional natural frequencies. This
insufficiency has led to the proposal of a single-degrees-of-freedom (s.d.o.f.) occupant model
defined not only by a lumped mass my but also by a stiffness kg [2]. Combining this undamped
s.d.o.f. occupant model with an undamped s.d.o.f. model of an empty structure leads to the
human-structure model shown in Fig. 1b [2]. This model principally explains increases and
decreases of natural frequencies as well as additional modes [2]. However, it has no damping
capabilities associated with the structural and human d.o.f.s (cg = ¢s = 0). Therefore, it is

Fig. 1. Models of human-occupied structures. (a) Mass-only model; (b) undamped 2-d.o.f. model; (c¢) damped 2-d.o.f.
model.
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difficult to use this model to explain the significant increase in damping observed in real life. For
example, in one case of a building floor with a fundamental natural frequency of 6.25 Hz, the
presence of one and two occupants increased the measured damping ratio from 0.55% to 1.4%
and 2.25%, respectively [6].

The human body is heavily damped [7] and, depending on the circumstances, it has the
potential to affect the dynamic properties and responses of a human-structure system
significantly. A key problem here is to establish the conditions under which humans act most
effectively as an additional source of damping. This piece of information is currently missing in
the published literature on human—structure interaction. To address this issue viscous dashpots cg
and cy representing the damping capabilities of the empty structure and human occupants,
respectively, may be added to the existing undamped human-structure model (Fig. 1b). This
modification leads to the damped 2-d.o.f. human—structure model (Fig. 1c) that is investigated in
this paper.

Attaching a damped (or undamped) s.d.o.f. crowd model to a structure model is some-
what similar to attaching a tuned mass damper (TMD) [8]. TMDs have been researched
extensively [9] and are widely employed to reduce vibrations of mechanical and civil engineer-
ing structures [10]. They usually have a mass significantly smaller than the modal mass mg
of the structural mode they are designed to dampen. Furthermore, the natural frequency
of a TMD is designed to be close to the natural frequency of the mode the TMD is
dampening.

In contrast to manufactured TMDs, the properties of humans as “TMDs’ are impossible to
control and, therefore, some important differences exist. Firstly, the mass of a crowd on a civil
engineering structure (my) can be similar to the mass of the structure itself (mg) [8]. Also, the
(undamped) natural frequencies f and fs of crowd and structure s.d.o.f. models, respectively,
given by

1 [kn

St =32 (1)
1 |k

fs=51/" 2)
™\ mg

can be very different. Therefore, the extensive literature on TMDs is of limited use in
understanding the possible behaviour of a 2-d.o.f. crowd-structure dynamic system. As there is a
lack of published literature on the general behaviour of 2-d.o.f. systems consisting of one lightly
and one heavily damped s.d.o.f. system connected in series, this paper contains a theoretical study
of such systems.

First, the theory of damped 2-d.o.f. crowd—structure systems is outlined and possible properties
systems are specified. Next, a parametric study of natural frequencies, mode shapes, modal masses
and damping ratios of damped 2-d.o.f. crowd-structure systems is presented. Finally,
representative frequency response functions (FRFs) are calculated and used to explain some of
the effects of human occupants on civil engineering structures observed and reported in the
literature.
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2. Damped 2-d.o.f. crowd-structure systems

Modelling a crowd-occupied structure using a damped 2-d.o.f. model (Fig. 1¢) is only valid if
the structure and occupying crowds can both be modelled separately as damped s.d.o.f. systems.
This simplification implies that occupants and the structure are linear and time-invariant dynamic
systems. This assumption is generally valid for civil engineering structures under low levels of
vibration and is thought to be true if occupants are stationary and in continuous contact with the
structure. In this case, the modal properties of crowd—structure systems can be estimated using the
well-known theory of analytical modal analysis [11].

2.1. Estimation of modal properties

The equation of free vibration of a general viscously damped 2-d.o.f. model, as shown in

Fig. 1c, is
cs+cg —cg Xs(l) + ks + kH —k[-[ xs(t) _ 0 (3)
—en e || %) ~kp kg | \xu@® [ |0
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Solving the corresponding non-proportionally damped eigenproblem:
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v 0 mpeyg ' —kH kH l//Hr N 0

leads to two modes of vibration (r = 1,2). Each mode is defined by its complex eigenvalue 4, and
mode shape {¥},, which is also complex. These two key modal properties have been calculated
numerically and are used in the parametric studies presented later in this paper.

Eigenvalues A; and 4, define the (damped) natural frequencies f; and f5:

—CH CH

cs +cy —cH]

1
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T
and the damping ratios {; and {,:
—Re(4,
L= =12 ©

of the damped 2-d.o.f. dynamic model.

Both properties (natural frequencies and damping ratios) are considered in the following
parametric study. Additionally, the generally complex mode shapes {¥}, and {i}, of the damped
2-d.o.f. crowd—structure model are presented in unity-normalized form, which means that the
‘maximum value’ is 1 4+ 0i. Such unity-normalized mode shapes are used to calculate the modal
masses m; and m; using the following equation [11]:

T %k
lps ms 0 lps
: —m, (r=1,2).
{wﬂ}rlo m] {w} =LY 7
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2.2. Definition and range of parameters

In this paper, four parameters are used to define a range of damped 2-d.o.f. crowd—structure
models, which are reasonably expected to occur in practice. The parameters are:
(1) the mass ratio «

o ="1 ®)
mg

Ju _ ki ms
fs \\muks 2

(3) the damping ratio {g of the s.d.o.f. structure model

(2) the frequency ratio fy /fs

Cs

=— 10

gS 4nmeS, ( )

and

(4) the damping ratio {4 of the s.d.o.f. human model
CH

=—" 11

= ot (1)

Grandstands and floors with natural frequencies below 6 Hz are of particular concern in the design
of civil engineering structures for vibration serviceability [5]. Their mass per square meter can easily be
as little as 500 kg/m?, or even less for composite steel-concrete constructions. Crowd densities of 6 or
more people/m? are possible and have been observed during sports and concert events. Therefore,
mass ratios a of 10%, 50% and 100% are quite realistic and have been used in this paper.

The human body is a complex non-lincar dynamic system. Its dynamic properties depend on
posture, the level of vibration and many other parameters. Reported natural frequencies fy of the
whole human body range from 1 Hz [12] to 16 Hz [13]. In biomechanics, natural frequencies of about
1-3 Hz and natural frequencies of 46 Hz are associated with horizontal and vertical vibrations of the
sitting human body [7,12], respectively. These values correspond to levels of vibration of 0.5-2.5 m /s,
Levels of vibration encountered in civil engineering are typically lower than 0.5 m/s?. Therefore,
higher natural frequencies fj are likely in civil engineering applications because the human body tends
to stiffen with decreasing level of vibration [7]. For illustration purposes, natural frequencies fz of 5
and 6 Hz are repeatedly used in the following parametric studies. Note also that higher natural
frequencies fz can be expected for standing than for sitting people.

Natural frequencies fs of civil engineering structures experiencing serviceability problems
caused by human-induced resonant vibrations range from 0.5 Hz [14] to about 10 Hz.
Considering the whole range of reported natural frequencies fi of the whole human body,
frequency ratios f /fs ranging from 0.1 (1/10) to 32 (16/0.5) are to be expected. However, the
studies presented in this paper concentrate on frequency ratios f/fs from close to 0 to 15Hz, as
this range was considered to be most realistic and relevant.
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Empty civil engineering structures such as floors and grandstands typically have damping ratios
of 1-2% [15]. At the design stage, damping cannot be predicted easily and, therefore, it is
conservative to assume a low value. Therefore, a damping ratio {g of 1% is used in this paper.

However, significantly higher damping ratios are quoted for the human body in biomechanical
research [7]. They typically range from 30% to 50%. Both limiting values are used in this paper
for the damping ratio {y of a s.d.o.f. crowd model.

3. Parametric study of modal properties

Using the four parameters o, f /fs, {5 and {y specified above, the modal properties of damped
2-d.o.f. crowd-structure systems (Fig. 1¢) are investigated parametrically. This leads to various
sets of natural frequencies f] and f,, mode shapes {¥}, and {y},, modal masses m; and m,, and
modal damping ratios {; and {, that are presented in this section.

3.1. Natural frequencies

For three different mass ratios o, Figs. 2 and 3, respectively, present the first and second natural
frequencies f; and f; of damped 2-d.o.f. crowd-structure systems where {5 = 30%. These two
frequencies are presented normalized to the natural frequency fs of the s.d.o.f. empty structure
model. Almost identical graphs can be obtained for {5 = 50% indicating that increasing human
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Fig. 2. Normalized natural frequencies f1 /fs of a damped 2-d.o.f. crowd-structure model ({5 = 1%). ¢ ®, o = 10%; —,
o= 50%; — —, a0 = 100% for {z = 30%.
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Fig. 3. Normalized natural frequencies f>/fs of a damped 2-d.o.f. crowd-structure model ({g = 1%). & &, a = 10%;
—, a = 50%; — —, a = 100% for {xg = 30%.
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damping ratio from (g = 30% to 50% has little effect on changing the natural frequencies f; and
f> corresponding to these two high damping values.

Fig. 2 also shows that the higher the natural frequency f of the human d.o.f. with respect to
the natural frequency fs of the structure, the more the human d.o.f. acts as an additional rigid
mass attached to the structure, which corresponds to the mass-only model (Fig. 1a), as would be
expected. This is to be expected as it can be shown that when fi — oo, the fundamental frequency
f1 of the 2-d.o.f. system becomes:

1
1+ o

Si= Is. (12)

The natural frequency f; of the joint human-structure dynamic system is close to this upper
limit if fy /fs>5 (Fig. 2), which is the case for a structure with a natural frequency of, say,
fs<1 Hz assuming f = 5 Hz. It is interesting to note in Fig. 3 that the natural frequency f; is in
this case an approximately linear function of the ratio f /fs.

Often, the natural frequency of vertical modes of civil engineering assembly structures is about
5 Hz. Thus, it is similar to the natural frequency of vertical vibrations of a sitting person.
Therefore, damped 2-d.o.f. crowd-structure models are likely to have frequency ratios fy /fs of
about 1. The natural frequencies fi and f; of such systems are not very clear in Figs. 2 and 3.
Therefore, normalized natural frequencies fi/fs and f,/fs of crowd-structure systems
characterized by frequency ratios f/fs within the range from 0.25 to 1.25 are presented in
Figs. 4a and b for {z = 30% and 50%, respectively.

A damped 2-d.o.f. crowd-structure model defined by fs =16 Hz and fy =5 Hz has a
frequency ratio fy /fs of about 0.3. The natural frequency f, of this system is similar to the natural
frequency fs of the empty structure for both values of {5 (Fig. 4). More importantly, the
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Fig. 4. Normalized natural frequencies fi/fs and f>/fs of a damped 2-d.o.f. crowd—structure model ({5 = 1%). fi /fs :
® &, 0 =10%; —, o =50%; — —, a=100%. fr/fs: OO, a=10%; —, o = 50%; ..., o = 100%.
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fundamental frequency f; of the crowd—structure model is slightly less than 5 Hz. Thus, such a
damped 2-d.o.f. model of a crowd-occupied structure explains the significant reduction of the
fundamental frequency of an assembly structure observed by Ellis and Ji [2] mentioned at the
beginning of the paper.

Fig. 2 demonstrates that the fundamental frequency f; of all investigated crowd-structure
models is smaller than the natural frequency fs of the corresponding structure. However, it is
important to realise that the vibration responses of an occupied structure can be affected
significantly and even be dominated by the second mode of the crowd-structure system.

Both modes of crowd—structure systems were identified by Ellis and Ji [2] on a real-life
grandstand. Based on their experimental data (Table 1) and using an undamped 2-d.o.f. crowd—
structure model (Fig. 1b), they estimated the natural frequency fz to be between 5.5 and 5.8 Hz by
back analysis. In another real-life civil engineering structure, standing occupants were found to
increase the natural frequency of a horizontal mode from 3.05 to 3.30 Hz [1]. Interestingly, the
natural frequency decreased to 1.71 Hz if the occupants were sitting. The changes of this and
other modes (Table 2) demonstrate the influence of posture and direction of vibration on fy.
These observations emphasise that it is important for accurate occupant models to be used.

The question arises as to when and why only the first, the second, or both modes of the 2-d.o.f.
crowd-structure system affect the vibrations of the occupied structure. This will become clear in
Section 3.2 of this paper that presents mode shapes.

Before this, it should be noted that the natural frequencies f; and f; of a damped 2-d.o.f. crowd—
structure system can be practically identical (Fig. 4b). This happens when fy /fs = 0.9, i.e., when,
say, (g = 50%, o = 10%, fy = 6 Hz and fs = 6.7 Hz. In such a case, it is likely that an analysis of
experimental data would identify only one and not two modes. This might have been the case
when 400 people occupied a floor and reduced its fundamental frequency from 7.28 to 6.60 Hz [3].

Table 1
Natural frequencies at Twickenham stadium [2]

Occupied structure

Frame structure Js S S

(Hz) (Hz) (Hz)
Truss 5 8.55 5.44 8.72
Truss 9 7.32 5.41 7.91
Truss 11 7.24 5.13 7.89
Table 2

Natural frequencies of an assembly structure [1]

Occupied structure

Mode description fs Occupants sitting Occupants standing
(Hz) (Hz) (Hz)

Front-to-back mode 3.05 1.71 3.30

Side-to-side mode 3.66 1.83 3.54

Vertical mode 13.6 9.03 9.16
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Note also that natural frequencies f; and f> can, but do not have to, be within the range bound
by the natural frequencies f and fg of the two subsystems. However, this is not the case for the
natural frequencies fl(’gM) (UM stands for undamped model) of an undamped 2-d.o.f. crowd—

structure model:
(M) Su ? fa\'— | fu ? i\ \ fs
e R R R O B

that always have to satisfy the following condition:

UM < (fs fu) < L0 (14)

as demonstrated by Ellis and Ji [2]. Therefore, it is important to realise that damped and
undamped 2-d.o.f. human-structure dynamic models may have considerably different behaviour.

3.2. Mode shapes

Damping of a viscously damped 2-d.o.f. crowd-structure model is generally non-proportional
and, therefore, its mode shapes {\y}, and {y}, are complex. Therefore, in this paper they are
represented by magnitudes [{\{},| and phases arg({Wy},). The mode shapes of 2-d.o.f. crowd—
structure models with damping ratios {5 = 1% and (g = 30% are parametrically studied to
improve the understanding of modal masses and damping ratios.

3.2.1. Mode shape of the first mode

Magnitudes of the unity-normalized first mode at the human d.o.f. [{;| and the structural
d.o.f. |g| are shown in Fig. 5a for a range of o and fy /fs ratios. Fig. Sb presents the absolute
values of the corresponding phase differences |arg(\ ) — arg(Pg,)| denoted as arg{y}.

Fig. 5a demonstrates that the human d.o.f. experiences stronger movements in the first mode of
vibration than the structure for all investigated crowd-structure models. In other words:

sl < l- (15)

For example, the structural movements of a 2-d.o.f. crowd-structure model based on a
structure with a natural frequency fs = 16 Hz and assuming f; = 5 Hz are close to 0 (fz/fs<0.4
in Fig. 5a). Such a mode dominated by the human d.o.f. has a natural frequency f; close to the
natural frequency f of the s.d.o.f. crowd model (Fig. 4).

It can be seen in Fig. 5a that the lower the natural frequency fs of the empty civil engineering
structure and the more people on it (that is fi/fs and o both increasing), the stronger the
participation of the structure in the first mode of the 2-d.o.f. model. For fy/fs >3, which
corresponds to, say, fy = 6 Hz and fs <2 Hz, both d.o.f.s of the crowd—structure model move in
phase (Fig. 5b) with nearly the same amplitude (Fig. 5a). Such a 2-d.o.f. system behaves like a
s.d.o.f. system (Fig. 1a) and has a natural frequency f; slightly below fs and the value which can
be approximated by Eq. (12).

Note that both the human and the structural d.o.f. tend to move almost in phase in the first mode
of the 2-d.o.f. crowd-structure system when fy /fs > 2. Phase differences |arg(y;;) — arg(Wg,)| are
less than 90° in all cases considered (Fig. 5b). This indicates that some modeshape complexity is to be
expected, particularly when o = 10% and fy /fs is slightly less than 1.0.
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Fig. 5. Mode shape {y}, of 2-d.o.f. crowd-structure systems ({5 = 1%, (g = 30%). (a) Modulus, structural d.o.f.:
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3.2.2. Mode shape of the second mode

The mode shape amplitudes [\r,| and |\, | as well as the phase difference |arg(Vyy,) — arg(Vs,)|
of the second mode of damped 2-d.o.f. crowd—structure models are presented in Fig. 6.

Fig. 6c demonstrates that the second mode generally has phase difference |arg(V,) — arg(Ws»)|
greater than 90°. The structural and human d.o.f. move practically 180° out of phase when
fu/fs >2 (Fig. 6¢). When this happens, the structural d.o.f. has lower amplitude than its human
counterpart when o< 100%, as shown in Fig. 6a.

If the natural frequency fs of a vertical mode of an unoccupied civil engineering structure
exceeds 10 Hz, it can be expected that f3;/f5<0.6. The second mode of such a crowd-structure
system is dominated by structural movements (Fig. 6) and its natural frequency f> is, as mentioned
before, close to fs (Fig. 4). Thus, a surprising increase in the relatively high natural frequency of
an empty structure ( for which fs = 18.7 Hz), noted by Ellis and Ji [2], can be expected if a person
is present on the structure.

Finally, note in Fig. 6a that mode shapes {\y}, of crowd—structure systems with frequency
ratios 0.6 <fy /fs<1.5, which are likely to occur in real situation depend strongly on the mass
ratio o and the frequency ratio fy /fs. This affects the modal mass m, as shown later.

3.3. Modal masses

Modal masses m; and m;, of 2-d.o.f. crowd-structure systems have been calculated using unity-
normalized complex mode shapes (Eq. (7)). They are presented for crowd—structure systems with
frequency ratios f/fs<5 in Fig. 7.
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3.3.1. Modal mass of the first mode
The human d.o.f. dominates the first mode (Fig. 5a). Therefore, the modal mass m; comprises
my plus a mode shape dependent contribution of mg (Fig. 7a). Consequently, the modal mass m1;
has my as the lowest and my + mg has the highest possible value. This will be explained here.
The lower limit of m; corresponds to human occupation of high-frequency structures (Fig. 7a):
Iim m = my = oumg, (16)
fs—
whose first mode is practically a movement of the human d.o.f. only (Fig. 5a for low f /fs ratios).
The human and the structural d.o.f. move together in case of civil engineering structures with

very low natural frequencies ( fs < fz). In this case, the modal mass m; approaches its upper limit
(Fig. 7a):

flim my = my + mg = (1 4+ a)mg. (17)
SH— ©
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3.3.2. Modal mass of the second mode

The modal mass m; of the second mode (Fig. 7b) shows a more complicated dependence on
mass and frequency ratios o and fy /fs than m; (Fig. 7a).

In the design of civil engineering structures against human-induced vibrations, damped 2-d.o.f.
models with frequency ratios fy & fs are of particular interest. Such systems, especially with f
slightly lower than fs (fz/fs<1) can be expected to be characterized by a complex second mode
(Fig. 6). This leads to modal masses m1, as high as the physical limit of (mg + my) particularly for
smaller o ( = 10% or 50%) (Fig. 7b).

3.4. Damping ratios

The modal damping ratios of damped 2-d.o.f. crowd—structure systems defined by {5 = 1% and
(g =30% or 50% are presented in Fig. 8. Firstly, the modal damping ratios {; and {, are
discussed. Then, cases when similar damping ratios {; and {, occur are considered.

3.4.1. Damping ratio of the first mode
As mentioned before, only the human d.o.f. is engaged in the first mode of 2-d.o.f. models
representing human occupation of very stiff civil engineering structures (fs— oo in Fig. 5).
Therefore, the damping ratio {; of such systems corresponds to the high damping ratio {4 of the

human s.d.o.f. model (Figs. 8a and b):
lim ¢ =y, (18)

Jfs— o0

However, if the structural frequency fs <fy (that is f /fs > 1), modal damping ratio of the first
mode is significantly less than the 30% or 50%, which are percentages associated with the human
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body (Fig. 8). This is because the human and the structural d.o.f. move in phase with
approximately the same mode shape amplitude (Fig. 5). Thereby, occupants act primarily as an
additional mass and the viscous dashpot cg of the s.d.o.f. structure model (Fig. 1¢) is not engaged
significantly. Paradoxically, this configuration can actually lead to damping ratios {; smaller than
damping of the empty structure {g = 1%, regardless of whether {5z = 30% or 50% (Figs. 9a
and b). This situation may occur in the case of structures having natural frequencies f5 below 2 Hz
assuming fy of about 6 Hz (fy/fs > 3). The effect is more pronounced for higher mass ratios .
With regard to this, the authors are not aware of any publication reporting a reduction in
damping of a civil engineering structure caused by human occupants. However, this might be due
to the lack of good quality experimental data quantifying the effect of occupants on damping of
large structures with very low natural frequencies.

Although the damping ratio {; can be smaller than (g, {; is theoretically always higher than the
damping ratio of a human-occupied structure where occupants are represented by the mass-only
model (Fig. 1a). Nevertheless, {; of the 2-d.o.f. crowd—structure model approaches the latter value
in case of very flexible structures (Fig. 9) when f — c0:

(19)

lim (=

1
Ja— v 1 —i—oc\/gs'

Fig. 8 indicates that there are large variations in damping ratios {; and {, when f /fs is lower
than approximately 1.5. Such systems correspond roughly to fs<10 Hz and represent realistic
cases of crowd-occupied civil engineering structures. Modal damping ratios {; and {, of such
systems, which cannot clearly be seen in Fig. 8, are presented in Fig. 10.
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Fig. 9. Damping ratios {; of a damped 2-d.o.f. crowd-structure model ({s = 1%). (a) {i = 30%, (b) {x = 50%. O O,
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Fig. 10a shows that lower damping ratio {; corresponds to higher ratios f /fs which happens in
the case of relatively low natural frequency fs. This is because with the increase of f /fs the first
mode changes from engaging mainly the human d.o.f. to engaging the structural d.o.f. (Fig. 5)
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that has less damping associated with it ({g = 1% as opposed to (g = 30%). For example, in the
case of a realistic crowd—structure system defined by: fy = 5.1 Hz, fs =6 Hz, o = 10% and (g =
50% (fu/fs = 0.85 in Fig. 10b), the damping ratio {; is about 46%.

However, if f5 is reduced to 5.3 Hz, for the same fy the damping ratio {; would be only 6%
(fu/fs > 0.95). This happens when the natural frequencies f] and f; are close (Fig. 4b) and there is
strong interaction between the human and structural d.o.f.s.

3.4.2. Damping ratio of the second mode

Similarly to the damping ratio {;, the damping ratio {, of 2-d.o.f. crowd-structure systems has
upper and lower limits (Fig. 8). Of particular interest is the lower limit of {,. It is reached if the
second mode is dominated by strong movements of the structure, which happens in the case of a
high-frequency structure when f /fs is small.

Interestingly, the damping ratio {, exceeds (g (30% or 50%) if fi > 2f5 (Figs. 8a and b),
particularly if the structure is densely populated and, thus, the mass ratio « is high. However, such
highly damped second modes of occupied low-frequency civil engineering structures (where, say,
fs<3 Hz) are less relevant in the design of assembly structures against human-induced vibrations
than the lightly damped ({; <{g) fundamental modes.

3.4.3. High damping ratios of crowd-structure systems

A particularly interesting aspect of this parametric study is that both modes of a 2-d.o.f.
crowd-structure system can be heavily damped at the same time. In fact, the damping ratios {;
and {, can both exceed 10% (ten times the damping ratio {g of the empty structure)
simultaneously when 0.4 <fy /fs<1 (see Fig. 10a for o = 50%). Such cases correspond to close
natural frequencies f; and f;, particularly if the mass of the occupants is small compared to that of
the structure (small mass ratio «). However, due to the close natural frequencies f; and f,
it is possible that modal testing of an occupied full-scale structure identifies only a single
mode, so experimental verification of this feature on, say, a real-life grandstand structure may be
difficult.

4. Discussion

The parametric study of natural frequencies, mode shapes, modal masses and damping ratios
has provided a valuable insight into the possible behaviour of damped 2-d.o.f. crowd—structure
systems. To facilitate a discussion of the effect of a damped s.d.o.f. occupant model on the
vibration behaviour of a damped s.d.o.f. model of a civil engineering structure, the analyzed
behaviour will be presented in the form of point-accelerance FRFs corresponding to the excitation
and response at the structural d.o.f. xs (Fig. 1c).

The point-accelerance FRF Ags( /) of a damped 2-d.o.f. crowd—structure model (Fig. 1) can be
calculated using the following closed form solution [16]:

—f2(—mpuf? +icuf + k)
[(ks + ki — msf? +i(cs + ea) Wk — muf? +icnf) — Genf + k)l

Ass(f) = (20)
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Table 3
Modal properties of two damped 2-d.o.f. crowd-structure models (mg = 10,000 kg, {5 = 1%, fz = 6.0 Hz, {5 = 30%,
o = 50%)

First mode Second mode
Model No. Js Julfs N G S &
(Hz) (dimensionless) (Hz) (%) (Hz) (%)
1 4.0 1.5 3.1 2.5 7.7 34.4
2 8.0 0.75 5.2 14.2 9.3 22.1
1.20 : :
: fs=4Hz . fs=8Hz
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[ :
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Fig. 11. Modulus and phase of point-accelerances Ags(f) in (mm s~2)/N (ms = 10,000 kg, {5 = 1%, fi = 6 Hz,
C = 30%, o = 50%). --, #1 (fs = 4 Hz); —, #2 (fs = 8 Hz).

On the other hand, the point-accelerance FRF A4;,,7.(f") of the corresponding empty structure
s.d.o.f. model is defined by a well known formula [11]:

_f2
ks —mgf? +icsf)

Using Ags(f) of two realistic damped 2-d.o.f. crowd-structure models (Table 3), the influence
of occupants on the vibration behaviour of civil engineering assembly structures is analysed.
FRFs Ags(f) of both cases are presented in Fig. 11 by modulus and phase and as Nyquist plots in
Fig. 12. The latter presentation is particularly valuable to identify closely spaced and heavily
damped modes, which are likely in case of crowd—structure systems.

As noted before, it is widely reported that human-occupied structures have significantly higher
damping than empty civil engineering structures. This conclusion can also be drawn if modal
properties (and FRFs) of the crowd—structure models #1 and #2 are compared with those of the

As.d.o.f(f) = ( (21)
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Fig. 12. Accelerances Ags(f) in (mm s~2)/N as Nyquist plot (frequency spacing 0.2 Hz), for: (a) model #1 and (b)
model #2.

s.d.o.f. model of the empty structure (Table 3). In fact, the peak magnitudes of the FRF |4ss(f )
of both damped 2-d.o.f. crowd-structure models are only 1.1 and 0.2 (mm s~2)/N, respectively
(Fig. 11), whereas their counterpart for the s.d.o.f. system is

: 1 5
[Asaor (fs)l = s~ 5 (mm s?)/N. (22)
Hence, the same level of (near-) resonant excitation can lead to significantly higher responses of
the empty than of the crowd-occupied structure. In other words, a crowd can have a very
beneficial effect on reducing the excessive vibrations of the ‘empty’ structure, at least if occupants
are stationary and in continuous contact with the structure. However, as mentioned before,
crowds do not only increase damping but also have the potential to reduce natural frequencies
significantly. Such a reduction in natural frequencies is adverse because civil engineering
structures with lower natural frequencies are usually more likely to be excited by human-induced
forces [15]. Therefore, considering how dramatic the changes of modal properties can be, it is
becoming apparent how crucial it is to identify correctly the (relevant) modes of the crowd—
structure system when designing assembly structures against human-induced vibrations.
Adding a damped s.d.o.f. crowd model to any s.d.o.f. empty structure model (produced, say,
via a finite element modal analysis) will lead to an additional mode. However, an additional mode
is clearly visible in the FRF Ags(f) of the 2-d.o.f. crowd—structure model only if:

1. both modes contribute sufficiently to the movement of the structure xg, and
2. the natural frequencies of the two modes are well separated.

Conditions similar to those defining the crowd—structure model #1 (Table 3) would most likely
lead to the conclusion that human occupants reduced the natural frequency. This is because the
single sharp peak corresponding to the first mode occurs at a frequency about 1 Hz below the
frequency of the empty structure fs = 4 Hz (Fig. 11). In this case, the contribution of the second
heavily damped mode at 7.7 Hz is very small (Fig. 12a) and, therefore, can easily be missed.

A frequency decrease, an additional mode and a frequency increase could all be deduced from
the crowd—structure model #2. This 2-d.o.f. system model has two considerably damped modes
(Table 3). They appear in the FRF Agg(f) as two blunt peaks at frequencies lower and higher,
respectively, than the natural frequencies fy = 6 Hz and fs = 8 Hz of the two s.d.o.f. subsystems
(Fig. 11). If both modes are identified, a reduction of the fundamental natural frequency
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(corresponding to the additional mode) and an increase of a natural frequency could be
reported, depending on the exact situation and the corresponding strength of the two modes.
However, in this particular case, the contribution of the first mode is smaller than that of the
second mode (Figs. 11 and 12b). Therefore, it could be missed during the system identification,
particularly if a s.d.o.f.—and not a m.d.o.f.—based identification algorithm was used. In this
case, a frequency increase only would be identified. This, probably, led to quite a lot of confusion
in the past.

In general, if fs > fy (that is fir/fs<1 as in model #2), the presence of occupants most likely
leads to reports of increased natural frequencies and, possibly, additional (lower and heavily
damped) modes. Assuming that f ranges from 4 to 6 Hz for vertical vibrations, this would be the
case for empty structures with vertical natural frequencies higher than, say, 6 Hz.

In contrast, occupants on structures with fs<fy (fu/fs >1 as in model #1) reduce the
fundamental natural frequency of the structure. In other words, low fundamental natural
frequencies fy (say, below 4 Hz) have the potential to be further reduced by human occupants.
Such low-frequency civil engineering structures are susceptible to human-induced excitation,
and therefore have often been investigated. This explains why reports of reduced natural
frequencies are more widespread than reports of additional modes and/or frequency increases.
It also explains the widespread and long-lasting acceptance of the mass-only model of occupants
on civil engineering structures (Fig. 1a), which has a similar effect on the fundamental natural
frequencies.

5. Conclusion

Parametric studies performed in this paper have demonstrated that a damped 2-d.o.f. crowd—
structure dynamic model provides a good mathematical framework to explain the in situ vibration
behaviour of assembly structures, such as grandstands, occupied by crowds. It is essential that the
‘human’ d.o.f. is damped and connected to the grounded ‘structural’ d.o.f. (representing a relevant
mode of the empty structure) in series, as shown in Fig. 1c. By varying the parameters of such a 2-
d.o.f. crowd—structure model, it has been possible to simulate the reduction and the increase of the
fundamental natural frequency of the empty structure, as well as the appearance of an additional
mode of vibration. All these phenomena have been observed on assembly structures when people
were present.

The relationship between the natural frequencies and the mass and damping ratios of
the s.d.o.f. models of the empty structure and the occupying crowd determine which of these
three scenarios will occur. Overall, considering typical ranges of natural frequencies of
empty structures and human bodies, decreases in natural frequency and increases in modal
damping of the relevant mode(s) in the joint human-—structure 2-d.o.f. system are the most
likely observations. Nevertheless, people on high-frequency structures can, under certain
circumstances, actually increase the relevant and observable natural frequency. In the
case of very low-frequency structures (when f5 /fs > 3), damping as well as the natural frequency
of the relevant human-structure mode may be decreased below the values corresponding
to the empty structure, even if damping ratio {y of the human body s.d.o.f. is as large as 30%
or 50%.
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Unfortunately, mass, stiffness and damping properties of human bodies are difficult to
ascertain for design purposes because they depend strongly on what the crowd is doing.
Moreover, the natural frequency f of the crowd-related d.o.f. is difficult to specify because it
depends on the posture of the members of the crowd, as well as on the direction and level of
vibration. Nevertheless, some general indications on possible crowd properties exist in the
published literature. A reasonable range of these can then be used in conjunction with the general
mathematical framework described in this paper to parametrically evaluate the likely vibration
behaviour of the joint crowd-structure system.

As described in the literature surveyed and further conclusively demonstrated in this paper, the
effects of a crowd on the modal properties of an assembly structure can be so significant that they
should not be neglected in the mathematical modelling and vibration serviceability design of
slender assembly structures.
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Appendix A. Nomenclature

o mass ratio

Ar eigenvalue of mode r of a damped 2-d.o.f. system
{W¥}, mode shape of r of a damped 2-d.o.f. system

¢, damping ratio of mode r of a damped 2-d.o.f. system
ly damping ratio of a s.d.o.f. human model

lg damping ratio of a s.d.o.f. structure model

Agaor.(f ) accelerance of a damped s.d.o.f. structure model
Ass(f)  point-accelerance at the structural d.o.f. of a damped 2-d.o.f. crowd-structure model

CH viscous damping of a s.d.o.f. human model
cs viscous damping of a s.d.o.f. structure model
fu natural frequency of a s.d.o.f. human model
fs natural frequency of a s.d.o.f. structure model
) natural frequency of mode r of a damped 2-d.o.f. system
£ natural frequency of mode r of an undamped 2-d.o.f. system
ky stiffness of a s.d.o.f. human model
ks stiffness of a s.d.o.f. structure model
mg lumped mass of a s.d.o.f. human model
mg lumped mass of a s.d.o.f. structure model
m, modal mass of mode r of an undamped 2-d.o.f. system
Xy displacement at the ‘human’ d.o.f. of a 2-d.o.f. crowd-structure model

Xs displacement at the ‘structural’ d.o.f. of a 2-d.o.f. crowd-structure model
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