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Abstract

Layered materials are becoming increasingly important for the production of high-performance
components and constructions. Their stiffness properties are fundamental to assess stress fields during
design calculations. Numerous analysis techniques to identify the elastic properties of materials exist, but in
the case of layered materials, these techniques usually yield properties that are ‘averaged’ over the thickness
of the test specimen. To assess the in-plane elastic properties of each individual layer, a new non-destructive
testing method is developed. The proposed method derives the material properties from the resonance
frequencies of a number of freely suspended test plates. A multi-model updating routine is used for this
purpose. Finite element models of the different test plates are simultaneously updated. Once the Finite
element models reproduce the measured frequencies, the updating procedure is halted, and the material
properties of the different layers can be retrieved from the Finite element model’s database. It is shown that
the multi-model approach is necessary to ensure the uniqueness of the obtained properties.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Elastic material properties play a major role in the vibratory behaviour of structures. This
observation can be inverted, leading to the conclusion that the vibratory behaviour of samples of
a particular material can be used to determine the material’s elastic properties. This principle is
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the foundation of all vibration-based identification methods. An application of this principle was
reported in the German ‘Zeitung F .ur Metallkunde’ by F .orster in 1937 [1]. F .orster used the Euler
beam theory to link the elastic modulus with the specimen’s eigenfrequency. In 1945 Pickett’s [2]
use of Goens’ [3] approximate solution of the Timoshenko beam equations [4], resulted in a highly
accurate relation between the elastic modulus and the fundamental transverse bending frequency
of a vibrating prism or cylinder. He also introduced a relation between the shear modulus and the
fundamental torsion frequency of a beam-shaped specimen. In 1961, Spinner and Teft [5] critically
evaluated Pickett’s formulae, and added a relation between the Young’s modulus and the
longitudinal vibration frequency of a prism. Their work formed the basis of the ASTM resonant
beam test procedure [6], which standardized vibration testing based on these analytical relations.
While the analytical formulae are derived from the differential equations of isotropic beams,
resonant beam tests can still be used to identify the directional variation of the Young’s modulus
of orthotropic materials [7]. The use of analytical formulae to describe the vibratory behaviour of
test specimens is however a major obstacle for extending the vibration methods to more complex
materials. In 1986, Sol [8] showed that it is possible to replace the analytical formulae by special-
purpose Finite Element (FE) models. The derived identification method, which is called the
‘Resonalyser’ method [9], can simultaneously identify the four engineering constants of an
orthotropic material (e.g. E1; E2; G12 and n12) from measured resonance frequencies of one single
test plate. During the last decade, several authors presented related approaches for the
identification of orthotropic elastic constants based on resonance frequencies of thin plate
specimens [10–15]. The potential to run more complex numerical models on faster computers
opened the way to develop even more elaborate material identification methods. Among others,
Ayorinde, Mota Soares et al., Frederiksen and Cunha extended the method to deal with
transverse shear in thick plate models [16–19].

Since the introduction of composite materials, laminates have become increasingly important.
In the case of these layered materials, the existing identification procedures can only yield material
properties that are ‘averaged’ over the thickness of the specimen. In 2002, Liu et al. [20] presented
a vibration based identification method that could identify the elastic properties of one single
lamina of a composite plate that was made up of a number of layers of the same lamina but with
different orientations of the material. However, a general identification procedure that is able to
identify the properties of the individual layers of layered materials, without considering any
relations between the properties of the different layers, has, to our knowledge, not yet been
reported. This paper presents a novel method that is able to identify the material properties of a
plate with an arbitrary number of layers, each with independent material properties. The method
presented is an extension of the ‘Resonalyser’ procedure mentioned above for the identification of
layered materials.

2. Material identification by inverse methods

2.1. The ‘Resonalyser’ procedure

As shown in Refs. [7–19], mixed numerical–experimental techniques (MNETs) can be used to
identify the elastic properties of orthotropic materials. In a MNET a numerical model is used to
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reproduce a number of experimentally measured quantities. The parameters that have to be
identified are found by fine tuning these parameters in the numerical model in order to reach an
optimal agreement between the measured and calculated responses. A special MNET that was
developed by Sol in Ref. [8] is called the ‘Resonalyser’ procedure. A general flowchart of the
procedure is given in Fig. 1. The ‘Resonalyser’ procedure uses the first five resonance frequencies
of a freely suspended test plate as input data. This test configuration is used to simulate the free–
free boundary conditions of the finite element model. The aspect ratio of the test plate is
established in such a way that the numerical condition of the sensitivity matrix, i.e. the matrix
containing the partial derivatives of the frequencies with respect to the considered elastic
parameters, is good. This ensures that the sensitivity matrix can be inverted [21,22]. The resonance
frequencies of the test plate are calculated with a highly accurate FE-model. The obtained
frequencies are compared with the measured frequencies, and corrected material properties are
found by minimizing the residues of frequency differences. The new material properties are
inserted in the FE-model and a new iteration cycle is started. Once the numerical and
experimental frequencies match, the procedure is aborted, and the desired material properties can
be found in the database of the FE-model. This procedure has already proven to be a stable and
reliable tool to identify elastic material properties [7–10]. Note that in the ‘Resonalyser’
procedure, the elastic material properties are considered to be homogeneous throughout the
whole plate specimen.

2.2. Non-uniqueness of the results of the ‘Resonalyser’ procedure applied on layered plates

In order to identify the material properties of a layered plate, the ‘Resonalyser’ method was
extended by taking more frequencies into account. This approach proved to be useless since it did
not result in a unique solution for the layer properties. To illustrate the non-uniqueness of the
obtained results, a virtual test specimen with known properties was adopted. The resonance
frequencies of this virtual test specimen were computed with the finite element method. The
layered test plate used was a double coated steel plate with nominal dimensions of
150� 150� 1.1mm. The configuration of the plate is depicted in Fig. 2, and the material
properties of the different layers are given in Table 1.

The computed vibration data were next considered as ‘virtual test data’ and used to identify the
material properties with the extended ‘Resonalyser’ method. The advantage of the approach with
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Fig. 1. General flowchart of the ‘Resonalyser’ procedure.
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simulated data is that the identified material properties can be validated directly with the known
properties. Since each layer is considered to be orthotropic, 12 material properties have to be
identified. The original ‘Resonalyser’ procedure uses five frequencies to determine four material
parameters: in the extended version the first 15 frequencies of the layered plate were used to
identify the 12 considered material constants. The results obtained are presented in the two graphs
of Fig. 3. Fig. 3a shows the frequency differences that were obtained during the different iteration
steps. In eight steps, the first 15 resonance frequencies of the FE-model converged exactly to the
‘experimental’ frequencies. However, the obtained material properties did not match the correct
properties of the test plate, as shown in Fig. 3b.

This simulation indicates that it is possible to find layered plates with completely different layer
properties, but having the same resonance frequencies. The solution of the identification problem
using one test plate thus appears to be non-unique.
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Fig. 2. Configuration of the virtual test plate.

Table 1

The material properties of the layered test plate

E1 (GPa) E2 (GPa) G12 (GPa) n12 (dimensionless) r (kg/m3)

Top coating 73.00 70.00 25.00 0.340 2700

Steel 201.00 200.00 78.00 0.290 7900

Bottom coating 68.00 71.00 24.00 0.320 2700

(a) (b)

Fig. 3. (a) The frequency convergence obtained by applying the extended ‘Resonalyser’ method to a layered plate.

(b) The convergence of the material properties obtained by applying the extended ‘Resonalyser’ method to a layered

plate.
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3. The dynamical behaviour of layered plates

3.1. Classical lamination theory

In order to overcome this non-uniqueness problem, the vibratory behaviour of layered plates
must be studied. The classical lamination theory (CLT) [23] is an extension of the Love–Kirchhoff
thin plate theory [24] for layered materials. The main hypothesis of the Love–Kirchhoff theory is
that a straight line originally perpendicular to the middle plane of the plate remains straight and
flat when the plate is extended or bent. When using the notations of Fig. 4, the main Love–
Kirchhoff assumption is equivalent to ignoring the deformations caused by the shearing strains
gxz and gyz: Furthermore, the plate thickness is also presumed to have a constant value during
loading, which means that the deformation ez is also ignored.

Eventually, the Love–Kirchoff hypotheses lead to the following relations between strains and
displacements:

ex ¼ e0x þ zkx; ez ¼ 0;

ey ¼ e0y þ zky; gyz ¼ 0;

gxy ¼ g0xy þ zkxy; gxz ¼ 0; ð1Þ

where e0x; e
0
y and g0xy are the middle plane strains, and kx, ky, and kxy are the middle plane

curvatures and are defined as

e0x ¼
@u0

@x
; kx ¼ �

@2w0

@x2
;
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Fig. 4. Notations and conventions used by the classical lamination theory (CLT).
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e0y ¼
@v0

@y
; ky ¼ �

@2w0

@y2
;

g0xy ¼
@u0

@y
þ
@v0

@x
; kxy ¼ �2

@2w0

@x @y
; ð2Þ

in which u0; v0 and w0 are the displacements of the middle surface in the x, y and z direction
respectively.

All laminae are assumed to have orthotropic material properties and are considered to be in a
state of plane stress. Using these assumptions, the strains are transformed into stresses using
Hooke’s generalized law. The obtained stresses can be integrated over the thickness of the plate
yielding Eqs. (3) and (4) for the resultant section forces N and moments M.
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in which the extensional stiffnesses Aij, the coupling stiffnesses Bij, and the bending stiffnesses Dij

are defined by the expressions

Aij ¼
XN

k¼1

½Qij�kðzk � zk�1Þ;

Bij ¼
XN

k¼1

½Qij�k
ðz2k � z2k�1Þ

2
;

Dij ¼
XN

k¼1

½Qij�k
ðz3k � z3k�1Þ

3
: ð5Þ

In Eq. (5) k represents the layer number, zk is the transverse position of the interface between the
k�1th and kth layer as depicted in Fig. 4. The ½Qij�kmatrix contains the off-axis reduced stiffnesses
of the kth layer. The matrix elements of ½Qij�konly depend the layer’s orientation angle y and the
four elastic constants of the layer’s material: E1, E2, G12 and n12. A more detailed overview of the
classical lamination theory can be found in various textbooks on composite materials such as
Ref. [23] or [25].

3.2. Differential equations of a vibrating laminated plate

Consider a differential rectangular element dx dy of a thin plate (Fig. 5). By writing the
translatory and rotatory equilibria of the forces and moments acting on this differential element,
the equations of motion of a vibrating plate can be obtained [25].
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The translation equilibria in the x and y direction yield respectively

@Nx

@x
þ

@Nxy

@y
¼ rt

@2u0

@t2
; ð6Þ

@Ny

@y
þ

@Nxy

@x
¼ rt

@2v0

@t2
; ð7Þ

where r is the mass density of the plate’s material, and t is the total plate thickness.
By inserting the rotation equilibrium equations with respect to the X- and Y-axis into the

translation equilibrium equation in the z direction, expression (8) is obtained.

@2Mx

@x2
þ 2

@2Mxy

@x @y
þ

@2My

@y2
¼ rt

@2w0

@t2
: ð8Þ

Note that the effects of rotatory inertia were neglected, and that no volume forces were considered
during the derivation of these three equilibrium equations. Inserting expressions (3) and (4) into
Eqs. (6)–(8) yields a set of three partial differential equations (9)–(11), describing the vibratory
behaviour of laminated plates.
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Fig. 5. Forces and moments acting on a differential rectangular element of a plate.
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3.3. Discussion

Solving the set partial differential equations (9)–(11) in combination with the appropriate
boundary condition equations, yields the resonance frequencies and mode shapes of the
considered laminated plate. The boundary condition equations are functions of Nx; Ny; Nxy; Mx;
My and Mxy; and can therefore only depend on the plate’s material properties via the Aij; Bij and
Dij stiffness coefficients. This shows that the modal parameters of a laminated plate are not a
function of the material properties of the individual layers, but that the dynamical behaviour is
entirely controlled by the integrated stiffnesses defined by the Aij ; Bij and Dij stiffness coefficients.
Two plates with the same dimensions and weight, but made up with a completely different set of
layers, will dynamically respond identically if they have the same Aij ; Bij and Dij stiffness
coefficients.

From an identification point of view, this observation implies that only the values of the Aij; Bij

and Dij coefficients can be obtained from the measured vibration data of a laminated plate. Since
the A, B and D matrices are symmetric, there are 18 identifiable coefficients. In the case of
orthotropic laminae, the reduced stiffnesses Q16 and Q26 depend on the values of Q11; Q12; Q22

and Q66; and therefore the X16 and X26 coefficients—with X representing A, B or D—depend on
X11; X22; X12 and X66 coefficients, reducing the total number of independent plate stiffness
coefficients to 12. Since the modal data of an arbitrary laminated plate is entirely controlled by 12
independent coefficients, only 12 independent equations linking the material properties of the
plate to the measured modal quantities can be written. Because the layers of the plate are
considered to have orthotropic material properties, these 12 equations can only yield the material
properties of three layers.

This maximum of three layers is a theoretical limit. In the case of real experiments the number
of identifiable layers will be lower, since only frequencies of transverse modes are measured. These
transverse modes are insensitive to changes in the extensional stiffnesses Aij; and the effects of
changes in the coupling stiffness Bij are also limited. So, in most practical cases, only the values
of the bending stiffnesses Dij can be identified with sufficient accuracy, reducing the number of
identifiable layers to one single layer.

3.4. Example

This example will illustrate the insensitivity of the first 10 frequencies of a layered plate for
changes of the extensional stiffnesses Aij and the coupling stiffnesses Bij : Consider once again the
virtual test plate described in Section 2.2. The material properties of the third layer were replaced
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with the following set of arbitrary chosen values: E1 ¼ 47 GPa; E2 ¼ 98 GPa; G12 ¼ 31 GPa;
n12 ¼ 0:3: Next the elastic properties of the first two layers were optimized in such a way that the
A, B and D stiffness coefficients matched the stiffness coefficients of the initial plate as closely as
possible. The optimization approach is needed since there are only three layers which makes it
impossible to find a complete match between the two sets of plate stiffnesses. Because the
transverse vibrations are mainly controlled by the values of the bending stiffnesses, the
optimization focused on matching the D coefficients. The optimal layer properties are given in
Table 2 and were found by inserting the values of the stiffness coefficients of the initial plate,
together with the arbitrary chosen values of the elastic properties of the third layer into the
expressions of Eq. (5). This resulted in a set of 12 equations with eight independent unknowns.
The eight independent unknowns are the elastic properties of the first two layers. An optimal
solution to this set of equations was obtained in a least-squares way where the residuals of the
bending stiffness coefficients Dij were weighted with a factor 1000 compared to the weighting of
the Aij and Bij stiffness coefficients. Table 2 shows the obtained material properties and Table 3
gives the differences between the values of the 12 plate stiffnesses of the initial and the equivalent
plates.

Inspection of Tables 2 and 3 shows that it is possible to find a plate with completely different
material properties for its layers—differences up to 52%—that will result in the same bending
stiffnesses. The bending stiffnesses Dij are completely matched, the match of the coupling
stiffnesses Bij is acceptable, while the match of the extensional stiffnesses Aij is poor. However,
when the first 10 resonance frequencies—all of them are associated with transverse vibration
modes—are calculated, a perfect match between the frequencies of the initial and equivalent plate
is found (Table 4). This simple example shows very clearly that the transverse vibration modes are
only sufficiently sensitive to changes of the bending stiffnesses, and that it is therefore impossible
to identify the material properties of the individual layers of layered material from the transverse
vibrations of one single test plate.
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Table 2

The properties of the equivalent plate

E1 (GPa) E2 (GPa) G12 (GPa) n12 (dimensionless) Status

Layer 1 52.10 97.83 32.00 0.313 Optimized

Layer 2 261.50 95.92 57.84 0.324 Optimized

Layer 3 47.00 98.00 31.00 0.300 Fixed

Table 3

The differences between the plate stiffnesses of the initial and equivalent plate

Difference (%) Difference (%) Difference (%)

A11 �15.946 B11 �0.415 D11 0.000

A22 36.053 B22 �0.122 D22 0.000

A12 31.729 B12 0.622 D12 0.000

A66 17.566 B66 0.220 D66 0.000
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Table 5 compares the plate stiffnesses of the test plate with the plate stiffnesses obtained
with the material properties that were identified using the extended ‘Resonalyser’ method in
Section 2.2. The comparison confirms that transverse vibrations of a plate only contain useful
information about the bending stiffnesses.

4. Identifying the layer properties

4.1. The ‘multi-model Resonalyser’ procedure

The vibration data obtained from one single plate do not supply enough information to identify
the material properties of the different layers of the laminate. The amount of available test data
can be increased by measuring frequencies on a number of additional test plates. The vibration
data of each plate are controlled by the integrated through-thickness stiffness. To decompose
these integrated stiffnesses into the individual layer stiffnesses, different sets of integrated plate
stiffnesses, in which the contribution of the individual layers varies, are needed. Eqs. (5) and
(9)–(11) show that changing the size or shape of the test plates is useless, since their vibration data
will still be controlled by the same set of plate stiffnesses Aij; Bij and Dij : From the expressions in
Eq. (5) it can be seen that the plate stiffnesses can only be altered by changing the layer thicknesses
or the stacking sequence.

Varying the stacking sequence will not be considered because this sequence is usually fixed by
the production system. One possibility to create altered plate stiffnesses, is to remove a layer of the
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Table 4

Comparison between the first 10 resonance frequencies of the initial and equivalent plate

Mode Original Equivalent Difference (%)

1 129.277 129.276 0.000

2 191.575 191.576 0.000

3 239.097 239.098 �0.001

4 336.919 336.918 0.000

5 337.068 337.069 0.000

6 600.046 600.046 0.000

7 600.747 600.751 �0.001

8 615.731 615.731 0.000

9 674.085 674.085 0.000

10 754.527 754.529 0.000

Table 5

The differences between the correct plate stiffnesses and the stiffnesses identified by the extended ‘Resonalyser’ method

Difference (%) Difference (%) Difference (%)

A11 �8.1 B11 �463.3 D11 �0.4

A22 34.2 B22 �916.4 D22 �0.1

A12 31.9 B12 �479.5 D12 �0.3

A66 20.1 B66 �351.5 D66 0.0
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specimen. While this is physically possible in some cases, the experience of the authors has shown
that this is a very inconvenient way of working. The considered layer must be removed very
carefully to ensure that the remaining layers are not damaged. Another main disadvantage of this
technique is its destructive character. Alternatively, the contribution of the individual layers to the
total plate stiffnesses can be changed by adding one or more layers with known stiffness properties
to the laminate. Additional layers can be ‘glued’ to the test plate. The test method becomes non-
destructive if the added layer can be removed after testing. Adding a layer to a system is relatively
easy and does not require expensive equipment. Each new plate provides four new bending
stiffnesses while no new unknown parameters are introduced.

Since each layer is considered to be orthotropic and can thus be described by four material
parameters, the total number of parameters that must be identified becomes 4� ‘the number of
different materials used in the layers of the laminate’ ð¼ nmÞ: Because each plate provides four
equations relating the measured plate bending stiffnesses to the material properties, the minimum
number of plates that is needed to identify the material properties becomes nm: So, the original test
plate will have to be measured with nm � 1 additional plate configurations. Different
configurations can be obtained by adding layers made of different materials or with different
thicknesses. In the case of non-symmetric laminates, different plates can be obtained by adding
the same layer to the top or to the bottom side of the original plate. Note, that the number of
possible configurations is virtually unlimited, therefore the ‘multi-model Resonalyser’ procedure
could also be used to identify the material properties of gradient materials by modelling the
gradient with a discrete number of uniform layers. Finally, it should be added that the mass
densities of the different layers do not have to be known. As in the case of the stiffness properties,
the vibratory behaviour of the layered plate only depends on the integrated mass properties of the
plate. The identification procedure can be executed by replacing the real mass densities of the
different layers by the average mass density of the laminate without influencing the obtained results.

4.2. The multi-model the identification procedure

Fig. 6 presents the detailed flowchart of the multi-model version of the ‘Resonalyser’ procedure
for the identification of the elastic properties of the layers. The first five resonance frequencies of
the test plate are measured with nc plate configurations (including the original configuration), with
ncXnm: In order to simulate the free–free boundary conditions of the FE-models as closely as
possible, all the test plates are suspended with very thin wires during the vibration tests. For each
plate configuration, a FE-model is created, and the resonance frequencies are calculated from a set
of estimated initial values for the material parameters. The mass and geometry of the test plates
are considered to be known, and the differences between the measured and calculated frequencies
are assumed to be caused entirely by the incorrect values of the elastic properties used for the
materials of the different FE-models. For each plate the relative frequency differences and
normalized relative frequency sensitivities [26] are calculated, yielding the following set of equations:

fDRgk ¼ S½ �kfDPg; ð12Þ

where fDRgkAR5�1 contains the relative frequency differences of the first five modes of the plate
with the kth configuration, and the vector fDPgAR4�nm contains the relative parameter changes of
different material properties. The matrix ½S�kAR5�ð4�nmÞ is the sensitivity matrix of the plate with
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the kth configuration: the calculation of this matrix is discussed in Section 4.4. Mathematically the
three components of Eq. (12) are expressed as

fDRgk ¼

fexp;1�f
ðpÞ
FE;1
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Fig. 6. The detailed flowchart of the multi-layer version of the Resonalyser procedure.
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where [~]T is the transpose of a matrix, and E
ðpÞ
1;i denotes the E1 modulus of the ith material,

during the pth iteration cycle.
For each configuration a set of equations like Eq. (12) is obtained, and these nc sets can be

combined into one global set of equations:
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^
DRnc

8><
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9>=
>;

|fflfflfflfflffl{zfflfflfflfflffl}
fDRg

¼

S1
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^
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3
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|fflfflffl{zfflfflffl}
½S�

fDPg; ð14Þ

where fDRgAR5�nc is the global relative frequency difference vector and ½S�ARð5�ncÞ�ð4�nmÞ is the
global sensitivity matrix. The improved material properties can be found by solving the system of
equations (14) in a least-squares sense:

fDPg ¼ ½S�wfDRg ð15Þ

in which [S]w denotes the Moore–Penrose pseudo-inverse of [S]. If the obtained corrections of the
material properties are smaller than a selected convergency criterion, the procedure has converged
and the identified material properties are found in the databases of the FE-models. If not, the
improved material properties are introduced into the various FE-models and a new iteration is
started.

4.3. Selection of the used frequencies and specimen shape

The application of the multi-layer identification method presented in the previous paragraph
requires five resonance frequencies of the different test specimen configurations. The five
experimental frequencies that are used cannot be chosen arbitrarily. A useful frequency set has to
be sensitive to all material parameters. Bending and torsion modes are sensitive to Young’s and
shear moduli respectively. But these modes are very insensitive to changes of the Poisson ratio. To
obtain modes that are sufficiently sensitive to the Poisson ratio, test plates with a particular length
to width ratio have to be used [8]. If the length-to-width ratio complies with Eq. (16), the
frequencies of the first bending modes in the x and y direction coincide. The two bending modes
will interact, and will form two new modes: an ‘anticlastic’ and ‘synclastic’ mode (Fig. 7).

length

width
¼

ffiffiffiffiffiffi
E1

E2

4

r
: ð16Þ

The anticlastic mode is the combination with a 180� phase difference between the two bending
modes, and the synclastic mode is the in-phase combination of the two bending modes. Because of
the high Poisson ratio sensitivity, a plate of which the length to width ratio complies with (16) is
called a Poisson plate. Fig. 7 gives an overview of the material parameters to which the different
frequencies of a Poisson plate are sensitive. In this set there is a sensitivity to all the material
parameters, and the first five modes thus provide a usable frequency set. Note that the first four
modes provide enough information to identify the material parameters, but five frequencies are
preferred since this results in an overdetermined set of equations.
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4.4. Sensitivity analysis

Sensitivity analysis is a technique that determines the rate of change of modal parameters due to
mass, damping or stiffness changes. It is an excellent tool to estimate the amount of modification
needed to achieve a desired change of the dynamic behaviour of a finite element model. A
sensitivity analysis results in a number of sensitivity coefficients, which can be grouped into a
sensitivity matrix. Sensitivity coefficients are defined as the rate of change of a particular response
quantity r with respect to a change of a model parameter p.

In structural dynamics there are two major approaches for the computation of the sensitivity
coefficients: the finite difference and the differential approach. With the finite difference approach
the partial derivatives of the model parameters are numerically approximated, by using the
outputs of two FE-models in which one parameter is slightly altered:

@riðpjÞ
@pj

E
riðpj þ DpjÞ � riðpjÞ

Dpj

: ð17Þ

The calculation of the sensitivity coefficients for a particular model parameter, thus requires an
extra evaluation of the FE-model, which makes this approach very time consuming.

Differential sensitivity calculation is based on explicit expressions of the partial derivatives of
the FE-responses. The expression for the differential frequency sensitivities for undamped systems
was established by Fox and Kapoor [27]. In the case where only stiffness changes are considered
the frequency sensitivity can be expressed as

@fi

@p
¼

1

8p2fi

Xne

e¼1

fWeg
T
i

@½Ke�
@p

fWegi

� �
ð18Þ

in which fi is the resonance frequency associated with the ith mode, ne is the number of elements of
the FE-model, [Ke] is the stiffness matrix of the eth element, and {We}i contains the modal
displacements of the nodes of the eth element for the ith vibration mode. In the case of
orthotropic materials, the partial derivative of the element matrices has to be estimated with a
finite difference approach. But the calculation of the sensitivity coefficients with Eq. (18) will be
considerably faster than with the finite difference approach, because the computation of element
matrices take less time than solving a FE-model. In the case of the identification method
considered here, the sensitivity calculation (18) can be simplified even more. Eq. (18) shows that
the sensitivity coefficients are the sum of the element sensitivity contributions. It can be shown
that a FE-model of a homogeneous plate has two symmetry axes for the element sensitivity
contributions. The sensitivity coefficients can thus be calculated by considering only one-quarter
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Fig. 7. The mode shapes of the first five modes of a Poisson test plate. The frequencies associated with these modes are

mainly sensitive to the material parameters indicated under the mode shapes.
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of the plate:

@fi

@p
¼

4

8p2fi

Xne=4

e¼1

fWeg
T
i

@½Ke�
@p

fWegi

� �
ð19Þ

which reduces the computation time of the sensitivity analysis by a factor four.

4.5. Example of the multi-model identification procedure

To illustrate the performance of the proposed identification method, the material properties of
the double coated steel plate described in Section 2.2. will be identified. The total thickness
of 1.1mm is composed by two thicknesses of the coating layers of 0.2mm each and a steel layer of
0.7mm thickness. Since there are three different layers, the test plate will have to be measured in
three different configurations. The configurations are sketched in Fig. 8. The first configuration
was the initial test plate. The second configuration was obtained by sticking a 1mm thick brass
plate to the bottom surface of the test plate. The adhesive layer was assumed to have a thickness
of 50mm. For the last configuration the brass plate was removed from the bottom surface and
next fixed to top surface of the test plate. The material properties of the brass and adhesive were
considered as known quantities.

Initially, the first five resonance frequencies of the three configurations of the test plate were
calculated using finite element models. In a second stage the material properties of the steel and
the two coatings were considered to be unknown, and their values were set to the starting values
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Fig. 8. The three different plate configurations.

Table 6

The evolution of the material properties during the updating

Correct Start Step-1 Step-2 Step-3 Step-4

Layer-1 Ex 73.00 151.00 (107%) 75.50 (3%) 74.38 (2%) 73.02 (0%) 73.00 (0%)

Ey 70.00 150.00 (114%) 75.00 (7%) 71.24 (2%) 70.02 (0%) 70.00 (0%)

Gxy 25.00 50.00 (100%) 25.00 (0%) 25.04 (0%) 25.00 (0%) 25.00 (0%)

nxy 0.34 0.25 (�26%) 0.27 (�21%) 0.33 (�4%) 0.34 (0%) 0.34 (0%)

Layer-2 Ex 201.00 151.00 (�25%) 166.79 (�17%) 197.51 (�2%) 200.99 (0%) 201.00 (0%)

Ey 200.00 150.00 (�25%) 173.58 (�13%) 198.19 (�1%) 200.01 (0%) 200.00 (0%)

Gxy 78.00 50.00 (�36%) 72.83 (�7%) 77.73 (0%) 78.00 (0%) 78.00 (0%)

nxy 0.29 0.25 (�14%) 0.38 (29%) 0.30 (3%) 0.29 (0%) 0.29 (0%)

Layer-3 Ex 68.00 151.00 (122%) 75.50 (11%) 69.91 (3%) 68.03 (0%) 68.00 (0%)

Ey 71.00 150.00 (111%) 75.00 (6%) 72.47 (2%) 71.03 (0%) 71.00 (0%)

Gxy 24.00 50.00 (108%) 25.00 (4%) 24.10 (0%) 24.00 (0%) 24.00 (0%)

nxy 0.32 0.25 (�22%) 0.26 (�20%) 0.31 (�4%) 0.32 (0%) 0.32 (0%)
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given in Table 6. The three finite element models were simultaneously updated in order to obtain a
match between the ‘measured’ resonance frequencies and the calculated frequencies according to
the procedure described in Section 4.2. The iteration sequences and the obtained material
properties are given in Table 6 and Fig. 9. Only three iterations were needed to find the correct
material properties of the different layers.

4.6. Discussion of the identifiability condition

The failure of the single plate procedure to identify the correct material properties is obvious
considering the conclusions of Section 3. The non-identifiability can also be assessed in an
alternative way. In Ref. [28] it is stated that in identification problems ‘‘parameters cannot be
uniquely identified if the sensitivity coefficients are linearly dependent’’. This identifiability
condition holds under the assumptions that the objective function used to estimate the parameters
is formed by some least-squares function, that the sensitivities are continuous functions of the
parameters, and that there is no prior information regarding the parameters.

In the case of an identification procedure with one single test plate, the sensitivity coefficients of
the first column of the global sensitivity matrix can be expressed as a linear combination of the
sensitivity coefficients of the other 11 columns. This is presented in Fig. 10a, where the x-co-
ordinate of each point is the sensitivity coefficient of the first column, and the y-co-ordinate is a
linear combination of the sensitivity coefficients of the other columns. Fig. 10a shows that the
sensitivity matrix of the routine with one single plate does not comply with the identifiability
condition, since the sensitivity coefficients are clearly not independent. Fig. 10b shows the relation
between the columns of the global sensitivity matrix of the example where three plate
configurations were used. The first column of the global sensitivity matrix cannot be expressed
as a linear combination of the other columns, which proves once again that multiple plate
configurations are needed to identify the material properties of the individual layers.

The linear dependency of the columns of a matrix can also be investigated by means of the
matrix condition number. The condition number is the ratio of the largest over the smallest
singular value of a matrix, and varies between 1 and N. Large condition numbers indicate ill-
conditioned or singular matrices. For example, where only one plate was used, the global
sensitivity matrix had a condition number of 6.76e9, while the condition number of the sensitivity
matrix of the three plate routine was only 34.4. In Ref. [29], it is stated that updating problems
with condition numbers larger than 103 can be considered as ill-conditioned, and that problems
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Fig. 9. The convergence sequences of the properties of the top coating (left), steel substrate (middle) and bottom

coating (right).
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with condition numbers larger than 107 are to be considered singular and should subsequently be
avoided. The condition number can be used as a pre-test investigation tool to check if the
proposed plate modifications are large enough and if the considered plate configurations will lead
to a stable and successful identification procedure. In this way valuable time can be saved.

5. Conclusions

This paper has shown that it is impossible to identify the elastic material properties of the
individual layers of a laminate from the vibration data of one single test specimen. To identify the
material properties of the different layers, the vibration data of a number of test plates with
different plate stiffnesses is necessary. Creation of test plates with different stiffness values by
adding layers with known material properties was proposed as a solution for this problem. A
mixed numerical–experimental identification method based on this principle, using the first five
resonance frequencies of freely suspended test plates with different configurations as input data,
was presented. The identification procedure was evaluated by means of a numerically simulated
experiment, and proved to be a promising tool to identify the orthotropic material properties of
the individual layers of a laminate.
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