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Abstract

Elastic plates of variable thickness gradually decreasing to zero (elastic wedges) can support a variety of
unusual effects for flexural waves propagating towards sharp edges of such structures and reflecting back.
Especially interesting phenomena may take place in the case of plate edges having cross-sections described
by a power law relationship between the local thickness h and the distance from the edge x: hðxÞ ¼ exm;
where m is a positive rational number and e is a constant. In particular, for mX2—in free wedges, and for
mX5=3—in immersed wedges, the incident flexural waves become trapped near the edge and do not reflect
back, i.e., the above structures represent acoustic ‘black holes’ for flexural waves. However, because of the
ever-present edge truncations in real manufactured wedges, the corresponding reflection coefficients are
always far from zero. The present paper shows that the deposition of absorbing thin layers on the plate
surfaces can dramatically reduce the reflection coefficients. Thus, the combined effect of the specific wedge
geometry and of thin absorbing layers can result in very efficient damping systems for flexural vibrations.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that when flexural vibrations (flexural elastic waves) propagate towards the
edges of elastic plates of variable thickness gradually decreasing to zero (elastic wedges), they slow
down and their amplitudes grow as they approach the edges. After reflection from the edge, with
the module of reflection coefficient normally being equal to unity, the whole process repeats in the
opposite direction [1,2]. If waves propagate obliquely from sharp edges towards wedge
foundations, the corresponding gradual increase in local flexural wave velocity may cause total
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internal refraction of the incident flexural waves. The internally refracted flexural waves then
reflect from the edge and experience internal refraction again, thus causing waveguide
propagation along wedge edges—the so-called wedge acoustic waves (see, e.g., Refs. [1–5]).

Especially interesting phenomena may occur in the special case of wedges having cross-sections
described by a power law relationship between the local thickness h and the distance from the edge
x: hðxÞ ¼ exm (see Fig. 1), where m is a positive rational number and e is a constant [4–6]. In
particular, for mX2—in free wedges, and for mX5=3—in immersed wedges, the flexural waves
incident at an arbitrary angle upon a sharp edge can become trapped near the very edge and
therefore never reflect back [5,6]. Thus, such structures materialize acoustic ‘black holes’, if one
uses the analogy with corresponding astrophysical objects. In the case of localized flexural waves
(also known as wedge acoustic waves) propagating along wedge edges of power-law profile the
phenomenon of acoustic ‘black holes’ implies that wedge acoustic wave velocities in such
structures become equal to zero [4,5]. This reflects the fact that the incident wave energy becomes
trapped near the edge and wedge acoustic waves simply do not propagate.

The ‘black hole’ effects are not only known for flexural waves in elastic wedges. As has been
predicted theoretically by several authors, the principal possibility of the effects of zero reflection
can exist also for wave phenomena of a different physical nature. In particular, this may occur for
underwater sound propagation in a layer with sound velocity profile linearly decreasing to zero
with increasing depth [7]. Similarly, the reflection may be absent for internal waves in a
horizontally inhomogeneous stratified fluid [8,9] and for particle scattering in quantum mechanics
[10]. For seismic interface waves propagating in soft marine sediments with power-law shear speed
exponent equal to unity it is the wave velocity that may be equal to zero [11,12], exactly as in the
case of the above-mentioned wedge acoustic waves in elastic wedges with power-law profile [4,5].

One must note, however, that, whereas the conditions providing zero wave reflection can rarely
be found in real ocean environment or for real atomic potentials, wedges of arbitrary power-law
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Fig. 1. Elastic wedge of power-law profile.
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profile are relatively easy to manufacture. Thus, elastic solid wedges give the unique opportunity
to materialize the above-mentioned zero-reflection effects normally associated with ‘black holes’
and to use them for practical purposes.

The unusual effect of power-law profile on flexural wave propagation in elastic wedges has
attracted some initial attention in respect of their possible applications as vibration absorbers.
Mironov [6] was the first to point out that a flexural wave does not reflect from the edge of a
square-shaped wedge in vacuum (m ¼ 2), so that even a negligibly small material attenuation may
cause all the wave energy to be absorbed near the edge. Unfortunately, because of the deviations
of manufactured wedges from the ideal power-law shapes, largely due to ever-present truncations
of the wedge edges, real reflection coefficients in such homogeneous wedges are always far from
zero [6]. Therefore, in practice such wedges can not be used as vibration absorbers.

In the present paper, it is demonstrated that the situation can be radically improved by
modifying the wedge surfaces. In particular, the presence of thin absorbing layers on the surfaces
of wedges with power-law profile can drastically reduce the reflection coefficients. Thus, the
combination of the effects of the specific wedge geometry and of thin absorbing layers can result
in very efficient damping systems for flexural vibrations.

2. Geometrical acoustics approach

To explain the basic principle of the phenomenon consider propagation of plane flexural waves
(or bending waves) towards the edge of a free slender wedge of arbitrary shape. Flexural wave
propagation in such wedges can be described using the geometrical acoustics approach
considering a slender wedge as a plate with a variable local thickness hðxÞ (see Refs. [1–5] for
more detail). The starting point for developing this approach is a two-dimensional equation for
bending motions of a thin plate in vacuum, with the plate local thickness h being variable along
the x direction:
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Here w is the normal displacement of the median plane of the plate, DðxÞ ¼ Eh3ðxÞ=12ð1� s2Þ ¼
ðrc2p=12Þh

3ðxÞ is the local bending stiffness, E and s are Young’s modulus and the Poisson ratio of
the plate material, r is its mass density, cp ¼ 2ctð1� c2t =c2l Þ

1=2 is the velocity of quasi-longitudinal
waves in thin plates (or plate velocity), cl and ct are longitudinal and shear wave velocities in the
plate material, and o ¼ 2pf is circular frequency.

The solution of Eq. (1) in the usual geometrical-acoustics (or optics) representation is sought:

w ¼ AðxÞ exp½ikpSðx; yÞ�; ð2Þ

where AðxÞ and Sðx; yÞ ¼ S0ðxÞ þ ðb=kpÞy are the slowly varying amplitude and eiconal of the
quasi-plane wave, respectively, b is the conserved projection of the wave vector of this wave onto
the y axis (for normal incidence of the wave b ¼ 0), and kp ¼ o=cp is the wave number of quasi-
longitudinal waves in thin plates.
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Substituting Eq. (2) into Eq. (1), one has to equalize both real and imaginary parts of the
resulting expression to zero. Equating the real part to zero and retaining only the leading terms,
one can derive the so-called ‘eiconal equation’ for flexural waves [1,2]:

jrSðx; yÞj4 ¼ k4ðxÞ=k4
p ¼ n4ðxÞ; ð3Þ

where kðxÞ ¼ 121=4k
1=2
p ðhðxÞÞ�1=2 is the local wave number of the bending wave in the plate of

variable thickness, kp ¼ o=cp; nðxÞ is the corresponding refractive index, and r ¼ ið@=@xÞ þ
jð@=@yÞ:

A solution of Eq. (3) corresponding to wave propagation in the positive direction along
x-axis is

S0ðxÞ ¼ ð1=kpÞ
Z

½k2ðxÞ � b2�1=2 dx: ð4Þ

Equalizing the imaginary part of the resulting expression to zero, one can derive the
‘transport equation’ which describes evolution of the amplitude AðxÞ while the wave propagates
towards the edge. This equation is rather cumbersome and it is, therefore, not reproduced
here (for more detail see Refs. [1,2]). It can be shown that the function AðxÞ obtained from the
solution of the transport equation satisfies the energy conservation law for bending waves
propagating through various cross-sections of the plate of variable thickness [1,2], which gives the
alternative method of calculating the amplitudes AðxÞ for waves propagating in wedges of
different profiles.

A thorough estimate of the terms which have been discarded in deriving the above-mentioned
eiconal and transport equations has been done in the paper [1] for the case of a linear wedge
characterized by the wedge angle Y: hðxÞ ¼ Yx. It has been shown that the above-mentioned
geometrical-acoustics solutions for S0ðxÞ and AðxÞ are valid under the condition kpx=Yb1. In
other words, this solution breaks down in the immediate vicinity of the wedge edge (at small
values of kpx) and/or at large wedge angles Y: Note that the condition kpx=Yb1; which has been
derived in Ref. [1] as a result of direct analysis of the fourth order differential equation for plate
flexural vibrations (Eq. (1)), can also be formally obtained from the well known applicability
condition of classical geometrical acoustics (or optics)

1

k2

dk

dx

����
����51 ð5Þ

if it is applied to kðxÞ ¼ 121=4k
1=2
p ðhðxÞÞ�1=2; where hðxÞ ¼ Yx: Condition (5) follows from the

analysis of the second order Helmholtz equation in layered media, and it has been also used in
Ref. [6], albeit without proof, for analysis of flexural wave propagation in wedges of power law
profile. Apparently, condition (5) is the most general applicability condition of geometrical
acoustics approximation that is applicable to waves of different physical nature, regardless of the
type of wave equation. For that reason, in further consideration of flexural wave propagation in
elastic wedges of arbitrary profile condition (5) only will be used.
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3. Wedges of power-law profile

3.1. General consideration

Consider flexural wave propagation in the normal direction (see formula (2) with b ¼ 0)
towards the edge of a wedge having a power-law profile: hðxÞ ¼ exm: It follows from Eqs. (2) and
(4) that the integrated wave phase F ¼ kpSðxÞ resulting from the wave propagation from an
arbitrary initial point x taken on the wedge medium plane to the wedge tip (x ¼ 0) can be written
in the form

F ¼
Z x

0

kðxÞ dx: ð6Þ

Here kðxÞ is the local wave number of a flexural wave propagating in a wedge contacting with
vacuum. For a wedge of power-law profile this local wave number can be written in the form

kðxÞ ¼ 121=4k1=2
p ðexmÞ�1=2: ð7Þ

From Eqs. (6) and (7) one can easily see that the integral in Eq. (6) diverges for mX2: This
means that the phase F becomes infinite under these circumstances, which implies that the wave
never reaches the edge. Therefore, it never reflects back either, i.e., the wave becomes trapped,
thus indicating that the above mentioned ideal wedges represent acoustic ‘black holes’ for incident
flexural waves.

Real fabricated wedges, however, always have different imperfections, mainly truncated edges.
And this affects adversely their performance as potential vibration absorbers. If for ideal wedges
of power-law shape (with mX2) it follows from Eqs. (6) and (7) that even an infinitely small
material attenuation, that can be described by adding an imaginary part to kðxÞ in Eq. (7), would
be sufficient for the total wave energy to be absorbed, this is not so for truncated wedges. Indeed,
for truncated wedges the lower integration limit in Eq. (6) must be changed from 0 to a certain
value x0 describing the length of the truncation. This results in the amplitude of the total reflection
coefficient R0 being expressed in the form [6]

R0 ¼ exp �2

Z x

x0

Im kðxÞ dx

� �
; ð8Þ

which takes into account flexural wave propagation from the point x to the truncation point x0;
the 100% ‘local’ reflection of the flexural wave energy from the free truncated edge and
propagation of the reflected wave back from x0 to x: According to Eq. (8), for typical values of
attenuation in the wedge materials, even very small truncations x0 result in the total reflection
coefficients R0 becoming as large as tens per cent.

To improve the situation for real wedges with edge truncations, now consider covering the
wedge surfaces by thin absorbing layers (films) of thickness d , e.g., by polymeric films (see Fig. 2).
Note in this connection that the idea of applying absorbing layers for damping flexural
vibrations of uniform plates is not new and has been successfully used since the 1950s (see, e.g.,
Refs. [13–15]). The new aspect of this idea, which is being explored in the present paper, is the use
of such absorbing layers in combination with a specific geometry of a plate of variable thickness (a
wedge) to achieve maximum damping.
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In what follows only one possible film-induced attenuation mechanism is considered—the one
associated with in-plane deformations of the film (layer) under impact of flexural waves. Such
deformations occur on the wedge surfaces as a result of the well-known relationship between
flexural displacements uz and longitudinal displacements ux in a plate: ux ¼ �zðq2uz=qx2Þ: Not
specifying the physical mechanism of the damping in the film material, it is assumed for simplicity
that, as happens in many practical cases, it is linearly dependent on frequency, with non-
dimensional constant n being the energy loss factor, or simply the loss factor.

To analyze the effect of thin absorbing films on flexural wave propagation in a wedge in the
framework of geometrical acoustics approximation one should first consider the effect of such
films on flexural wave propagation in plates of constant thickness. The latter problem can be
approached in different ways. For example, it can be solved using the non-classical boundary
conditions taking into account the so-called ‘surface effects’ [16,17]. Alternatively, the energy
perturbation method developed by Auld [18] can be used. However, the simplest way is to use the
already known solutions for plates covered by absorbing coatings of arbitrary thickness obtained
by different authors with regard to the description of damped vibrations in such sandwich plates
[13–15].

In particular, for a plate of constant thickness h covered by a visco-elastic layer of thickness d
on one of the surfaces the following expression for the additional loss factor x can be obtained
[13–15]:

x ¼
n

½1þ ða2b2ða22 þ 12a221ÞÞ
�1�

: ð9Þ

Here n is the loss factor of the material of the visco-elastic layer, a2 ¼ d=h; b2 ¼ E2=E1; and
a21 ¼ ð1þ a2Þ=2; where E1 and E2 are, respectively, Young’s moduli of the plate and of the visco-
elastic layer. Assume now that the plate is covered by visco-elastic layers on both surfaces and
consider the limiting case of a2 ¼ d=h51: Then, assuming that a2b251; one can arrive from
Eq. (9) to the following simplified expression:

x ¼ 6a2b2n ¼ 6ðd=hÞðE2=E1Þn: ð10Þ

Using Eq. (10), one can write down the expression that takes into account the effects
of both thin absorbing layers and of the wedge material and geometry on the imaginary part
of a flexural wave number, Im kðxÞ; for a wedge of non-linear shape characterized by the local
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Fig. 2. Truncated wedge covered by thin absorbing layers.
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thickness hðxÞ:

Im kðxÞ ¼
121=4k

1=2
p

h1=2ðxÞ

" #
Z
4
þ

3

2

d
hðxÞ

E2

E1
n

� �
; ð11Þ

where Z is the loss factor of the wedge material. The additional flexural wave attenuation caused
by the absorbing film and described by the second term in Eq. (11) is proportional to the ratio of
the film thickness d to the plate thickness h; and to the ratio of Young’s moduli, E2=E1; of the film
and plate, respectively.

3.2. Quadratic wedges

Consider a wedge of quadratic shape, i.e., with a local thickness hðxÞ ¼ ex2: Substituting
Eq. (11) into Eq. (8) and performing the integration, one can obtain the following analytical
solution for the resulting total reflection coefficient R0:

R0 ¼ expð�2mð2Þ1 � 2mð2Þ2 Þ: ð12Þ

Here

mð2Þ1 ¼
121=4k

1=2
p Z

4e1=2
ln

x

x0

� �
ð13Þ

and

mð2Þ2 ¼
3� 121=4k

1=2
p nd

4e3=2
E2

E1

1

x2
0

1�
x2
0

x2

� �
: ð14Þ

In the absence of the absorbing film (d ¼ 0 or n ¼ 0; and hence mð2Þ2 ¼ 0), Eqs. (12)–(14) reduce to
the results obtained in Ref. [6] (where the typographical misprint has been observed). If the
absorbing film is present (da0 and na0), this brings the additional reduction of the reflection
coefficient that depends on the film loss factor n and on the other geometrical and physical
parameters of the wedge and of the film.

Now consider the applicability of geometrical acoustics approximation for wedges of power-
law profile. It follows from Eqs. (5) and (7) that the corresponding applicability condition is

e1=2mxðm�2Þ=2

2� 121=4k
1=2
p

51: ð15Þ

For quadratic wedges (m ¼ 2) it follows from Eq. (15) that geometrical acoustics approximation is
valid for all x provided that the following inequality is satisfied:

121=4k
1=2
p

e1=2
b1: ð16Þ

For a majority of practical situations this condition can be easily satisfied even at relatively low
frequencies. For example, if e ¼ 0:05m�1 and ct ¼ 2000m/s, then condition (16) implies that
frequency f ¼ o=2p should be much larger (e.g., by four times larger) than say 20Hz. As will be
seen in the following section, this low-frequency limitation arising from the applicability condition
of geometrical acoustics is not very essential since, because of the linear frequency dependence of
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material attenuation, the wedge damping structure under consideration is most efficient at
relatively high frequencies.

For illustration purposes let the following values be chosen of the film parameters: n ¼ 0:2
(i.e., consider the film as being highly absorbing), E2=E1 ¼ 2=3 and d ¼ 5 mm. Let the parameters
of the quadratically shaped wedge be: e ¼ 0:05m�1, Z ¼ 0:01; x0 ¼ 1:5 cm, x ¼ 50 cm and
cp ¼ 3000m/s. Then, e.g., for the frequency f ¼ 10 kHz it follows from Eqs. (12) to (14) that in the
presence of the absorbing film R0 ¼ 0:017 (i.e., 1.7%), whereas in the absence of the absorbing
film R0 ¼ 0:513 (i.e., 51.3%). Thus, in the presence of the absorbing film the value of the reflection
coefficient is much smaller than for a wedge with the same value of truncation, but without a film.
Even relatively high absorption in the wedge material (Z ¼ 0:01) only slightly reduces the
reflection coefficient in an uncovered wedge from unity corresponding to the hypothetical case of
a wedge made of non-dissipative material.

It is interesting to compare the reflection coefficient of flexural waves for a wedge covered by a
thin absorbing film with the one for the same waves reflecting from the blunt edge of a
homogeneous plate made of the same material and having the thickness (h ¼ 1:3 cm) equal to the
initial local thickness hini of the wedge considered in the above example (hini ¼ 1:3 cm at
x ¼ 50 cm). Calculations show that in the case of such a homogeneous plate R0 ¼ 0:832; i.e., the
reflection coefficient for the plate is still very large and only slightly differs from the reflection
coefficient for the plate without an absorbing film (R0 ¼ 0:834). Thus, the effect of thin absorbing
film causes in this case only a slight reduction of the reflection coefficient from its value defined by
energy losses in a plate. Obviously, it is both the unusual geometrical properties of a quadratically
shaped wedge in respect of wave propagation and the effect of thin absorbing layers that result in
a very efficient way of suppressing flexural vibrations.

Note that almost all absorption of the incident wave energy takes place in the vicinity of the
sharp edge of a wedge. Fig. 3 shows the reflection coefficient R0 for the wedge considered as
function of the total wedge length x for the two values of the wedge edge truncation x0: It is seen
that R0 changes noticeably only in the close proximity of the wedge edge. In the example discussed
above (with n ¼ 0:2), almost 99% of the incident elastic energy is absorbed within the length of
3 cm near the truncated edge.

The influence of length of the wedge edge truncation x0 on the reflection coefficient R0 is shown
on Fig. 4 for an uncovered wedge with the parameters described above and for the same wedge
covered by absorbing films with the same values of the film thickness (d ¼ 5mm) and film material
loss factor (n ¼ 0:2), but with the different values of relative film stiffness (E2=E1 ¼ 2=30 and 2=3).
One can see that the values of x0 still retaining the reflection coefficients R0 that are close to zero
depend strongly on the film relative stiffness. The larger relative stiffness the larger values of
truncation x0 can be allowed. One should keep in mind, however, that Eqs. (12)–(14) have been
derived under the assumption of the film thickness being much less than the local thickness of the
wedge. Therefore, strictly speaking, calculations on Fig. 4 are not valid for x0 close to zero, where
the film thickness becomes comparable and even larger than the wedge local thickness.

Fig. 5 illustrates the frequency dependence of the resulting reflection coefficient R0 for the two
values of edge truncation x0 ¼ 1:5 and 2.5 cm in wedges covered by absorbing films and in
uncovered wedges. As one can see, in all cases the reflection coefficients tend to zero with the
increase of frequency. Although for wedges covered by thin absorbing films such a tendency is
much more rapid, the considered wedge structures in general seem to be efficient as dampers only
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at relatively high frequencies (higher than 2–3 kHz). Therefore, the geometrical acoustics
approximation that has been used in the previous section for their theoretical description is
adequate (see Eq. (16)).
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Fig. 3. Reflection coefficient R0 as a function of the total wedge length x (in m) for the values of wedge edge truncation

x0 ¼ 1:5 cm (thicker curves) and x0 ¼ 2:5 cm (thinner curves): solid and dotted curves correspond to wedges with and

without absorbing layers, respectively; the film material loss factor n is 0.2, and the film thickness d is 5mm.

Fig. 4. Effect of wedge truncation x0 (in m) on the reflection coefficient R0: solid curve corresponds to an uncovered

wedge, dotted and dashed curves correspond to wedges covered by thin absorbing films with the values of relative

stiffness E2=E1 ¼ 2=30 and E2=E1 ¼ 2=3; respectively; the film material loss factor n is 0.2, and the film thickness d
is 5 mm.
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For very low frequencies, when flexural wavelengths are comparable with the total wedge
length x; the theoretical model under consideration becomes inaccurate also because of another
reason. Strictly speaking, in this case one should take into account non-propagating exponentially
decaying flexural waves that may be excited at the wedge foundation by the vibrating structure to
be damped. However, since at low frequencies the reflection coefficients from the wedge edge are
far from zero even in the assumption that only propagating waves are reaching the wedge edge,
taking into account non-propagating waves may prove practically unimportant.

3.3. Wedges of power-law profiles with m=3 and 4

In this section the effects of power-law profiles are considered with higher values of m on the
reflection coefficients of flexural waves from the wedge edges. Performing the integration in
Eq. (8) for the function hðxÞ ¼ exm with m ¼ 3; one can obtain:

R0 ¼ expð�2mð3Þ1 � 2mð3Þ2 Þ; ð17Þ

where

mð3Þ1 ¼
121=4Zk

1=2
p

2e1=2
1

x
1=2
0

1�
x0

x

	 
1=2
� �

ð18Þ

and

mð3Þ2 ¼
3� 121=4dnk1=2

p

7e3=2
E2

E1

1

x
7=2
0

1�
x0

x

	 
7=2
� �

: ð19Þ
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Fig. 5. Frequency dependence of the reflection coefficient R0 for two values of the edge truncation: x0 ¼ 1:5 and 2.5 cm

(thicker and thinner curves respectively); solid and dotted curves correspond to wedges with absorbing films and to

uncovered wedges; the film material loss factor n is 0.2, and the film thickness d is 5mm.
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Similarly, carrying out the integration in Eq. (8) for the function hðxÞ ¼ exm with m ¼ 4; one
can get:

R0 ¼ expð�2mð4Þ1 � 2mð4Þ2 Þ; ð20Þ

where

mð4Þ1 ¼
121=4Zk

1=2
p

4e1=2
1

x0
1�

x0

x

	 
h i
ð21Þ

and

mð4Þ2 ¼
3� 121=4dnk1=2

p

10e3=2
E2

E1

1

x5
0

1�
x0

x

	 
5
� �

: ð22Þ

Numerical calculations for these profiles have been carried out using the same wedge material and
absorbing film parameters that had been used in the calculations for a wedge with a quadratic
profile. Namely, for the film: n ¼ 0:2; E2=E1 ¼ 2=3 and d ¼ 5mm; for the wedge: e ¼ 0:05m�1,
Z ¼ 0:01; x0 ¼ 1:5 cm, x ¼ 50 cm and cp ¼ 3000m/s, f ¼ 10 kHz. The results of calculations of the
reflection coefficients R0 as functions of the edge truncation x0 for wedges covered by absorbing
films and for uncovered wedges are shown on Fig. 6 for m ¼ 3 and 4: For comparison, the earlier
obtained results for m ¼ 2 are shown in Fig. 6 as well.

It can be seen from Fig. 6 that for m ¼ 3 and 4 the trend followed by the reflection coefficient
R0 is similar to that for m ¼ 2: However, comparing the curves for m ¼ 3 and 4 with that for
m ¼ 2; one can see that there is a remarkable improvement in the reduction of the reflection
coefficient for larger values of m:
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Fig. 6. Effect of edge truncation x0 (in m) on the reflection coefficient R0 for wedges of power-law profile with m ¼ 2; 3
and 4 (solid, dotted and dashed curves respectively): thicker curves correspond to wedges covered by thin absorbing

films (with n ¼ 0:2; d ¼ 5mm, E2=E1 ¼ 2=3) and thinner curves correspond to uncovered wedges.
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Considering the conditions of geometrical acoustics approximation for power-law-profiled
wedges with m ¼ 3 and 4; one can derive from Eq. (15) the following applicability conditions for
m ¼ 3 and 4 respectively:

3e1=2x1=2

2� 121=4k
1=2
p

51; ð23Þ

2e1=2x

121=4k
1=2
p

51: ð24Þ

As it follows from Eqs. (23) and (24), for the above wedges the geometrical acoustics
approximation becomes invalid for large distances x from the wedge edges.

Despite the very positive results obtained for wedges with m ¼ 3 and 4, it has to be noted that in
these cases the wedge edge profiles become even sharper, making it extremely difficult to
manufacture such wedges. Also, as in the case of quadratic wedges, one of the assumptions which
no longer holds in the case of the higher powers of m is that for very small truncations x0 the
absorbing film remains thin in comparison with the wedge local thickness, ideally at least four
times as thin. Therefore, these assumptions have to be verified each time to ensure that wedges of
power-law profile with higher powers of m are viable.

4. Wedges of sinusoidal profile

In this section a new type of function for a wedge profile is explored that also results in acoustic
‘black hole’ effects, similar to those obtained for wedges with power-law profiles. A search of
different possibilities has yielded a function hðxÞ ¼ e sinmðxÞ for mX2: This choice can be
explained by the fact that for small values of x; the function e sinmðxÞ can be approximated as a
power-law profile exm; which has been analyzed in the previous sections. For clarity, consider
functions hðxÞ ¼ e sinmx for m ¼ 2 and 4.

Performing the integration in Eq. (8) for hðxÞ ¼ e sinmðxÞ with m ¼ 2; one can obtain

R0 ¼ expð�2mðs2Þ1 � 2mðs2Þ2 Þ; ð25Þ

where

mðs2Þ1 ¼
121=4Zk

1=2
p

4e1=2
ln

ðcsc x � cot xÞ
ðcsc x0 � cot x0Þ

� �
ð26Þ

and

mðs2Þ2 ¼
3� 121=4dnk1=2

p

4e3=2
E2

E1
ln

ðcsc x � cot xÞ
ðcsc x0 � cot x0Þ

þ
cos x0

sin2 x0

�
cos x

sin2 x

� �
: ð27Þ

Similarly, integrating in Eq. (8) for hðxÞ ¼ e sinmðxÞ with m ¼ 4; one can get

R0 ¼ expð�2mðs4Þ1 � 2mðs4Þ2 Þ; ð28Þ
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where

mðs4Þ1 ¼
121=4Zk

1=2
p

4e1=2
cos x0

sin x0
�

cos x

sin x

� �
ð29Þ

and

mðs4Þ2 ¼
121=4dnk1=2

p

10e3=2
E2

E1
3

cos x0

sin5 x0

�
cos x

sin5 x

� ��

þ 4
cos x0

sin3 x0

�
cos x

sin3 x

� �
þ 8

cos x0

sin x0
�

cos x

sin x

� ��
: ð30Þ

Now the conditions are discussed under which the geometrical acoustics approximation is valid
for the above-mentioned sinusoidal functions hðxÞ ¼ e sinmðxÞ: Using Eq. (5), one can find that
geometrical acoustics approximation is valid for wedges of sinusoidal profiles if

e1=2

2� 121=4k
1=2
p

m sinðm�2Þ=2ðxÞ cosðxÞ51: ð31Þ

For m ¼ 2 this condition reduces to the inequality

121=4k
1=2
p

e1=2 cosðxÞ
b1; ð32Þ

which differs from the corresponding applicability condition for a quadratic wedge (see Eq. (16))
only by the presence of the function cosðxÞ in the denominator. Since jcosðxÞjp1 this only
improves the applicability of geometrical acoustics approximation for sinusoidal wedges which, as
well as in the case of quadratic wedges, is applicable at all distances x:

For m ¼ 4 it follows from Eq. (31) that the applicability condition in this case is

121=4k
1=2
p

e1=2sinð2xÞ
b1: ð33Þ

Comparing this condition with the one for a power-law-profiled wedge with m ¼ 4 (see Eq. (24)),
one can see that in the corresponding case of sinusoidal profile the applicability is significantly
improved and no longer restricted to the area adjacent to the edge.

The results of calculations of the reflection coefficients of flexural waves for wedges of
sinusoidal profiles as functions of the truncation length x0 are shown on Fig. 7. For comparison,
on the same figure the reflection coefficients for wedges of the corresponding power-law profiles
are shown as well. As expected, the results for wedges of sinusoidal profiles with m ¼ 2 and 4 are
very similar, and sometimes almost identical, to those exhibited by wedges of power-law profiles
with the same powers m ¼ 2 and 4. This perfect match of the results is due to the previously
mentioned reason that at small values of x; which are the most influential, both types of profiles
are approximately identical. As in the case of power-law profiles, the allowable values of wedge
truncation x0 for sinusoidal profiles are much larger in the case of higher values of m:
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5. Conclusions

Some theoretical results have been reported on the new type of vibration absorbers utilizing the
effect of acoustic ‘black holes’ for flexural waves propagating in elastic wedges of power-law and
associated sinusoidal profiles. It has been demonstrated that the presence of thin absorbing films
on the surfaces of such wedges can significantly reduce the reflection of flexural waves from their
truncated edges due to the enhanced energy absorption by such films.

For more rigorous evaluation of flexural wave reflection in wedges of non-linear shape covered
by thin absorbing films, more elaborate physical models of wave energy absorption by thin films
should be considered (e.g., the ones accounting for viscous friction, relaxation-type attenuation
mechanisms, etc.). Although the corresponding estimates of the reflection coefficients may differ
significantly for different film attenuation mechanisms, it is expected that in all cases it will be
possible to achieve very significant reductions in values of the reflection coefficients R0: The
reason for this is that it is the combination of the extraordinary wave propagation properties of
power-law-shaped and sinusoidal wedges and the effect of thin absorbing layers that reduces
dramatically the wave reflection coefficient (as compared to a free wedge and to a homogeneous
plate covered by an absorbing film). This can open a very efficient way of suppressing flexural
vibrations.

The advantage of using the proposed wedge absorbers of flexural vibrations over traditional
types of vibration absorbers lays in the fact that wedge absorbers are compact and light-weight
since they do not require additional masses to provide resonant absorption. Apart from this, they
can be integrated into structures to be damped on a design stage, as their inseparable parts.
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Fig. 7. Effect of edge truncation x0 (in m) on the reflection coefficient R0 for wedges of sinusoidal and power-law

profiles with m ¼ 2 and 4 covered by thin absorbing films with the parameters n ¼ 0:2; d ¼ 5mm, E2=E1 ¼ 2=3: solid
curves correspond to wedges of power-law profiles, and dotted curves—to wedges of sinusoidal profiles; two almost

coinciding curves on the left correspond to m ¼ 2; and two curves on the right—to m ¼ 4:
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Despite the very encouraging theoretical estimates described above, further theoretical and
experimental investigations are needed to validate the principle and to explore the most efficient
ways of creating the above-mentioned ‘wedge-like absorbers’ of flexural vibrations.
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