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Abstract

A multi-degree-of-freedom vibro-impact system under white noise excitations is formulated as a
stochastically excited and dissipated Hamiltonian system. The constraints are modelled as non-linear
springs according to the Hertz contact law. The exact stationary solution of the system is derived under
certain conditions. The approximate stationary solutions of the system are also obtained by using the
stochastic averaging methods for quasi-Hamiltonian systems. It is shown that the stochastic averaging
method for quasi-non-integrable-Hamiltonian systems is applicable if the non-linear forces according to the
Hertz contact law take an important role in the response of the system while the stochastic averaging
method for quasi-integrable-Hamiltonian systems is applicable if the non-linear forces can be neglected. An
example for stochastically excited two-degree-of-freedom vibro-impact system is given to illustrate the
application of the procedures in detail.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

There has been sustained interest in the response of vibro-impact systems for many years [1].
In recent years the phenomena of bifurcation and chaos in vibro-impact systems under
harmonic excitation have been studied extensively [1–7] and the complicated dynamical
behaviors of the systems have been found. The exact and approximate stationary solutions of
single-degree-of-freedom (SDOF) vibro-impact systems under Gaussian white noise excitation
were obtained by Nayak and Jing [8–10] using the Hertz contact law [11], where the contact
force between two elastic bodies is assumed to be proportional to the 3

2
power of the

relative displacement between them. It is shown in Ref. [10] that the contact phenomena are
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almost negligible when the clearance is about twice the root mean square displacement of the
corresponding linear system. Hess et al. [12,13] studied the normal vibration and friction at a
Hertzian contact under random excitation and the result were verified by experiment. Lin and
Bapat [14] proposed an approach for estimating the clearance of a stochastically excited vibro-
impact system. Dimentberg [15,16] obtained the exact and approximate solutions for stochastic
excited SDOF vibro-impact system with rigid barriers. To the authors’ knowledge, so far there is
no exact or approximate solutions for stochastically excited multi-degree-of-freedom (MDOF)
vibro-impact systems.

On the other hand, the theory of exact stationary solutions and stochastic averaging methods
for stochastically excited and dissipated Hamiltonian systems have been proposed recently [17–
19]. They have been applied to predict response, stochastic stability and stochastic bifurcation
successfully [20,21]. The stochastically excited MDOF vibro-impact systems are a subclass of
stochastically excited and dissipated Hamiltonian systems. In the present paper, the exact
stationary solutions of MDOF vibro-impact systems will be obtained by using the theory of the
exact stationary solution for stochastically excited and dissipated Hamilton systems, and the
approximate stationary solutions of the systems will be obtained by using the stochastic averaging
method for quasi-non-integrable-Hamiltonian systems and for quasi-integrable-Hamiltonian
systems. An example of stochastically excited 2DOF vibro-impact system is given to illustrate the
application of the proposed procedures.

2. MDOF vibro-impact system

Consider a MDOF vibro-impact system under additive Gaussian white noise excitations as
shown is Fig. 1. The equations of motion of the system are of the form

mi
.Xi þ cijðX; ’XÞ ’Xj þ kiðXi � Xi�1Þ þ kiþ1ðXi � Xiþ1Þ þ giðXiÞ ¼ filWlðtÞ

X0 ¼ Xnþ1 ¼ 0; knþ1 ¼ 0; i; j ¼ 1; 2;y; n; l ¼ 1; 2;y;m; ð1Þ

where Xi is the displacement of mass mi; ki; kiþ1 are the stiffnesses of spring at two sides of
mass mi; cijðX; ’XÞ are damping coefficients and fil are amplitudes of stochastic excitations. WlðtÞ
are Gaussian white noises in the sense of Stratonovich [22] with correlation functions
E½WkðtÞWlðt þ tÞ� ¼ 2DkldðtÞ: Each mass and its constraints are regarded as elastic bodies and
the relationship between the contact force and displacement is assumed to be governed by Hertz
contact law. Thus

giðXiÞ ¼

BirðXi � dirÞ
3=2; Xi > dir;

0; �dilpXipdir;

�Bilð�Xi � dilÞ
3=2; Xio� dil ;

8><
>: ð2Þ

where Bir and Bil represent contact stiffnesses of mass mi; which are functions of geometries and
material properties of mass mi and its both side constraints. A detailed description of the contact
stiffness for several cases can be found in Ref. [12].

System (1) can be rewritten as a stochastically excited and dissipated Hamiltonian system. Let

Qi ¼ Xi; Pi ¼ mi
’Xi: ð3Þ
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Eq. (1) can be rewritten as

’Qi ¼
@H

@Pi

;

’Pi ¼ �
@H

@Qi

� cij

@H

@Pj

þ filWlðtÞ; i; j ¼ 1; 2;y; n; l ¼ 1; 2;y;m; ð4Þ

where

H ¼
1

2

Xn

i¼1

P2
i

mi

þ
1

2

Xn

i¼1

kiðQi � Qi�1Þ
2 þ

Xn

i¼1

UiðQiÞ;

UiðQiÞ ¼
Z Qi

0

giðXiÞ dXi ¼

2
5

BirðQi � dirÞ
5=2; Qi > dir;

0; �dilpQipdir;

2
5

Bilð�Qi � dilÞ
5=2; Qio� dil :

8><
>: ð5Þ
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Fig. 1. A sketch of nDOF vibro-impact system.
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Eq. (4) can be further converted into It #o differential equations [22]

dQi ¼
@H

@Pi

dt

dPi ¼ �
@H

@Qi

� cijðQ;PÞ
@H

@Pj

� �
dt þ fil dBlðtÞ; i; j ¼ 1; 2;y; n; l ¼ 1; 2;y;m; ð6Þ

where BlðtÞ are standard Wiener processes.

3. Exact stationary solution

The Hamiltonian system associated with Eq. (6) without dampings and stochastic
excitations is generally non-integrable. Based on the theory of exact stationary solution of
stochastically excited and dissipated Hamiltonian systems [17], the exact stationary solution of
Eq. (6) is of the form

pðQ;PÞ ¼ C exp �
Z H

0

hðuÞ du

� �				
H¼HðQ;PÞ

; ð7Þ

where C is a normalization constant and

hðHÞ ¼
2cij

@H
@pj
;

bij
@H
@pj

i; j ¼ 1; 2;y; n; k; l ¼ 1; 2;y;m ð8Þ

and bij ¼ 2Dkl fik fjl :

4. Approximate stationary solution by using the stochastic averaging method for quasi-non-

integrable-Hamiltonian systems

It can be seen from Eq. (8) that the exact stationary solution exists only in very limited cases.
Thus, only the approximate stationary solution of system (6) can be obtained in most cases. The
stochastic averaging method for quasi-Hamiltonian systems is a powerful method to predict the
response of stochastically excited and dissipated quasi-Hamiltonian systems. Based on the
stochastic averaging method for quasi-non-integrable-Hamiltonian systems [18], the following
averaged It #o equation can be obtained from Eq. (6)

dH ¼ sðHÞ dt þ sðHÞ dBðtÞ; ð9Þ
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where BðtÞ is standard Wiener process,

sðHÞ ¼
1

TðHÞ

Z
O

�cij
@H

@Pi

@H

@Pj

þ Dkl fik fjl


� �
@H

@P1

� �
dQ1?dQn dP2?dPn;

s2ðHÞ ¼
1

TðHÞ

Z
O

2Dkl fik fjl
@H

@P1

�� �
dQ1?dQn dP2?dPn;

TðHÞ ¼
Z
O

1
@H

@P1

�� 

dQ1?dQn dP2?dPn;

O ¼ fðQ1;y;Qn;P2;y;PnÞjHðQ1;y;Qn; 0;P2;y;PnÞpHg: ð10Þ

The exact stationary solution of the Fokker–Planck–Kolmogorov (FPK) equation associated with
averaged It #o equation (9) is of the form

pðHÞ ¼
C

s2ðHÞ
exp �

Z H

0

2sðX Þ
s2ðX Þ

dX

� �
; ð11Þ

where C is a normalization constant. The joint stationary probability density of generalized
displacements qi and momenta pi is then obtained by using relationship pðq; pÞ ¼
pðq1;y; qn; p2;y; pn j HÞpðHÞj@H=@p1j and pðq1;y; qn; p2;y; pnjHÞ ¼ 1=ðTðHÞj@H=@p1jÞ as
pðq; pÞ ¼ ½pðHÞ=TðHÞ�jH¼Hðq;pÞ [18].

5. Approximate stationary solution by using the stochastic averaging method for quasi-integrable-

Hamiltonian systems

For stochastically excited SDOF vibro-impact system, i.e., n ¼ 1 in Eq. (1), the non-linear term
in Eq. (1) can be neglected if minðd1l ; d1rÞ > 2 %sðX1Þ; where %sðX1Þ is the root mean square
displacement of oscillator [9]. Similar conclusion can be drawn for MDOF vibro-impact systems.
Suppose that all the non-linear terms in Eq. (1) can be neglected, then Eq. (1) describes a
stochastically excited and dissipated integrable-Hamiltonian system. The equations of motion in
this case are

mi
.Xi þ cijðX; ’XÞ ’Xj þ kiðXi � Xi�1Þ þ kiþ1ðXi � Xiþ1Þ ¼ filWlðtÞ

X0 ¼ Xnþ1 ¼ 0; knþ1 ¼ 0; i ¼ 1; 2;y; n; l ¼ 1; 2;y;m ð12Þ

or

M .Xþ C ’Xþ KX ¼ FW; ð13Þ
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where

X ¼ fX1;X2;y;Xng
T; W ¼ fW1;W2;y;Wmg

T; M ¼ diagfm1;m2;y;mng;

½C�ij ¼ cijðX; ’XÞ; K ¼

k1 þ k2 �k2 0 ? 0

�k2 k2 þ k3 �k3 ? 0

^ ^ ^

0 ? �kn kn

2
6664

3
7775; ½F�il ¼ fil ;

i; j ¼ 1; 2;y; n; l ¼ 1; 2;y;m:

Let

X ¼ TQ; ð14Þ

where T is the modal matrix and Q ¼ fQ1;y;Qng
T is a vector of modal displace-

ments. Substituting Eq. (14) into Eq. (13) and multiplying TT on both sides of Eq. (13)
lead to

M�
i
.Qi þ c�ij ’Qij þ K�

i Qi ¼ f �il WlðtÞ; i; j ¼ 1; 2;y; n; ð15Þ

where M�
i and K�

i are modal mass and stiffness, respectively, c�ij ¼
Pn

r¼1 TricrsTsj; f �il ¼Pn
r¼1 Tri frl : Eq. (15) can be rewritten as

’Qi ¼
@H

@Pi

;

’Pi ¼ �
@H

@Qi

� c�ij
@H

@Pj

þ f �il dBlðtÞ; i; j ¼ 1; 2;y; n; l ¼ 1; 2;y;m; ð16Þ

where BlðtÞ are standard Wiener processes,

H ¼
Xn

i¼1

1

2

P2
i

M�
i

þ
1

2
K�

i Q2
i

� 

¼

Xn

i¼1

Hi; Pi ¼ M�
i
’Qi:

Eq. (16) without dampings and stochastic excitations is an integrable-Hamiltonian system.
Suppose that there is no internal resonant relations in the system, i.e., lioiaOðeÞ; where oi are the
natural frequencies of the system and li are integers and e is a small positive parameter. The
averaged It #o equations for H1;H2;y;Hn can be derived by using stochastic averaging method for
quasi-integrable-Hamiltonian systems [19], i.e.,

dHi ¼ siðHÞ dt þ sil dBlðtÞ; i ¼ 1; 2;y; n; l ¼ 1; 2;y;m; ð17Þ
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where

siðHÞ ¼ �c�ij
Pi

M�
j

Pj þ
Dkl

M�
i

f �ik f �il

* +
;

bijðHÞ ¼ ½rrT�ij ¼ 2Dkl f �ik f �jl
Pi

M�
i

Pj

M�
j

* +
;

/ .S ¼
1

T1?Tn

Z 2p

0

?
Z 2p

0

/ .Sdy1?dyn;

Ti ¼
2p
oi

¼ 2p

ffiffiffiffiffiffiffiffi
K�

i

M�
i

s
;

,

Qi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Hi=K�

i

q
cos yi;

Pi ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2HiM

�
i

q
sin yi: ð18Þ

The FPK equation associated with averaged It #o equation (17) is of the form

@p

@t
¼ �

@ðsipÞ
@Hi

þ
1

2

@2ðbijpÞ
@Hi @Hj

: ð19Þ

The stationary probability density pðHÞ can be obtained from Eq. (19) if the diffusion and drift
coefficients satisfy the compatibility conditions [19]. The joint probability density of modal
displacements and momenta is then of the form

pðQ;PÞ ¼
pðHÞ

T1?Tn

				
Hi¼HiðQi ;PiÞ

ð20Þ

and joint probability density of displacements and velocities, pðX; ’XÞ; can be derived by using
transformation (14).

6. Example

Consider a 2DOF vibro-impact system under Gaussian white noise excitations as shown in
Fig. 2. The equations of motion of the system are of the form

m1
.X1 þ c1 ’X1 þ k1X1 þ k2ðX1 � X2Þ ¼ W1ðtÞ;

m2
.X2 þ c2 ’X2 þ k2ðX2 � X1Þ þ g2ðX2Þ ¼ W2ðtÞ; ð21Þ

where the notations of ci; ki; g2ðX2Þ are the same as those in Eq. (1) and WiðtÞ are independent
Gaussian white noise in the senses of Stratonovich with intensity 2Di:
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6.1. Exact stationary solution

By using the procedure described in Section 3, the exact stationary solution of system (21) is
obtained as follows:

pðQ;PÞ ¼ C exp �
c1

D1
H

� �				
H¼

P2
1

2m1
þ

P2
2

2m2
þ1
2

k1Q2
1
þ1
2

k2ðQ2�Q1Þ
2þU2ðQ2Þ

ð22Þ

provided that c1=D1 ¼ c2=D2 ¼ h: The stationary probability density of displacement q2 is
obtained from (22) as follows:

pðq2Þ ¼
Z þN

�N

Z þN

�N

Z þN

�N

pðq1; q2; p1; p2Þ dq1 dp1 dp2: ð23Þ

The exact stationary probability density pðq2Þ of system (21) with both side constraints are
shown in Fig. 3 for different parameter values while that for the system with right hand side
constraint only are shown in Fig. 4. It can be seen from Figs. 3 and 4 that the property of the
stationary response of the system is determined by the contact stiffness, the clearances between the
masses and constraints, and the ratios of damping coefficients to intensities of stochastic
excitations. The response of the system is non-Gaussian when the contact stiffness B is bigger than
0.1, the clearances d is less than 2, and the ratio h is less than 10. The contact force takes an
important role in the response of the system for these parameter values. On the other hand, the
response of the system are almost Gaussian and the non-linear term gðX2Þ in Eq. (21) can be
neglected if the contact stiffness B is less than 0.1, or the clearance d is bigger than 2, or the ratio h

is bigger than 10. So, the approximate stationary solution of system (21) must be obtained by
using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems and for
quasi-integrable-Hamiltonian systems, respectively.
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6.2. Approximate stationary solution by using stochastic averaging method for quasi-non-integrable

Hamiltonian systems

If c1=D1ac2=D2 and the non-linear term gðX2Þ in Eq. (21) cannot be neglected, the approximate
stationary solution of system (21) can be obtained by using the procedure described in Section 4.
The averaged It #o equation for Hamiltonian H is of the form

dH ¼ sðHÞ dt þ sðHÞ dBðtÞ; ð24Þ

where

sðHÞ ¼
1

TðHÞ

Z
O0
½B1ðH � VÞ þ B2� dQ1 dQ2;

s2ðHÞ ¼
2

TðHÞ

Z
O0

B2ðH � V Þ dQ1 dQ2;

TðHÞ ¼
Z
O0
p dQ1 dQ2;

B1 ¼ �pðc1 þ c2Þ;

B2 ¼ pðD1 þ D2Þ;

V ðQ1;Q2Þ ¼ 1
2

k1Q2
1 þ

1
2

k2ðQ2 � Q1Þ
2 þ U2ðQ2Þ;

O0 ¼ fðQ1;Q2Þ j HðQ1;Q2; 0; 0ÞpHg: ð25Þ

The integral region O0 is shown in Fig. 5 where

Q7
1 ¼ ðk2Q27ZÞ=ðk1 þ k2Þ;

Z ¼ ZðQ2;HÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
2Q2

2 � 2ðk1 þ k2Þ 1
2

k2Q2
2 þ GðQ2Þ � H

� �q
ð26Þ

ARTICLE IN PRESS

Q1Q1
+

Q2
-

Q1
-

Q2
+

Q2

Fig. 5. Approximate integral domain O0 in Eq. (25).

Z.L. Huang et al. / Journal of Sound and Vibration 275 (2004) 223–240 233



and Qþ
2 ;Q

�
2 are the two roots of non-linear equation

k1k2

2ðk1 þ k2Þ
Q2

2 þ U2ðQ2Þ � H ¼ 0: ð27Þ

Eq. (25) can be further simplified as

sðHÞ ¼
c1 þ c2

3ðk1 þ k2Þ
I2ðHÞ
I1ðHÞ

þ D1 þ D2;

s2ðHÞ ¼
2ðD1 þ D2Þ
3ðk1 þ k2Þ

I2ðHÞ
I1ðHÞ

;

I1ðHÞ ¼
Z Qþ

2

Q�
2

ZðQ2;HÞ dQ2:

I2ðHÞ ¼
Z Qþ

2

Q�
2

Z3ðQ2;HÞ dQ2: ð28Þ

Noting that dI2=dH ¼ 3ðk1 þ k2ÞI1; the stationary solution of the FPK equation associated with
averaged It #o equation (24) can be derived by using Eq. (11) as follows:

pðHÞ ¼ CI1ðHÞ exp �
c1 þ c2

D1 þ D2
H

� �
; ð29Þ

where C is a normalization constant. The joint stationary probability densities of general-
ized displacement and momenta and the stationary probability density of displacement q2

are then

pðq1; q2; p1; p2Þ ¼
pðHÞ
TðHÞ

				
H¼Hðq;pÞ

¼ %C exp �
c1 þ c2

D1 þ D2
H

�� 				
H¼Hðq;pÞ

;

pðq2; p2Þ ¼
Z þN

�N

Z þN

�N

pðq1; q2; p1; p2Þ dq1 dp1;

pðq2Þ ¼
Z þN

�N

pðq2; p2Þ dp2: ð30Þ

Note that the joint stationary probability density of generalized displacements and momenta in
Eq. (30) is the same as that in Eq. (22) if c1=D1 ¼ c2=D2; i.e., the stationary solution obtained by
using the stochastic averaging method for quasi-non-integrable-Hamiltonian systems is the exact
stationary solutions of the system in this special case.

The stationary probability density of displacement q2 of system (21) with both side constraints
for different parameter values obtained by using the stochastic averaging method and digital
simulation is shown in Fig. 6. It is seen from Fig. 6 that for larger contact stiffness and the
intensity of stochastic excitation and smaller clearance between the mass and constraints, the
stochastic averaging method yields better results. The joint stationary probability density of
displacement q2 and momentum p2 of the system with both side constraints is shown in Fig. 7. The
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Fig. 6. Approximate stationary probability density of displacement q2 of system (21) with both side constraints. ——,

analytical solution; �m’J; from digital simulation. m1 ¼ m2 ¼ 1; k1 ¼ k2 ¼ 1: (a) D1 ¼ 0:01;D2 ¼ 0:02; c1 ¼ 0:08;
c2 ¼ 0:04; d ¼ d2r ¼ d2l ¼ 0:5;B ¼ B2l ¼ B2r: (b) B ¼ B2l ¼ B2r ¼ 10; c1 ¼ 0:08; c2 ¼ 0:04; d ¼ d2r ¼ d2l ¼ 0:5;D1;D2:
(c) B ¼ B2l ¼ B2r ¼ 10;D1 ¼ 0:01;D2 ¼ 0:02; c1 ¼ 0:08; c2 ¼ 0:04; d ¼ d2r ¼ d2l :
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results obtained by using the stochastic averaging method agree well with those from digital
simulation. The stationary probability density of system (21) with right hand side constraint
only for different parameter values can be obtained similarly and the similar conclusion can
be drawn.

6.3. Approximate stationary solutions by using stochastic averaging method for quasi-integrable-

Hamiltonian systems

It has been pointed out in the last section that the stochastic averaging method for quasi-non-
integrable-Hamiltonian system can be employed to predict the response of system (21) if the non-
linear terms take an import role in the response of the system. For the case that the non-linear
term in Eq. (21) can be negligible, it is better to employ the stochastic averaging method for
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quasi-integrable-Hamiltonian systems. Eq. (21) in this case is of the form

m1
.X1 þ c1 ’X1 þ k1X1 þ k2ðX1 � X2Þ ¼ W1ðtÞ;

m2
.X2 þ c2 ’X2 þ k2ðX2 � X1Þ ¼ W2ðtÞ: ð31Þ

By using the procedure described in Section 5, the averaged It #o equations of system (31) are of the
form

dH1 ¼ s1ðHÞ dt þ s1j dBjðtÞ;

dH2 ¼ s2ðHÞ dt þ s2j dBjðtÞ; ð32Þ

where

s1ðHÞ ¼ �c�11H1; s2ðHÞ ¼ �c�22H2;

H1 ¼
P2

1

2M�
1

þ
K�

1 Q2
1

2
; H2 ¼

P2
2

2M�
2

þ
K�

2 Q2
2

2
;

Q1

Q2

( )
¼ ½T ��1 X1

X2

( )
; Pi ¼ M�

i
’Qi;

M�
1 0

0 M�
2

" #
¼ ½T �T

m1 0

0 m2

" #
½T �;

K�
1 0

0 K�
2

" #
¼ ½T �T

k1 þ k2 �k2

�k2 k2

" #
½T �;

b11 ¼ ½rrT�11 ¼ 2ðD1T2
11 þ D2T2

21Þ; b22 ¼ ½rrT�22 ¼ 2ðD2T2
12 þ D2T2

22Þ;

b12 ¼ ½rrT�12 ¼ b21 ¼ 0;

c�11 ¼ c1T2
11 þ c2T2

21; c�22 ¼ c1T2
12 þ c2T2

22; ð33Þ

½T � ¼ T11

T21

T12

T22

h i
is the modal matrix of system (31) without dampings and stochastic excitations.

The stationary solution of averaged It #o equation (32) is of the form

pðH1;H2Þ ¼ C exp �
2c�11
b11

H1 �
2c�22
b22

H2

� �
; ð34Þ

where C is a normalization constant. The joint stationary probability density of displacements Xi

and velocities ’Xi and the probability density of displacement X2 can be obtained as follows:

pðX1;X2; ’X1; ’X2Þ

¼ %C exp �
2c�11
b11

H1 �
2c�22
b22

H2

� �				H1¼
1
2

K�
1
ðT�1

11
X1þT�1

12
X2Þ2þ

1
2

M�
1
ðT�1

11
’X1þT�1

12
’X2Þ2

H2¼
1
2

K�
2
ðT�1

21
X1þT�1

22
X2Þ

2þ1
2

M�
2
ðT�1

21
’X1þT�1

22
’X2Þ

2

ð35Þ

pðq2Þ ¼ pðX2Þ ¼
Z þN

�N

Z þN

�N

Z þN

�N

pðX1;X2; ’X1; ’X2Þ dX1 d ’X1 d ’X2; ð36Þ

where %C is a normalization constant.
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The stationary probability densities of displacement q2 of system (31) obtained by using
Eqs. (30) and (36) are shown in Fig. 8 for the case of both side constraints. It is seen
from Fig. 8 that the results obtained by using the stochastic averaging method for quasi-
integrable-Hamiltonian systems are better than those by using the stochastic averaging method
for quasi-non-integrable-Hamiltonian systems. Further investigation shows that the stochastic
averaging method for quasi-integrable-Hamiltonian systems always lead to acceptable results if
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the contact stiffness is very small or the clearances are larger than twice the root mean square
displacement.

7. Concluding remarks

The stochastically excited MDOF vibro-impact systems have been formulated as stochastically
excited and dissipated quasi-Hamiltonian system and the exact and approximate stationary
solutions of the system have been derived by using the theory of the exact stationary solutions of
stochastically excited and dissipated Hamiltonian systems and the stochastic averaging method
for quasi-Hamiltonian systems, respectively. It is verified that the stochastic averaging method of
quasi-non-integrable-Hamiltonian systems can be employed to predict the response of the system
if the non-linear terms in system (1) take an important role in the response of the system.
Otherwise, the stochastic averaging method for quasi-integrable-Hamiltonian system are
applicable. An example of 2DOF vibro-impact system under stochastic excitations is given to
illustrate the application and effectiveness of the proposed procedures. The procedures can be
further extended to predict the response of stochastically excited MDOF vibro-impact system
with bilinear spring or other contact modelling.
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