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Abstract

An inertial shaker as a vibratory system with impact is considered. By means of differential equations,
periodicity and matching conditions, the theoretical solution of periodic n — 1 impacting motion can be
obtained and the Poincaré map is established. Dynamics of the system are studied with special attention to
interaction of Hopf and period doubling bifurcations corresponding to a codimension-2 one when a pair of
complex conjugate eigenvalues crosses the unit circle and the other eigenvalue crosses —1 simultaneously
for the Jacobi matrix. The four-dimensional map can be reduced to a three-dimensional normal form by the
center manifold theorem and the theory of normal forms. The two-parameter unfoldings of local dynamical
behavior are put forward and the singularity is investigated. It is proved that there exist curve doubling
bifurcation (a torus doubling bifurcation), Hopf bifurcation of 2-2 fixed points as well as period doubling
bifurcation and Hopf bifurcation of 1-1 fixed points near the critical point. Numerical results indicate that
the vibro-impact system presents complicated and interesting curve doubling bifurcation and Hopf
bifurcation as the two controlling parameters vary.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibro-impact systems are often encountered in practice, for instance, in the models of hammer-
like devices, rotor-casing dynamical systems, collisions of solids, ships moored at dockside, etc.
Impacts give rise to non-linearity and discontinuity so that the vibro-impact system can exhibit
rich and complicated dynamic behavior and it is a good testing bench for non-linear theories
[1-10]. During the past decades non-smooth dynamics of mechanical systems with impacts have
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become the subject of several investigations, and many new problems of theory have been
advanced in research of vibro-impacts. The classical pattern of period doubling bifurcation
cascade was observed numerically by Shaw and Holmes [1]. Nordmark [2] proved that such
systems can undergo ‘‘grazing bifurcation’ and that they could lead to chaotic behavior. Peterka
and Vacik [3] even provided bounds of chaotic responses with the help of an analogue computer.
Recently, a few researchers began to focus their attention on the phenomena of Hopf bifurcations
of the vibro-impact systems. Chatterjee and Mallik [4] studied quasi-periodic vibro-impacts of a
class of single-degree-of-freedom (d.o.f.) self-excited oscillators with an impact damper. Budd [5]
studied vibro-impacts of a single-d.o.f. system contacting a single stop and proved that if
coefficient of restitution is less than 1, then quasi-periodic motion cannot occur in the system. Luo
and Xie [6-8] considered a 2-d.o.f. vibro-impact system without damping, and studied Hopf
bifurcations of periodic motions with single impact in non-resonance, weak resonance and strong
resonance cases. So far, few researchers have investigated the phenomena of codimension-2
bifurcation in vibro-impact system. Xie [9] and Wen [10] investigated codimension-2 bifurcations
corresponding to eigenvalues being double —1 of a vibro-impact system with one-side amplitude
constraint and found Hopf bifurcation of period 2 two-impact orbit.

In this paper, using Poincaré map and normal form approach, we investigate the interaction of
Hopf and period doubling bifurcation (the so-called Hopf-Flip bifurcation [11]) of inertial
impacting shaker, which is a 2-d.o.f. vibro-impact system. To make it possible to analyze this
complex problem and make the calculations easier and correct, we take advantage of a symbolic
software, like MAPLE. In the second section of this paper, the equations of motion are discussed
and the Poincaré map is established, then periodic motion with one impact and its stability are
studied by analytical methods. The normal forms in Hopf-zero cases for differential equations are
discussed in Ref. [12]. In Section 3, we propose the procedure to reduce the four-dimensional
maps to a three-dimensional ones by the center manifold theorem and determine the normal
forms and the associated coefficients, and we discuss Hopf—Flip bifurcations of the vibro-impact
system, which correspond to a codimension-2 situation when a pair of complex conjugate
eigenvalues crosses the unit circle and the other eigenvalue crosses —1 simultaneously for the
Jacobi matrix. In Section 4, numerical simulation proves that there exist curve doubling
bifurcation (a torus doubling bifurcation), Hopf bifurcation of 2-2 fixed points as well as period
doubling bifurcation and Hopf bifurcation of 1-1 fixed points near the critical point.

2. Poincare map, periodic motions and its stability

The model for one type of 2-d.o.f. vibro-impact system is shown in Fig. 1. The mass M is
connected to a linear spring with stiffness K and a damper C. The excitation on M is harmonic
with amplitude Fy. The mass M will impact mass m whenever they have the same height and a
non-zero relative velocity. After impacting, m becomes a free body and moves in the field of
gravity g, while M becomes a 1-d.o.f. forced oscillator. The situation lasts till the next impact.

Between impacts, the governing equations are

MXx + Cx + Kx = Fy sin(wt + 0), (1)
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Fig. 1. Schematic of the vibro-impact system.

Jy=-9. (2)

According to the conservation law of momentum and the definition of coefficient of restitution R,
we have
M).Cf +my7 = M).C++my+, (3)

— V¢ =R — o), (4)

where x_ and y_ represent, respectively, the approach velocities of M and m at the instant of
impact. x, and p, represent, respectively, the departure velocities of M and m at the instant,
which are given by
1 —uR +u(lJrR). ) I1+R_  pu—R
X

Xy = 4+ ey = X
* 1 +u 1 +u I I+u 1+ u

V- (%)

where p=m/M.
We use new scaling x = Ax, y = Ay, 0 = wt, where A = Fo/(K\/(l —12)% + (2&9)%), and drop

the bar for convenience. We put Egs. (1) and (2) (as well as Eq. (5)) into non-dimensional forms

CJa-pr ey
x+—x+—
Y 7?

sin(0 + 6), (6)

j} = —€y, (7)

where 7 = w/w,, w, = /KM, & = C/@Maw,), &1 = /(1 =) + QX /(). B = Fo/ My.
The full solutions of Egs. (6) and (7) take the forms

x(0) = e <D by sinn(0/y) + ba cos n(0/7)] + sin(0 + 7), ®)

%(0) =[e <2 /y){[b1[n cos n(0/y) — & sinn(0/y)]
— bo[Ecos n(0/y) + nsinn(0/)]} + cos(0 + 1), )
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Y(0) = by + by — 102, (10)
9(0) = bs — €10, (11)

where n = /1 — &, 1 =0 — ¢, ¢ = tan"'[2&y/(1 —y*)] and b, (i = 1, ..., 4) are constants.

We choose a Poincaré section: d=R* x S', where ¢ = {(x,%,7,7,0)eR* xS x =y, x =
X1, 7 =7+}, S' =R (mod T) reflects the periodicity of period 7 in f. Suppose the nth impact
occurs at 0 = 07, the state variables of the system at 0 = 07 is (%, X, &, j7)T, and b; i=1,...,4) can
be easily represented by the state variables and phase 7. So, we have

x(0) = x(0, %, X, 9), (12)
x(0) = x(0, %, X, 9), (13)
2(0) = 30, %, ), (14)
7(0) = 30, 7). (15)
Suppose 6 is the smallest positive root of the equation
G0,%,%,5,%) = x(0, %, %,%) — »(0,%,7) = 0, (16)

then at the instant 0, the (n+ 1)th impact happens. From Eq.(5) and the continuity of
displacement of M during the impact, we obtain the state variables at 0 = 0"

X =x(07,% %7 = x(0,% %7 = £1(0,% %7, (17)

¥ =x07,%% 5,7 = (0,7, % 7,7
1 —uR w1+ R).

_ . 07 ~ A~ 97 ~ 18
Hﬂx( ,x,x,f)+7l+# (07, ), (18)
V=307, %,%,5,%) = /50, % %, 5,9
1 + R — ~ A n— R Y
= 0 £) + —5(0 ) 19
1+ux( XX, 1) + 1Jruy( V) (19)
The following relationship is obvious:
v = 0 + f(mod 2r). (20)
If there is a point (0, %, %, ,7)T €S' x R? x S!, which satisfies Eq. (16) and
Gy(0,%,%,7,%) = x(0, %, X, %) — (0, %, 5) #0 (21)

at the same point. By virtue of the implicit function theorem, 0 can locally be solved from Eq. (16)
as

0 = 0%, %, 7, 9). (22)

(x,x,y,7) and we obtain the Poincaré map
f:Q-RxS! (23)
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or
X = filx, %, 3,7) = fi(0(x, X, 3, 7), X, X, T),
& = fo(x, %, ,7) = H0(x, X, 3, T), X, X, §, T),

¥ = fa(x, %, ,7) = A0(x, X, §, T), X, X, 3, T),
7 = fa(x, X, ,7) = 0(x, X, y,7) + 1(mod 27), (24)

where Q< R? x S! is a connected open domain. If there exists a point
(2nm, X0, X0, Y0, 70) €S x R® x S,
which satisfies Egs. (16), (21) and
Xo = f1(2nm, xo, %0, 7o),
X0 = f2(2nm, X0, %0, Y0, To),
o = f3(2nm, xo, %o, Jo, T0)- (25)

then Xy = (xo,xo,yo,ro)TeR3 x S! is a fixed point of map (23), or f(Xy) = X.

Replacing %, X, 7, 7 in Eqgs. (12)—(15), respectively, by xg, X0, Vo, To, We obtain a period nT motion
of the system, which is periodic n — | impact motion, where 7 = 2nn/w.

Due to the weak dynamical coupling nature of the system, the period n7 motion can easily be
computed from Egs. (16) and (25) and be represented as functions of parameters (in the case
n =1, see Appendix A). The stability of the period nT motion is equivalent to that of the fixed
point Xy of map (23), the latter is determined by the matrix

oy =L 26)
X=X,
where X = (x, x,7,7)" eR? x S'. If all eigenvalues of Df(X;) lie inside of the unit circle, the fixed
point is stable, so is the period nT motion. If some eigenvalues that pass the boundary of the unit
circle, the fixed point X, loses its stability, and so does the period nT motion. In this case,
bifurcation may happen. The type of the bifurcation depends not only on the degeneracy of
Df(Xy) but also on high terms in f.

All entries of Df'(Xj) can be computed and are represented as functions of system parameters.

For example

oh _9hoo o (80 8G/ox

= -— —=— . 2
ox d0ox ox’ <6x 8G/89> @7
Df(Xy) is given in Appendix B.
Let AX = X — Xj, we change Eq. (23) into
£ Q>R
AX' = fi(AX) = f(Xo(v) + AX) — Xo(v), (28)

where Q stands for a connected open domain containing the origin of R*, and v = (v, v,)" eR?
represents parameter set of the system.
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We expand the functionf,(AX) as Taylor series in the variables AX and v, which takes the
form

SAX)= D" Fpv?AXY (29)
ptHg=1
with
_ 1 arHf(AX)

= Fpy = =1, 3
PE plg! v OAX! > Fr=0,p (30)

(ve,0)

where v, is a critical parameter value.

3. Interaction of Hopf and period doubling bifurcation

We will reduce the four-dimensional maps (28) to a three-dimensional normal form by the
center manifold theorem and theory of normal forms in this section. The Jacobian matrix of
Eq. (28) at AX = 0 reads

A(v) = Df\(0). (31)

Take v =v —v., and drop the bar for convenience. We study one kind of codimension-2
bifurcation of system (1), which is characterized by the so-called Hopf-Flip degeneracy, and

satisfy:
(H.1) A(0) = Dfy(0) has a pair of complex conjugate eigenvalues Ay, 4y on the unit circle, one
real eigenvalues 4, = —1, and another real eigenvalue |1, <1.

(H.2) Non-resonant condition 4y#1, n =1,2,3,4,5,6 and 5# — 1, n =4, 5.
Let

P =+ a3+ a)P +ad+ayg =0 (32)

be characteristic equation for matrix A(v), then we have the following useful lemma [13]:

Lemma. The roots of Eq. (32) satisfy (H.1), if and only if

(a.1) |ap|<1;

(@a2) ai+as=14ay+ ar;

(@.3) ax(1 — ap) + ao(1 — @) + as(apas — ar) = apar(1 — ap) + (1 — a3) + ai(apas — ar) = 0;
(a.4) a; + a3 > 0; and

(a.5) 2ap+ a3 <2+ ay,

where a;eR (i =0,1,2,3,4,5) is dependent upon parameters of the system.

We write four-dimensional map (29) as

X = Ax + F(x) = Ax + FX(x) + F3(x) + O(|Ix||*), (33)
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where 4 = A(0), x = (x1,%2,X3,x4)" = (Ax, A%, Ay, Av)", F™ = (F), Fi3), F Fi3)T and Fl) is the
jth component of F™, in which

S
F2 = Z 1 Ok (1)) 1 52 X053 5
D L silsylsslsyl oxy oxyonyoxy TR

1 O°F;
F3_ — () X5 52 53 x 54 ,
" ; s1182153154! Ox]' Ox30x7 Oxy' 1727374
where j=1,...,4, §5=s51+s5+s53+s4. Let q eR*, qzeR4 and qoeC4 be eigenvectors
corresponding to 41, 4, and Ay, respectively, we can obtain the eigenmatrix

B = (q1,Re qo, —Im gy, q2). (34)
After changing the co-ordinates as x = B(yT, w)T, we put map of Eq. (33) into the form
Y =By +H@y,w), w =lw+ E(y,w), (35)
where weR,y = (yl,yz,yg)TeR3, H(y,w) = (Hl,Hz,H3)T and
-1 0 0
By=| 0 o —B| (x=Reiy f=1Imi). (36)
0 p «
Let u = y1, z =y, +1iy3, Z = yo — iy3, map (35) takes the form
U= —u+ %gzoou2 + %902022 + %900222 + gz + gio1uz + goi12Z
+ Groowu + Gorowz + Goo1 Wz + Lgaotr® + gruzz + fi(u, 2,2, p), (37a)
2 = Joz + Shaoou® + Yhoooz* + Yooz + hirouz + hioiuz + hoi1 22
+ Kigowu + Koiowz + Kogiwz + Shoiot*z + Shopi 222 + fo(u, z, 2, ), (37b)
w = Jow+ %ezoou2 + %602022 + %eoozzz + erouz + ejo1uz + ep112Z + -+, (37¢)
where
0°H, 1/0*H, 0&°H, . 0°H|
g200 = B go2 = Z( 5 a2 2i P ays)’

_1(&¥H,  &@H - o*H,
Tt T a3 T T anan)

_1<62H1 i62H1> _1(62H1 +;82H1>
MO=3\omay:  amas) T T 2\amars | amans)

g 1<52H1 52H1)
011 — 4\ (= 7 X~ 1 |
4\ o3 oy3

O*H| 1(82H1 . 0°H, >

Giog = ——— = _ _
0= apow T T 2\ Gy 16y38w
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oo 1 O’ H, i o’ H, _PH, _ 1/ &H &H
001 =5 By20w aysow )’ g300 = —6y? > gl = Z 6y18y§ 8y18y§ >
O*H, O°H 1[6°H, 0&°H. O*Hy  (*Hy O°H PH
hzoo=—22+1—23, hozoz—[ 22— 22—1-2 . —i—l( 23— 23— 2)]
oy oy 4| 0y3 oy3 0y20y3 0y35 oy3 0y20y3

1[6*H, 82H2 62H3 0*Hy,  0*H, 0*H,
hoo2 = ) - +1

- 12
a3 o3 6y26y3 oy3 3 0y20y3

1 [ 0*H, 62H; ( 0*H; 0*H, )]
hio == +i
2|0y10y2 ayl@y3 10y Ay10y;3

+1

. 1[62H2 0> H 0*Hs aszﬂ
0= Gay:  yidys T \aydys | oyidys

\ 1 [asz 0*H, . [(0*H; 82H3>]
011
6y2 6y3 8y2 6y3

’ 010 Oy,0w  Oy30w layzéw 0y30w

O*H. O’H 1[*H OPH [ O*H 0*H.
Kioo — 2 1 3 gL 2 3 3 2
oy1ow  0Oyiow 2

Koo O’H,  O*Hj ; O’Hy  0*H,
) 0y,0w  0y3ow 0y20w ~ OyzOw

0°H, 0 H; [ 0°H; 0’ H,
thO + 1 B - >
2 oyidy:  0y20y; Oy10y>  Oyi0y3

ho1 =

1[83H3 O H, .<_ 0*H, 63H3>]
810y30y3  0y203 Oy30ys  0y20y3

_PE 1(62E OE . PE >

o _L(CE _OE . OFE
T\ 92 Tonmays)

1/ PE . PE [ PE +i52E
=5\ aman  ayiays)T T 2\amays | ayiays)”

. 1(82E+82E)
ol =-\373T23 ]
4\oy; 3
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Suppose now the three-dimensional center manifold has the form
w=LuzZz) = leoou +5 W0202 + lWoozz + Whouz
+ Whoiuz + Wonzz + O((Jul + |21)°), (38)

where Wiy, Woi1 €R, and Wy = Wooa, Wi = Wior.

Substituting w = L(u, z, Z) into the first two Eq. (37), we have a three-dimensional reduced map
in which f; (i = 1,2) begin with the third order terms in (u, z, Z), but include no resonant terms of
third order.

Due to the properties of center manifold, the equations for Wjy(j +k+ [ =2) take the
following form:

(VYA — JolWii = ejr (G +k+1=2). (39)
It is easy to verify that all matrices [(—1)0]5/?6 — )2] are non-singular if /1375 1, hence
/kl = [( 1)/;u0/no — /12 ejk/ (] +k+1= 2). (40)

The reduced map becomes

1
U = —u+ Z ,k,l,gjklu’Z 2+ Yoot + ginuzz + filu, z, 2),

Jtk+i= 2/
1 . A A "
7 = doz + Z j’k—‘l'hjk;u’zkzl + %hzlouzZ + %hoglzzf + fo(u, z, 2), (41)
k=]

where
<3300 = $9300 + 3G100 W0,
gt = gt + Gioo Worr + GoroWior + Goot Wiio,
1haro = Shato + Kioo Wiio + SKoro Wano,
%ﬁozl = ho21 + Koro Worn + 3Koot Wozo. (42)

The next step is to transform (41) into its normal form. We have dropped the “cap™ of g, and
hja (j + k +1=3) in Eq. (41). Rewrite Eq. (41) as

G:RxCoRxC, Z =GZ) =TZ+ G2),

W\ | -1 0 fx 9(x,z,2)
()-10 2)(2)-(23) @

where

Suppose
G(Z) = G(Z) + O(|Z|I"" D), (44)
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where G, is a homogeneous polynomial of degree n (n>=2), i.e.,

1 o
D ket mgﬂdu’ Z*g!

1 .
D jtkti=n Whjkl Wz

G,(2) = (n=2). (45)

kzl

In order to cancel the non-resonant terms in Eq. (43), we perform a base change in R x C:
H:RxC->RxC, Y=HZ)=Z+ P,(2) (406)

is a local diffeomorphism in a neighborhood of (0,0)eR x C. P, has the same form as G,.Then we
have the following diagram:

RxC —G—> RxC
L1 L1

RxC N, RxC

and
N =H-G-H™!
or
Y = N(Y)=T,Y + N(Y)
= To(Y = P,(Y) + O(|Y|"™) + G(Y — P,(Y) + O(| Y|["™))
+ Po(To(Y — Po(Y) + O(|YII") + G(Y — Pu(Y) + O(| Y]I"™)))

= ToY + N,(Y) + O(| Y|I"), (47)

where
Nn(Y) = _TOPn(Y) + Pn(TO Y) + Gn( Y)- (48)

The idea of normal form method is to choose P = P, suitably to kill all non-resonant terms, and
leave all resonant ones in G, unchanged. Let us begin with n = 2, and suppose
1 .
k=l
Z/+k+lzzmvjkl”12 z
Py(Z2) = 1 ,
j =l
D bki=2 ijklu’z z
where vj; and wj; are unknown constants and are to be determined by equation N»(Y) = 0, that
is equivalent to

Uikl jkry_ L
T (1Y %] A
G+k+1=2). (49)
Wikl -
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If /%{) #1 (j =1,3,4), we can choose
o = g /l=1 = (V2620w = ha/l2o — (=1 75 %) (50)
or

V200 = —¢200/2, U020 = —go20/Ug + 1), 002 = —gooa /(T3 + 1),
vio = g1i0/(o — 1)y vior = gio1/(lo — 1), vo11 = —go11/2,
wa00 = haoo/(Zo — 1), woo = hoao/20(1 — Z0),  Woo2 = hooa /(G0 — 23),

wito = hi10/Q220),  wior = hiot/(Zo + 40),  worr = ho11/(Ao — 1).

Now we have moved all second order terms out off Eq. (43). Similar procedure can be applied to
n = 3:suppose Y = Z + P3(Z) and obtain the equations similar to Eq. (49), this time, we find that
if 2,#1 (j =2,4,6), all terms in G3(Z) can be cancelled, but the following terms:

1 3
—g300U” + uzz
69300 g1 (51
%h210u2z + %227
cannot be cancelled because the corresponding denominators in Eq. (50) are zero. And we let
those terms in Ps to be zero. So third order base change does not effect the coefficients in Eq. (51).
It is easy to verify if adding more conditions on Ay, i.e., /13 # — 1 and /1(5) # — 1, we can cancel all

fourth order terms in Eq. (43). The fourth order base change does not effect all resonant terms in
Eq. (51) either. We at last obtain the following normal form of map (43):

U = —u+ ajd + ayuzz + O((jul + |21)°),
2 = oz + biPz + by2?z 4+ O((Jul + |2))°). (52)
Next, we drive the explicit formulae for a;, b;(i = 1,2) in terms of gy and hyy (j + k + 1<3)
Suppose Eq. (46) (for n = 2) has inverse
Z =Y - P(Y)+ Ex(Y) + O(|Y|"), (53)
where E3(Y) are homogeneous polynomials of degree 3. And from Eq. (47) (for n = 2)
Y' = To(Y — Po(Y) + E3(Y) + O(| YII*)
+ G(Y — Py(Y) + E3(Y) + O(| Y[*) + PoTo(Y — Po(Y) + E3(Y) + O(|Y|[)
+ G(Y — Py(Y) + Ex(Y) + O(| Y|I))
=ToY + Py(ToY) — ToPo(Y) + Go(Y) + ToEs(Y) + Go(Y — Po(Y))
+ PyTo(Y — Po(Y)) + Go(Y)) + O Y1), (54)

where Py(TyY) — ToP2(Y) + Go(Y) = 0 and Go(Y — P(Y)), Po(To(Y — Po(Y)) 4+ Go(Y)) repre-
sent third order terms in Go(Y — P>(Y)) and in Py(To(Y — P2(Y)) + G2(Y)), respectively. From
Eq. (54), we know we need only to determine the coefficients corresponding resonant terms in
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E5(Y). By definition,
Y = Z+ Py(Z) =(Y = Po(Y) + Es(Y) + O(| YI"))
+ Py(Y — Py(Y) + E3(Y) + O(| Y||%)).
It is clearly
E;(Y) = —P5(Y — Py(Y)).

A direct calculation shows

Ex(Y) = n300u3 +nnuzz + ---
. B m210u2z + mOglzzf + - ’

where

gi10h200 >

| 2
n300 = 5(9200)" + Re(
’ (o — 1)

nii =49011(9200 — 2Re(Zoh110)) — 2Re (

n 2Re< giiohor > B 2/1091109101
(Jo — 1) (Jo — D’

2090201101
(1+ 45

h200 = (/1110)2 hothion
|
ma10 =5 ———>(2g110 — 4oh020) + + =
2(do — 1) 435 o+ h)
1/~ 411200
——( Aoh — =
8( 0711109200 o — (o — 1)>,
3 1 hox |* | hoit |?
m 7h hooo + = =| +
LY P ] FHR P R vy
_ /1_0 h _ 20h1019020
49011 110 72(1_“%)2

and finally, we have

9300 | 92009200 g110h200
- R ,
“=Te Ty e( Jo — 1 >

92009011
2

/ h h
_ JRe 409020 ;01 —2Re(g”0 011>’
1+ },0 /10 —1

=g + — go1 Re(Zoh110) + 1109101

(55)



W.-C. Ding et al. | Journal of Sound and Vibration 275 (2004) 2745 39

bl _@ h200h020 thIEIOI ZOhIIOhIIO

T2 200-1 dg+i 2
(Ao + Dhonihao  griofaoo | hirogaoo
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When the control parameters v vary near the neighborhood of (0,0), we can obtain the normal
form map with parameters from map (52), which is [11]

F,:RxC->RxC,

N () [ @ el £ Ol D] (56)
z Jo |\ 2 M@z + by X2z + bozlzP) + O[(x| + 121)°] )
where
o = 0i(0) =~ — 1 = - 2100, 0400,

81)1 ! 81)2

i - 970(0,0 = 00(0, 0
& = Ba(W) = Aodo(v) — 1 = 4o (33(1)1 )Ul + AOO@(T)W,

51 %bl/}vo,gzzbz/}vo.

Let us put Eq. (56) in polar co-ordinates: z = ye'’, then new form of F, is

F,:R*xS'->R*x S!

or
x' X(x,,0; 1) —x —e1x + a1 x> + arxy? + ho.t.
V=1 Yo | = y+ey+ fix?y+ By + hot. |, (57)
0 O(x,y,0; 1) 0+ arg Ao + &3 + 7, x> + 723* + h.o.t.

where & = [1 + & — 1, &3 = arg(ey), f; = Re(b1), f; = Re(ba), 7y = Im(by), 7, = Im(b).

Because we are interested in curve doubling bifurcation, let us remove the azimuthal term and
we obtain the planar map F : R>—>R?. Consider F 5 which is the compound of map F, and
omitting the high order terms, we obtain

(Xﬁ) _ ((1 + 2e1)x — 2a1(1 + 2e)x* — 2as(1 + & + 82)xy2>

> > 3 (58)
Y, (1 +2e)y +21(1 + &1 + &2)x7y + 20,(1 + 2¢2)y"

We note that map (58) have four fixed points: (0,0), (0,y), (x,0), (x,y), which respectively
correspond to trivial fixed point, invariant circle, fixed point of period two, and invariant circles of
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L Curve doubling
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Fig. 2. The normal form unfoldings and phase portrait of Hopf-Flip bifurcation.

order two for three-dimensional map (57) and

(a) invariant circle (0,1): y = \/—&/(Bo(1 + 2e2)), for &, <0,
(b) fixed point of period two (x,0): x = + /& /(ai(1 + 2¢)), for g1a; >0,

(¢) invariant circles of order two (x, y):
N arer + ﬁ281 _ a & + /3181
N AT ¥ 26 + 260y 7 A1+ 261 + 260

(Cl282 + ﬁzﬁl)/A >0, (a182 + ﬂlgl)/A<0 (59)

for

where 4 = a1, — a2 ;.

When a; > 0, f, <0, the normal form phase portrait can be easily obtained as shown in Fig. 2.
The other possible choices for the signs would give the same kind of result.
In Fig. 2, L: ayes + fre1 =0 or ajex + freg = 0; Lot arer + fre1 = 0 or arey + fre; = 0.

4. Numerical simulations of Hopf—Flip interactions

In this section the analyses developed in the previous section are verified by the presentation of
results for the vibro-impact system given in Fig. 1.

We choose the first set of system parameters & = 0.02, f = 1.891, u = 0.4, and take y and R as
the control parameters, v = (v1,12)" = (y — Ve R — R)'. Acording to the former theoretical
analysis and numerical computation, we obtain the critical parameter values y,. and R., the normal
form coefficients and eigenvalues of Dfy(0) satisfying conditions (H.1) and (H.2) as follows:

v, = 4.34636, R.=0.6053882, ¢ = 0.128288v; 4 6.9189430,,
& = —0.020036v; — 0.101790v,2, &3 = —0.313760v; + 0.0753310v,,
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a; = 0.183402, a, = 0.067188,
by = —0.000497 — 0.0013831,

by = 0.066081 + 0.184888i,

B, =0.196242, B, = —0.001469, 7, = —0.006283, 7, = 0.000050,
J1(0) = —1.00000007,  453(0) = 0.30625536 +0.95194940i,
223(0) =1, A4(0) = —0.345903.

The Poincaré section is taken in the form ¢ = {(x,x,,7,0€R* x T,x = y,x = %,,y = y,}), and
the Poincaré map is four dimensional. So the section is projected to the (y,y) or other planes,
which are called projected Poincaré sections. A small perturbation of the theoretical fixed point
Xo = (%o, X0, Yo, 10)T of periodic 1-1 impact orbit, obtained in Section 2, is taken as an initial point
of map in the numerical analyses. As the parameter v vary near the neighborhood of (0,0),
dynamic behaviors of the vibro-impact system can be computed by using Egs. (8)—(10) and impact
joint relations (5), which are shown in the projected Poincaré section as Fig. 3. The vibro-impact
system exhibits stable periodic 1-1 impact motion (see Fig. 3(a)), corresponding to region (1) in
Fig. 2. Fig. 3(b) shows that the vibro-impact system exhibits unstable periodic 1-1 impact motion,
corresponding to region (3) in Fig. 2, but in this case invariant circle is not generated. Period

012 0092
0.1 ostr N 1-1 fixed
0.0889 . .
0.4 009 ., point
“«
0.089 ™,
00885 . 008 o
™ - 0.088
0.08
0.087 N
0.0881 007 .,
0.086 ~N
0.06 i
0.0877 0.085
37 3685 367 365 o 7 6 5 4 3 2 A 372 37 368 366 -364 -362x10"
(a) y (b) y (©) y
01 x10° x10*
0095 -3.04 304
-3.34 334
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~ = 364 B -364
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-394 -394
0.08 424 424
0075 454 -45
44 42 4 38 36 34 32 3 q0° 08 088 0.96 104 112 %8 !
(d) y (e T ® T

Fig. 3. The projected Poincaré map: (a) v; = 0.002, v, = —0.0002, stable 1-1 fixed point; (b) v; = 0.004, v, = —0.004,
unstable 1-1 fixed point; (c) v; = 0.004, v, = 0.001, stable 2-2 fixed points; (d) v; = 0.004, v; = 0.006, quasi-periodic
impacts represented by the attracting invariant circles from unstable 2-2 fixed points; (¢) v; = —0.002, v, = 0.004; and

() vy

—0.01, v, = 0.004.
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doubling bifurcation of periodic 1-1 impact motion occurs and the system exhibits stable periodic
2-2 impact motion which is represented by two fixed points in projected Poincaré sections as seen
in Fig. 3(c), corresponding to region (2) in Fig. 2. The periodic 2-2 impact motion changes its
stability as the control parameters vary, and Hopf bifurcation of periodic 2-2 impact motion
occurs so that the system can exhibit quasi-periodic impact motion of periodic 2-2 impact points;
see Fig. 3(d)—(f), which correspond to region (4) in Fig. 2.

We choose another set of system parameters ¢ = 0.02, R = 0.6, u = 0.7. y and f are taken as the
control parameters. Let v = (v;,12)" = (y — Ves B — ﬁC)T, we obtain the critical value of bifurcation
parameters, the normal form coefficients and eigenvalues of Dfy(0) satisfying conditions (H.1) and
(H.2) as follows:

y. = 16220476, B. = 1.709513, & = —9.230864v; + 0.05437 10>,
& = 1.391321p; + 041526305, &3 = 2.2107360; + 0.76896205,

ay = 0.541371, a, = 0.300346, b = 2.391417 — 0.680498i,

by = 0.047815 — 0.673464i,

B, = —1.329030, B, = —0.659493,

7, = —2.101340, 7, = 0.144598,

J1(0) = —1.00000003,  723(0) = —0.282808240.9591766i,

aa(0) =1,  14(0) = —0.308326.

As the parameter v varies near the neighborhood of (0,0), dynamic behaviors of the vibro-impact
system are shown in the projected Poincaré section as Fig. 4. The vibro-impact system exhibits
stable periodic 1-1 impact motion (see Fig. 4(a)), corresponding to region (1) in Fig. 2. Fig. 4(b)
shows that period doubling bifurcation of periodic 1-1 impact motion occurs, but period two
fixed points are unstable, corresponding to region (2) in Fig. 2. Hopf bifurcation of 1-1 fixed point
occurs and the vibro-impact system exhibits quasi-periodic impacts motion represented by the
attracting invariant circle as shown in Fig. 4(c), corresponding to region (3) in Fig. 2. As the
control parameters vary, the invariant circle of order one loses stability and curve doubling
bifurcation occurs so that the system can exhibit quasi-periodic impact motion represented by two
attracting invariant circles as shown in Fig. 4(d) and (e), corresponding to region (4) in Fig. 2.

5. Conclusion

In this paper, we have studied the interaction dynamics of Hopf and period doubling
bifurcations of the two-degree-of-freedom vibro-impact system shown in Fig. 1 by theoretical
analysis and numerical simulations. Firstly, periodic n — 1 impact motion and the four-
dimensional Poincaré map of the system are established by analytical method and the periodic
motion stability is analyzed. When Jacobi matrix of the map has an eigenvalue in —1 and a pair of
complex conjugate eigenvalues on the unit circle, the Poincaré map is put into a three-dimensional
normal form by using the center manifold theorem and the theory of normal form. In Section 3,
we have discussed in detail the local dynamical behavior when the control parameters change near
the critical point. Certainly, the method can be extended to other analogous systems. In Section 4,
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Fig. 4. The projected Poincaré map: (a) v; = 0.0005, v, = —0.003, stable 1-1 fixed point; (b) v; = —0.001, v, = 0.0001,
unstable 2-2 fixed points; (¢) v; = 0.0015, v, = 0.009, quasi-periodic impacts represented by the attracting invariant
circles from unstable 1-1 fixed points; (d, e) v; = 0.0005, v, = 0.004, two stable invariant circles via curve doubling
bifurcation from unstable invariant circle.

numerical simulations verify the theoretical solution stated and indicate that there exist curve
doubling bifurcation (a torus doubling bifurcation), Hopf bifurcation of 2-2 fixed points as well
as period doubling bifurcation and Hopf bifurcation of 1-1 fixed points near the critical point.
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Appendix A
xo = —2myuse; /[s* + (¢ — 1)*] + sin 7,
%o = (1 = 2uR — Ryeyn/(1 + R),

Yo = ejm,

7o = cos” ' {ermf(1 — 2uR — R)/(1 + R) = 2u(n(c — 1) + &) /(s> + (¢ — DI},
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where
s=e X7 sinQmy/y), ¢ =e "7 cos(2mn/y).

Appendix B

oh _ | Jr['1(6'— 1)+ &)1 + R)
ox 2(1 + pn

oh _ (14 Ryys
ox  2(1+wny

o (+2u—Rnm

oy 1 +pu
%{1 = 2(11 —:_R) [yssintg + (n(c — 1) — &s) cos 1¢],
o _ (=R (1= pRya—(1+ Ryeilinle ~ 1) + &J(1 + R)
ox (1 + wny 2(1 + p)’nern
o _ (L= pR)ne—cs)c [(1 = pR)a = (1 + Ryuer](d + Ryys
0x (1 + wn 2(1 + w’nern
o _ [0 — pRya+ (u — Ryue ] + R)
ay (1 + ,M) e
%—{_2 (11 ;H) [y(n(c — 1) — &s) sin 19 + 5 cOS 79|

[ = uR)a — (1 + Rypei](1 + R)
2(1 + p)’nern

o __ (4 Rs _[(+Ra—(u—Relne— 1)+ +R)

[(1(1 — ¢) — &s) cos 7o + 7 sin o],

ox  (+pmy 2(1 + w’nern
s _ I+ R)nc =& [(1 + R)a — (u — R)er](1 + R)ys
ox (1+wn 2(1 + p)*nein
o _ _(L+Ra+ (- Re
oy (1 + w’e;
oy 1+R L .
o U om ‘u)m}[y(n(c 1) — &s) sin g + s cos 1]

_ [(I+ R)a — (4 — R)er](1 + R)
2(1 + winern

[(n(1 — ¢) — &s) cos to + yssin 1g],
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o Ile—1+EI1+R)

ox 2(1 + wnern
% . (14 R)ys
ox 21 + wnew
s 1+R
y (1 +we
Of4 1+ R .
JE T 1 —¢)—
o 20+ e [(n( ¢) — &s) cos g + s sin 1g],
where
o 1(2(1 4 2u— R)éein 2muse) . }
a=3x2n )= —- — +ysinty — 2Ecos Ty ;.
( ) ’)){ (1 _|_R) [S2 + (C . 1)2]17 Y 0 é 0
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