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Abstract

Vibration of orthotropic rectangular plates having viscoelastic point supports at the corners under the
effect of sinusoidally varying concentrated moment is analyzed. The Lagrange equation is used to examine
the free vibration characteristics and the steady state response to a sinusoidally varying concentrated
moment acting at the centre of a viscoelastically point-supported orthotropic elastic plate of rectangular
shape. In the study, for applying the Lagrange equation, the trial function denoting the deflection of the
plate is expressed in the polynomial form. By using the Lagrange equation, the problem is reduced to the
solution of a system of algebraic equations. The influence of the mechanical properties, and of the damping
of the supports on the mode shapes and the steady state response of the viscoelastically point-supported
rectangular plates is investigated numerically, for a concentrated moment at the centre for various values of
the mechanical properties which characterize the anisotropy of the plate material and for various damping
ratios. The results of the natural frequencies are given for the first three antisymmetrical–symmetrical
modes, and the steady state responses to a sinusoidally varying concentrated moment are determined for
the frequency ranges of the first two antisymmetrical–symmetrical mode types. Convergence studies are
made. The validity of the obtained results is demonstrated by comparing them with other solutions for free
vibration analysis of point-supported or completely free rectangular plates for the first three
antisymmetrical–symmetrical vibration modes based on the Kirchhoff–Love plate theory.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Free and forced vibrations of the point-supported plates are of considerable interest to the
engineers designing panels at isolated points. Many researchers have investigated the free
vibration analysis of rectangular isotropic and orthotropic plates supported at various points and
based on the Kirchhoff–Love plate theory. However, it appears that there is only a limited
number of studies on the steady state response of viscoelastically point-supported plates.
There are many studies concerning the free vibration analysis of rectangular isotropic and

orthotropic plates that are completely free or supported at various points and based on
Kirchhoff–Love plate theory (for example [1–7]). Although there are lots of studies on the free
vibration analysis of rectangular plates supported at various points, there are only a limited
number of studies on the steady state response of point-supported rectangular plates. The steady
state response to a sinusoidally varying force was determined for a viscoelastically point-
supported rectangular plate by Yamada et al. [8] by using the generalized Galerkin method. A
generalization of this study to orthotropic rectangular plates was investigated by Kocat .urk [9] by
using the generalized Galerkin method, and by Kocat .urk and Altinta-s [10] by using an energy-
based finite difference method. In the present study, the Lagrange equation is used to examine the
free vibration characteristics and steady state response to a sinusoidally varying concentrated
moment acting at the centre of a viscoelastically point-supported orthotropic elastic plate of
rectangular shape. By analyzing the steady state response of the considered problem, the peak
values of the moment transmissibilities are obtained. In the study, for applying the Lagrange
equation, trial functions denoting the deflection of the plate are expressed in the polynomial form.
In many branches of modern industry, the structural elements, such as plates, are fabricated

from composite materials. For this reason, the present investigation may be considered to be a
problem of the mechanics of elements fabricated from composite materials. The purpose of the
present work is to analyze the steady state response of a viscoelastically point-supported
orthotropic plate to a sinusoidally varying moment for various values of the mechanical
properties characterizing the anisotropy of the plate material by using the Lagrange equation. The
problems considered are solved within the framework of the Kirchhoff–Love hypothesis. The
convergence study is based on the numerical values obtained for various numbers of polynomial
terms. In the numerical examples, the natural frequency parameters are determined for the first
three antisymmetrical–symmetrical modes, and steady state responses to a sinusoidally varying
moment are determined for the frequency ranges of the first two antisymmetrical–symmetrical
mode types. Because there is no existing study on the steady state response of viscoelastically
corner point-supported rectangular specially orthotropic plates under the effect of sinusoidally
varying concentrated moment, the accuracy of the results is partially established by comparison
with previously published accurate free vibration results of the first three antisymmetrical–
symmetrical modes for the corner point-supported plates based on the thin plate theory.

2. Analysis

Consider a viscoelastically corner point-supported rectangular elastic orthotropic plate of side
lengths a; b and thickness h under the effect of the sinusoidally varying concentrated moment MðtÞ
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at the centre of the plate as shown in Fig. 1, where ki is the spring constant, ci is the damping
coefficient, PiðX1i;X2iÞ is the support force of a point support at the ith support. The axes of the
elastic symmetry of the plate material coincide with the OX1- and OX2-axis. Also, the co-ordinate
axes OX1 and OX2 are oriented along the edges of the plate with the origin at O. Therefore the
plate is specially orthotropic. Because the plate is orthotropic and the supports are viscoelastic,
there are lots of parameters to be considered: For this reason, although it is possible to take lots of
point supports at arbitrary points, in the numerical investigations here, for brevity of the study, it
will be considered that the plate is supported symmetrically at the four corner points and ki and ci

are taken to have the same respective values at all the supports denoted by ki ¼ ks and ci ¼ cs:
Thus, in the considered loading and support conditions, only antisymmetrical–symmetrical
vibrations arise in the plate. Under the above-mentioned conditions, the steady state responses of
the viscoelastically corner point-supported plate to a sinusoidally varying concentrated moment
for various orthotropy ratios, damping and spring constant values, will be determined by using
the Lagrange equation.
For a plate undergoing sinusoidally varying concentrated moment MðtÞ ¼ Q:eiot; where o is the

radian frequency, the strain energy of bending in Cartesian co-ordinates is given by
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1
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In Eq. (1), D11; D22; D66 are expressed as follows:

D11 ¼
E1h

3

12 1� n221=e
� �; D22 ¼
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; ð2Þ

where G12 is the shear modulus. In Eq. (2), the following definitions are used:

n12
E1

¼
n21
E2

; e ¼
E2

E1
: ð3Þ
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Fig. 1. Viscoelastically corner point-supported rectangular orthotropic plate subjected to an external force.
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Here E1;E2 are Young’s moduli in the OX1- and OX2-directions, respectively, and n21 is the
Poisson ratio for the strain response in the X1 direction due to an applied stress in the X2

direction. The potential energy of the external concentrated moment is

Fe ¼ �MðtÞ
@W ð0; 0; tÞ

@X1
: ð4Þ

With rotary inertia neglected, the kinetic energy of the vibrating plate is

T ¼
1
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where r is the mass density per unit volume. The additive strain energy and dissipation function of
viscoelastic supports are

Fs ¼
1
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Introducing the following non-dimensional parameters
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X1

a
; x2 ¼
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; %wðx1;x2; tÞ ¼ W=a ð7Þ

the above energy expressions can be written at time t as
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It is known that some expressions satisfying geometrical boundary conditions are chosen for

%wðx1;x2; tÞ and by using the Lagrange equations with the trial function; the natural boundary
conditions are also satisfied. By using the Lagrange equations, by assuming the displacement

%wðx1;x2; tÞ to be representable by a linear series of admissible functions and adjusting the
coefficients in the series to satisfy the Lagrange equation, an approximate solution is found for the
displacement function. For applying the Lagrange equation, the trial function %wðx1;x2; tÞ is
approximated by space-dependent polynomial terms x0

1; x
1
1;x

2
1;y;xM

1 and x0
2; x

1
2;x

2
2;y;xN

2 ; and
time-dependent generalized displacement co-ordinates %AmnðtÞ: Thus

%wðx1;x2; tÞ ¼
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%AmnðtÞxm
1 xn

2; ð9Þ
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where %wðx1; x2; tÞ is the steady state response (the transverse deflection) of the plate to a
sinusoidally varying concentrated moment MðtÞ ¼ Qeiot: Each term, xm

1 and xn
2 must satisfy the

geometrical boundary conditions. However, in the considered problem, there is no geometrical
boundary condition to be satisfied. As it is known, there is no need for these functions to satisfy
the natural boundary conditions. However, if the natural boundary conditions are also satisfied
when selecting the functions, then the rate of convergence will be high.
The function %wðx1; x2; tÞ that is given by Eq. (9), is substituted in Eqs. (8a–e). Then, application

of Lagrange equation yields a set of linear algebraic equations. The Lagrange equation for the
considered problem is given as

d

dt
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where the overdot stands for the partial derivative with respect to time. Introducing the following
non-dimensional parameters,

kj ¼
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and considering that when the moment is expressed as MðtÞ ¼ Qeiot; then the time-dependent
generalized functions can be expressed as follows:

%AmnðtÞ ¼ Amne
iot: ð12Þ

In Eq. (12), Amn is a complex variable containing a phase angle. Then, dimensionless complex
amplitude of the displacement of a point of the plate can be expressed as

wðx1;x2Þ ¼
XM
m¼0

XN

n¼0

Amnxm
1 xn

2: ð13Þ

By using Eq. (10), the following set of linear algebraic equations is obtained which can be
expressed in the following matrix form

A½ � Amnf g þ ilg B½ � Amnf g � l2 C½ � Amnf g ¼ qf g; ð14Þ

where ½A�; ½B� and ½C� are coefficient matrices obtained by using Eq. (10).
For free vibration analysis, when the external force and damping of the supports are zero in

Eq. (14), this situation results in a set of linear homogeneous equations that can be expressed in
the following matrix form:

½A�fAmng � l2½C�fAmng ¼ f0g: ð15Þ

By increasing the polynomial terms, the accuracy can be increased.
The maximum moment caused by the couple of the reaction forces of the supports is given by

Mr max ¼ a2
X2
j¼1

ðkj þ icjoÞ
XM
m¼0

XN

n¼0

Amnxm
1jx

n
2j ð16Þ
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and therefore the moment transmissibility is determined by

TM ¼
X4
j¼1

Mr max=Q ¼
X2
j¼1

ðkj þ igjlÞ
XM
m¼0

XN

n¼0

Amnxm
1jx

n
2j=ðaqÞ: ð17Þ

The number of unknown coefficients is M 
 N: Again, the number of equations which can be
written for each Amn coefficient by using Eq. (10) is M 
 N; which is given in matrix form by
Eq. (14). Therefore, the total number of these equations is equivalent to the total number of
unknown displacements and these unknowns can be determined by using the above-mentioned
equations.
The eigenvalues (characteristic values) l are found from the condition that the determinant of

the system of equations given by Eq. (15) must vanish.

3. Numerical results

The steady state response to a sinusoidally varying concentrated moment MðtÞ acting at the
centre of an orthotropic square plate, viscoelastically supported at four points which are
symmetrically located at the corners is calculated numerically. The parameters ki and gi are taken
as having the same respective values at all the supports denoted by ki ¼ ks and gi ¼ gs: Because of
the symmetry of the structure and of the viscoelastic point supports, under the considered
sinusoidally varying moment, only antisymmetrical–symmetrical vibrations arise in the plate. The
symbol AS represents symmetrical vibration with respect to x1 axis and antisymmetrical vibration
with respect to x2 axis.
A short investigation of the free vibration of an elastically point-supported plate is made for

comparing the obtained results with the existing results. The natural frequencies of the elastically
point-supported plate are determined by calculating the eigenvalues l of the frequency Eq. (15).
The parameter ki is taken as having the same value at all the supports denoted by ki ¼ ks: In the
frequency equation, m and n are odd or even integers depending on the vibration mode. For
example, the AS mode is symmetric about the x1 axis and antisymmetric about the x2 axis.
Therefore, for the AS mode, m ¼ 1; 3; 5;y and n ¼ 0; 2; 4;y . In the numerical calculations, G12

is assumed as follows [11]:

G12E
E1

ffiffiffi
e

p
2ð1þ n21

ffiffiffiffiffiffiffi
1=e

p
Þ
: ð18Þ

It is possible to simulate infinite lateral support stiffness by setting the translational stiffness
coefficient equal to 1
 108 at all the supports for comparing the obtained results with the existing
results of the point supported plates. Also, by setting the translational stiffness coefficient equal to
zero at all the supports, a completely free plate situation is obtained. In Table 1, the calculated
frequency parameters l are compared with those of the other researchers for the AS-1; AS-2;
AS-3 natural frequencies of an isotropic square plate supported at the corners for n21 ¼ 0:3:
Also, the convergence is tested in the table by taking the number of terms M 
 N ¼
3
 3; 4
 4; 5
 5; 6
 6: The corresponding determinant size becomes 9
 9; 16
 16;
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25
 25; 36
 36; respectively. It is seen that the present converged values show excellent agreement
with those of Refs. [6,7].
In Table 1b, the Poisson ratio is taken as n21 ¼ 0:333 and the obtained results are compared

with those of Gorman [4,5] and Narita [6]. It is shown that the convergence with respect to the
number of the polynomial terms is excellent in the considered cases. As it is observed from
Table 1, the frequency parameter decreases as the number of the polynomial terms increases: It
means that the convergence is from above. By increasing the number of the polynomial terms, the
exact value can be approached from above. It should be remembered that energy methods always
overestimate the fundamental frequency, so with more refined analyses the exact value can be
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Table 1

(a) Comparison of the obtained results with the existing results and convergence study of frequency parameters l for

corner point supported square plates, n21 ¼ 0:3; a ¼ 1; e ¼ 1

Determinant size AS-1 AS-2 AS-3

Present study ks ¼ 1
 108EN 9
 9 15.7716 51.6850 85.5248

16
 16 15.7703 50.3820 80.4778

25
 25 15.7703 50.3768 80.3625

36
 36 15.7702 50.3767 80.3609

Narita [6] 15.7702 — —

Venkateswara Rao et al. [7] 15.7702 — —

Kerstens [1] 15.64 — —

(b) Comparison of the obtained results with the existing results and convergence study of frequency parameters l for

corner point supported square plates, n21 ¼ 0:333; a ¼ 1; e ¼ 1

Determinant size AS-1 AS-2 AS-3

Present study ks ¼ 1
 108 9
 9 15.5438 51.1148 85.1211

16
 16 15.5426 48.8345 80.1487

25
 25 15.5426 49.8295 80.0349

36
 36 15.5426 49.8294 80.0333

Narita [6] 15.5426 — —

Gorman [4] 15.550 49.92 80.08

Gorman [5] 15.564 50.00 80.20

Table 2

Comparison of the obtained results with the existing results and convergence study of frequency parameters l for a

completely free square plate, n21 ¼ 0:25; ks ¼ 0; a ¼ 1; e ¼ 1

Determinant size AS-1 AS-2 AS-3

Present study ks ¼ 0 9
 9 0.00 36.1059 63.1936

16
 16 0.00 35.6024 61.3069

25
 25 0.00 35.6019 61.2898

36
 36 0.00 35.6019 61.2897

Gorman [3] 0.00 35.6 61.28
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approached from above. Since the energy methods always yield upper bounds and the
convergence study indicates that the calculated values are converged to within five significant
figures, it seems that the present results, as well as those in Ref. [7] are closer to the exact ones than
the results of Gorman [4,5].
In Table 2, the obtained numerical results are compared with those of obtained by Gorman [3]

for a completely free orthotropic plate and it is observed from that table that the results are in
good agreement.
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Table 3

The frequencies and dimensionless damping coefficients at which the peak values of the force transmissibilities occur:

n21 ¼ 0:3; k ¼ 0; 10, 100, 200

Modes e g ¼ 0 g ¼ 1 g ¼ 3 g ¼ 5 g ¼ 10 g ¼ 20 g ¼ 2000

k ¼ 0; n21 ¼ 0:3; x1s ¼ x2s ¼ 0:5
AS-1 1.0 0 15.14 15.74 15.76 15.77 15.77 15.77

0.8 0 13.97 14.43 14.45 14.45 14.46 14.46

0.6 0 12.48 12.80 12.82 12.82 12.83 12.83

AS-2 1.0 0 — 51.46 50.75 50.47 50.40 50.38

0.8 0 — 50.66 49.49 49.06 48.96 48.93

0.6 0 — — 47.93 47.09 46.90 46.84

k ¼ 10; n21 ¼ 0:3; x1s ¼ x2s ¼ 0:5
AS-1 1.0 9.16 10.00 15.035 15.53 15.71 15.76 15.77

0.8 8.90 9.75 13.80 14.24 14.40 14.44 14.46

0.6 8.51 9.29 12.27 12.63 12.78 12.81 12.83

AS-2 1.0 38.61 — 51.37 50.71 50.46 50.40 50.38

0.8 35.96 — 50.60 49.44 49.05 48.96 48.93

0.6 32.87 — — 47.89 47.08 46.90 46.84

k ¼ 100; n21 ¼ 0:3; x1s ¼ x2s ¼ 0:5
AS-1 1.0 14.52 14.54 14.68 14.90 15.35 15.64 15.77

0.8 13.48 13.49 13.59 13.76 14.10 14.34 14.46

0.6 12.14 12.15 12.21 12.31 12.54 12.73 12.83

AS-2 1.0 47.60 48.67 50.09 50.28 50.36 50.38 50.38

0.8 45.80 47.41 48.86 48.91 48.92 48.93 48.93

0.6 43.45 — — 47.24 46.92 46.86 46.84

k ¼ 200; n21 ¼ 0:3; x1s ¼ x2s ¼ 0:5
AS-1 1.0 15.11 15.12 15.14 15.19 15.34 15.57 15.77

0.8 13.95 13.95 13.97 14.00 14.11 14.28 14.46

0.6 12.47 12.47 12.48 12.50 12.57 12.69 12.83

AS-2 1.0 48.95 49.07 49.60 49.97 50.25 50.35 50.38

0.8 47.31 47.45 48.07 48.48 48.80 48.89 48.93

0.6 45.07 45.28 46.11 46.51 46.75 46.82 46.84
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For obtaining the steady state response results of the viscoelastically corner point-supported
rectangular specially orthotropic plates under the effect of sinusoidally varying concentrated
moment given in Figs. 3–8 and Table 3, Eqs. (14) and (17) are used. From here on, in the
calculation of the results of the present study, 4
 4 terms of the polynomial series are used,
namely the size of the determinant is 16
 16.
In tables, the values ks ¼ 0 and ks ¼ 108EN; respectively, represent the frequency parameters

of an unconstrained free plate and a simply point-supported plate. Although the AS-1 mode
existing in the case of simple point supports does not occur in the completely free plate, it occurs
for every value of stiffness parameter, which is different from zero. Therefore, the frequency value
of the first AS mode of the completely free plate is taken as zero and the frequency value after the
zero value is assumed as the frequency value of the second mode for convenience while tabulating
the results for stiffness parameters varying from zero to 108: However, the first frequency value,
which is different from zero, is taken as the frequency value of the first AS mode in the studies on
the completely free plates. For ks ¼ 0 and 10, by increasing the damping parameter gs; the
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Fig. 2. Mode shapes of a corner point-supported plate for E2=E1 ¼ 1 for (a) AS-1; (b) AS-2 and (c) AS-3:
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frequency parameters of the resonant peaks for the AS-1 mode increase monotonically, the
frequency parameters of the resonant peaks for the AS-2 decrease monotonically and ultimately
become the values of a simply point-supported plate as seen in Table 3. For ks ¼ 100 and 200, by
increasing the damping parameter gs; the frequency parameters of the resonant peaks for the AS-1
and AS-2 modes increase monotonically and ultimately become the values of a simply point-
supported plate as seen in Table 3. As far as the authors know, there are no values to compare the
present obtained steady state results. Also, there are no values to compare the free vibration
analyses results for values of the support stiffness ks different from zero and infinite.
The mode shapes of the vibration can be determined from Eq. (14) by taking a coefficient Amn

as known and calculating the eigenvectors corresponding to the eigenvalues. The mode shapes for
the first three AS modes are shown in Fig. 2. The moment transmissibilities are determined for
various damping parameters gs for various values of ks by using Eqs. (13) and (16). In all of the
numerical calculations, n21 is taken as 0:3 and the locations of the point supports are chosen at the
corners of the plate.
Fig. 3a–d show the force transmissibilities for various values of gs for E2=E1 ¼ 1; Fig. 4a–d

show the force transmissibilities for E2=E1 ¼ 0:8; Fig. 5a–d show the force transmissibilities for
E2=E1 ¼ 0:6; for various values of gs for ks ¼ 0; 10; 100; 200; respectively. There are lots of
parameters involved in the study. Therefore, for the brevity of the numerical results, the locations
of the supports are taken only at the corners.
Figs. 3–5 show that within the frequency range of the figures, two resonant peaks appear for the

AS-1 and AS-2 vibrations and also antiresonant peaks or lowest values appear between adjacent
frequencies. In Figs. 3–5, the solid lines ðgs ¼ 0Þ represent the response curve of a plate with
undamped elastic point supports and the dotted lines ðgs ¼ 1000Þ a plate with approximately
simple point supports. As it is obvious and shown in Figs. 3–5, when ks and gs are both equal to
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Fig. 3. The force transmissibilities for various values of gs for E2=E1 ¼ 1 for (a) ks ¼ 0; (b) ks ¼ 10; (c) ks ¼ 100 and

(d) ks ¼ 200:
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zero, then the moment transmissibility become zero. Figs. 3–5 show that, although there are no
intersection points of the moment transmissibility curves for zero values of ks; with the increase of
the ks value, all of the moment transmissibility curves for the AS-1 mode intersect at fixed point
regardless of the damping parameters. Also, it is observed from these figures that, for low values
of ks; in the resonant peak region, there is no fixed intersection point of the moment
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Fig. 4. The force transmissibilities for various values of gs for E2=E1 ¼ 0:8 for (a) ks ¼ 0; (b) ks ¼ 10; (c) ks ¼ 100 and

(d) ks ¼ 200:

Fig. 5. The force transmissibilities for various values of gs for E2=E1 ¼ 0:6 for (a) ks ¼ 0; (b) ks ¼ 10; (c) ks ¼ 100 and

(d) ks ¼ 200:
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transmissibility curves for the AS-2 mode, Figs. 3a, b, 4a, b and 5a–c. For some ks and gs values, the
AS-2 resonant peak does not occur: For example in Fig. 3b, for ks ¼ 10 and gs ¼ 0; 1, this situation
occurs. By decreasing the E2=E1 value, for the AS-2 mode, the values of the resonant peaks become
small and for some ks; gs values, the AS-2 resonant peak does not occur, Figs. 3c, 4c and 5c. When there
is an intersection point in the resonant peak region, then by choosing a suitable value for the damping
parameter gs; it is possible to reduce the peak values of the force transmissibilities to the values of the
force transmissibilities which correspond to the intersection points shown in Figs. 3–5. Existence of such
points is useful for an optimum design of a system by choosing appropriate damping parameter. By
choosing appropriate damping parameters, resonant peaks of the moment transmissibilities disappear
and the related peak quantities become small. Within a certain range of the frequencies, the moment
transmissibilities are less than unity, which indicates the possibility of vibration isolation.
In Table 3, the frequencies at which the peak values of the moment transmissibilities for the

AS-1; AS-2 modes occur are determined for various damping parameters gs for ks ¼
0; 10; 100; 200 by using Eqs. (16) and (17). The dash sign — in Table 3 shows that there is no
resonant peak for the considered parameters.
When gs and ks are both zero, then, it is obvious that the moment transmissibility is zero. In the

case of great gs values, the viscoelastically point-supported plate behaves like a simply point-
supported plate. It is seen from Figs. 3–5 that when the value of ks is too big, then the effect of the
damping coefficient gs is negligible. Similarly, it is seen from Figs. 3–5 that, when the value of
the damping coefficient gs is too big, then the effect of the variation of ks is not effective on the
behaviour of the system.
Figs. 6–8 show that with the variation of the damping parameter gs; a damping parameter can

be obtained for which the peak values of the moment transmissibilities are minimum. The peak
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values of the moment transmissibilities occur at different values of l while changing the damping
parameter gs: However, the frequency parameter l remains between the frequency parameters l
obtained for gs ¼ 0 and N: Therefore, in Fig. 6, while changing gs for obtaining minimum peak
value of the moment transmissibility for the considered mode, the frequency parameter l also
changes a little. As it was explained before, l changes between l obtained for gs ¼ 0 and l
obtained for gs ¼ N:

4. Conclusions

By using the Lagrange equation, the natural frequencies for the AS modes of elastically point-
supported specially orthotropic square plates and the steady state response of a viscoelastically
point-supported specially orthotropic square plates to a sinusoidally varying moment has been
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studied and compared with the existing results. Using the Lagrange equation is a good way for
studying the structural behaviour of the viscoelastically point-supported plates. For the same
accuracy level, it needs considerably fewer degrees-of-freedom than the finite element method and
energy-based finite difference method.
By the application of the above-mentioned solution technique, for the AS vibration mode

family, the first three values of the natural frequencies are determined, and the convergence
characteristics of the frequency parameters are investigated numerically for orthotropic square
plates elastically supported at four points at the corners. It is seen that the rate of convergence is
very high. The effect of the orthotropy and stiffness of the supports on the frequency parameters
is investigated and shown in the tables.
The response curves to a sinusoidally varying moment acting at the centre are determined

numerically for orthotropic square plates viscoelastically supported at four points at the corners.
The effect of the orthotropy, viscosity and stiffness of the supports on the frequency parameters
and response curves is investigated and shown in the figures and table for the considered
frequency ranges. All of the obtained results are very accurate and may be useful for designing
mechanical systems under external dynamic moments.
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