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Abstract

In this work, a new method is presented for generating the path that significantly reduces residual
vibration under the torque constraints. The desired path is optimally designed so that the required
movement can be achieved with minimum residual vibration. From the previous research works, the
dynamic model has been established including both the link and the joint flexibilities. The performance
index is selected to minimize the maximum amplitude of residual vibration. The path to be designed is
developed by a combined Fourier series and polynomial function to satisfy both the convergence and
boundary condition matching problem. The concept of correlation coefficients is used to select the
minimum number of design variables, i.e., Fourier coefficients, the only ones which have a considerable
effect on the reduction of residual vibration. A two-link manipulator is used to evaluate this method.
Results show that residual vibration can be drastically reduced by selecting an appropriate path in both
cases of unlimited and torque-limited.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The need for robot manipulator is increasing to raise the productivity and improve the quality
of products in manufacturing industry. Most industrial robots in use today, however, are
composed of heavy and stiff links to satisfy the required repeatability and accuracy. These links,
therefore, have inherently a large inertia, requiring in turn a long time to complete the motion and
more power consumption in the actuators. To increase the productivity by fast motion and to
complete a motion with small energy consumption, robot manipulators are required to have light
and flexible structures.
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If fast motions are performed by light and flexible robot arms, however, the compliance which
inherently exists in transmission and structural elements will cause considerable vibration of the
robot endpoint at the end of a move. This residual vibration is primarily a result of the additional
kinetic energy imparted to the robot by the fast motion. Since structural resonances tend to be
lightly damped, any vibration occurring after the final position is reached will require additional
settling time before the new task can begin. For that reason, an effective technique to reduce this
residual vibration is needed.

Several different approaches have been suggested to reduce residual vibration, which can be
loosely categorized as either open-loop or closed-loop strategies. The open-loop strategies consist
of specifying force or torque profiles to drive the dynamic system. These have been primarily
developed for rotational maneuvers of space structures [1–5]. Closed-loop strategies utilizing
constant feedback gains have also been designed for reducing residual vibration of flexible
systems. These approaches are to explicitly increase the damping of the flexible modes. Both
passive and active methods have been proposed. Alberts et al. [6] added layers of viscoelastic
material to a beam in order to add passive damping. Active damping techniques which can be
represented as adding distributed damping to beam-like structures have also been proposed.
Sliverberg [7] has developed a discrete implementation which approximates uniform distributed
damping with several discrete actuators. Besides explicit damping augmentation, standard
classical and modern feedback control methods have been proposed to maneuver flexible
structures. A classical proportional-integral-derivative (PID) controller utilizing collocated
actuator–sensor pairs was used by Dougherty et al. [8]. Cannon and Schmitz [9] utilized a non-
collocated controller having torque input at the hub and an optical position sensor at the tip of
the flexible members to actively control both the rigid-body angle and the vibration of a flexible
system.

In recent years, there has been a considerable body of research on input command shaping for
rapid endpoint positioning of a structure with minimal residual vibration. Meckle and Seering [10]
developed an input function composed of series of harmonics of ramped sinusoids that
approaches the rectangular shape, but does not include the harmonics having significant spectral
energy at the natural frequencies of the system. .Onsay and Akay [11] implemented multi-switch
bang–bang control on a one-link continuous system to drive the arm from an initial to a final
position in the minimum time with the least residual vibrations. For the same purpose, Singer and
Seering [12] used an impulse function, and Jayasuriya and Choura [13] used natural modes of a
given system as an input function. Recently, William and Donogh [14] proposed a method to
design an actuator required to position the remote load and, simultaneously to provide active
vibration damping by absorbing the reflected wave.

There have been, however, few attempts to reduce residual vibration by designing the path
itself. Residual vibration sustained after a positioning move freely oscillates with the initial
conditions which are the position and velocity errors at the end of a move. This vibration results
not only from the dynamic characteristics of system but also from the manipulator path between
its two endpoints. Recently Parks [15] developed a method to effectively reduce the residual
vibration by designing the path itself. They established a dynamic model to describe the dynamic
behavior of a manipulator at first, taking into account all flexibilities of links and joints. Then,
based upon this model, they optimized the path to reduce residual vibration of the endpoint by
representing the path using a combined Fourier series and polynomial function. This method does
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not need some observers and controllers usually used in closed-loop control strategies. In other
words, the optimal path can be selected to reduce the residual vibration when the initial and final
points of the endpoint are given only.

In this work, a method is presented to effectively reduce the residual vibration under some
torque constraints. These constraints should be considered because the maximum torque is limited
to a certain degree at actuators used in industrial robot manipulators. The optimized path under
torque constraints is compared with the designed path that has been presented in the previous
research work without torque constraints. To this end, we briefly summarized the previous work
and proceed to design the path to reduce the residual vibration of the endpoint under torque
constraints.

2. Dynamical modelling

2.1. Generalized co-ordinates

The link flexibility can be represented as the deformation relative to the selected body-fixed
co-ordinates. In general, we use the assumed spatial mode function to describe the deformation.
This mode function, as is well-known, can vary largely depending on the selection of the
co-ordinates.

As shown in Fig. 1, link deformations are represented in two ways; one is with reference to the
virtual link co-ordinate system (VLCS) (a) and the other is relative to the tangent co-ordinate
system (b). Both co-ordinate systems are moving co-ordinates, but the position of the former
co-ordinate system is dependent only on joint angles of the preceding links. For instance, the
origin of the VLCS for link 2 depends only on the angle y1 and is irrelevant to the deformation
of link 1, as shown in Fig. 1a. In contrast, the origin of the tangent co-ordinate system O2x2y2 in
Fig. 1b depends not only on y1 but also on the deformation v1ðL1Þ of the preceding link
deformation. In general, the motion of a tangent co-ordinate frame is a function of deformations
viðLiÞ of the preceding links as well as the joint angles. This is why the equations of motion with
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respect to the tangent co-ordinate systems are coupled with the deformations of the other
links. The VLCS, on the other hand, is independent of the deformations of the other links. Thus
the modelling by using the VLCS is an efficient way of formulating equations of motion in a
compact form.

The mode functions to be used are dependent on the moving co-ordinates. When we adopt the
tangent co-ordinate system as a moving co-ordinate, the mode functions used will be modes of a
beam with one end fixed and the other free. This mode function has, as is well-known, a very
complicated functional form. On the other hand, when we adopt the VLCS, we can use the mode
functions of a simply supported beam as an assumed mode function. This function is very simple
and easy to handle.

As a result, the VLCS is not only convenient for solving the dynamical equation, but also
advantageous to reduce computational complexity. The boundary conditions that the link beams
must satisfy are much simpler when the beam deformations are represented with respect to the
VLCS. Also this co-ordinate representation allows us to compute dynamic equations for each link
member independently from the others. If one can use a system of orthogonal functions the
computation is further simplified, so that they can be divided into the ones in terms of individual
generalized co-ordinate, separately.

2.2. Equations of motion

To formulate the dynamic equations of motion, we need to make assumptions on the
construction of flexible arms discussed in this paper. We assume that the arm is planar, the open-
loop linkage consisting of n links constrained in a horizontal plane.

In order to specify the configuration of a body, it is necessary to define a set of generalized
co-ordinates. If we designate the axis Oixiyi as a co-ordinate system rigidly attached to ith link
and the axis Oi�1xi�1yi�1 to ði � 1Þth link, the relative joint co-ordinates are specified by the
relative angle yi between the Oi�1xi�1yi�1 axis and the Oixiyi axis. In addition to the generalized
co-ordinates above, one needs generalized co-ordinates associated with link deformation. To this
end, we first expand deformation ui to a series of co-ordinates q

j
i by using the Rayleigh–Ritz

functions for link i that satisfies conditions on independence and completeness, then the
deformation ui is written as

uiðxi; tÞ ¼
Xsi

j¼1

fj
iðxiÞq

j
iðtÞ: ð1Þ

In the above equation, fj
i is referred to as the assumed spatial mode function, and q

j
i as the time-

varying mode amplitudes. Therefore, a vector of generalized co-ordinates of the ith body is
defined by the set of relative co-ordinates yi and modal co-ordinate q

j
i:

As shown in Fig. 2a, each joint of the manipulator is composed of an actuator, a transmission
unit and an arm link. The elastic deformation of a joint is induced mainly by a transmission unit,
because the elastic deformation of the gear teeth induces the joint flexibility. Therefore we model
the joint flexibility as an equivalent torsional spring ki; neglecting the inertia of the actuator.
A schematic diagram of a representative joint having an equivalent torsional spring is shown in
Fig. 2b.
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The equation of motion of the physical system under consideration can be derived from the
well-known Lagrangian equation. By substituting the kinetic energy, the potential energy and the
generalized external force through tedious calculations, into the Lagrangian equation, we can
derive the non-linear differential equations of motion for the flexible manipulator:

DðXÞ .Xþ CðXÞ ’Xþ KXþHðX; ’XÞ ¼ T; ð2Þ

where DðXÞ is the time-varying inertia matrix, C and H represent the Coriolis, centrifugal,
elastic and centrifugal stiffening effects. K is the stiffness matrix, and T ¼ ½ t1 t2 0 y 0 �T

denote the generalized external vector. The generalized co-ordinate X is given by X ¼
½ y1 y2 q1

1yqs1
1 q1

2 yqs2
2 �

T:

2.3. Characteristics of residual vibration

Residual vibration sustained after a positioning move, freely oscillates with the natural
frequencies of the final location and initial conditions which are the displacement and velocity
errors at final time tf : In opposition to the positioning motion, residual vibration performs small
oscillations about the final location which can be regarded as an equilibrium configuration. Also
residual motion is so slow that Coriolis and centrifugal effects, which make the equations of
motion non-linear, can be neglected. Therefore we can linearize the equations of motion after the
positioning move.

Suppose that the manipulator performs small oscillations about the final configuration specified
by ykf : One writes

ykðtÞ ¼ ykf þ ykeðtÞ; ð3Þ
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where ykeðtÞ denotes the small oscillations, and ykeðtÞj j51: In particular, it is assumed that one can
make the approximations.

cos ykeD1; sin ykeDyke: ð4Þ

Therefore, we can write

sin yk ¼ sin ðykf þ ykeÞDsin ykf þ yke cos ykf ð5Þ

and analogously

cos ykDcos ykf � yke sin ykf : ð6Þ

In addition, it is assumed that the motion of the manipulator about the equilibrium configuration
is so slow that the products of the velocities, like the ’y2

ke and ’ykeqk etc., can be neglected in the
equations of motion. It is also assumed that terms such as yje

.yke can be ignored because of the
same reason. If one makes the approximations suggested in Eqs. (3)–(6), then one can reduce the
basic Eq. (2) to the following linearized systems of equations of motion:

Dðykf Þ .Xe þ KXe ¼ 0: ð7Þ

Comparing Eq. (7) with Eq. (2), it is seen that the vector H which makes the equations of motion
non-linear has been eliminated. The inertia matrix D is not time-variant any longer. If ykf is
defined, D becomes constant.

The response of the linearized system (7) can be easily obtained by using modal analysis:

XeðtÞ ¼
XN

p¼1

ðwT
p ½D�Xeð0Þ cosopt þ wT

p ½D� ’Xeð0Þ
1

op

sinoptÞwp; ð8Þ

where Xeð0Þ and ’Xeð0Þ is the initial condition vector which is the displacement and velocity errors
at the final location as explained in Eq. (8). Also op is the pth natural frequency and wp is the pth
mode vector.

The tip position of two-link manipulator is given by

x ¼ L2 cos ðy1 þ y2Þ þ L1 cos y1;

y ¼ L2 sin ðy1 þ y2Þ þ L1 sin y1: ð9Þ

Substituting Eqs. (3)–(6) into Eq. (9) and rearranging them, the tip position error during the
residual vibration is written as

xe ¼ �L2ðy1e þ y2eÞ sin ðy1f þ y2f Þ � L1y1e sin y1f ;

ye ¼ �L2ðy1e þ y2eÞ cos ðy1f þ y2f Þ � L1y1e cos y1f : ð10Þ

The relation between the tip position error and the final location error can be obtained by
substituting y1e; y2e of Eq. (8) into Eq. (10):

xe ¼
PN

p¼1 Cp cos ðopt � fpÞ;

ye ¼
PN

p¼1 Dp cos ðopt � fpÞ;
ð11Þ

where Cp and Dp are the amplitudes of the time-varying positioning errors and can be represented

as Cp;Dp ¼ Cp;Dpðykf ;wp;op;Xeð0Þ; ’Xeð0ÞÞ: The absolute value of the position error is defined as

pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

e þ y2
e

p
: The constants Cp; Dp are functions of the final location error, and decrease when
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this error has a smaller value. Hence the tip position error becomes smaller as this final location
error decreases.

The ratio of the joint angle error, yer ¼ ðy2eð0Þ=y1eð0ÞÞ; for minimizing the position error pe; can
be obtained by

@pe

@yer

¼ 0: ð12Þ

From Eq. (12), neglecting the errors of mode co-ordinates which are much smaller than the errors
of joint angle, we can derive the ratio of the joint angle error of the two-link manipulator which
minimizes the tip position error. The result is yer ¼ w22 where w22 is the (2,2) element of the modal
matrix.

The three-dimensional plot of the absolute value of the tip position error is drawn in Fig. 3a, to
the variations of the magnitude and the ratio of the joint angle error. It is seen that the tip position
error decreases overall as the magnitude of the joint angle error becomes smaller. It is also found
that the ratio of the joint angle error has a considerable effect on the tip position error. Even when
the magnitude of the joint angle error is constant, the tip position error varies depending on the
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ratio of the joint angle error. In Fig. 3b, the tip position error is plotted to the variation of the
ratio of the joint angle error having the same magnitude, 0.05. As shown in the figure, the tip
position error is heavily dependent on the ratio of the joint angle error as well. From the
simulation results, it was found that the tip position error has a minimum value at yer ¼ �3:26;
which is the same value as the (2,2) element of the modal matrix. From the results above we can
see that the residual vibration of the arm tip is dependent, not only on the magnitude of the joint
angle error, but also on the ratio of this error.

3. Path optimization

3.1. Performance index

From the previous results [15], the amplitude of the residual vibration can be minimized: both
when the magnitudes of the error of the joint displacements and velocities at the final time is
smaller, and when the ratio of these errors satisfies a certain criterion. Therefore, one cannot
reduce the residual oscillations of the manipulator only by minimizing the absolute value of the
final location error. In this paper the performance index to be minimized is chosen as the
maximum value of the tip position error during the residual vibration:

J ¼ max pe pe ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

e þ y2
e

q
for tXtf

� �
: ð13Þ

The performance index in the above equation can be obtained by numerical integration of the
equations of motion. Consequently, we need the dynamic equations derived in Eq. (2) to
formulate the optimization problem. Also the kinematic constraints should be satisfied at both
ends:

Yi ¼ Yid ; ’Yi ¼ 0; .Yi ¼ 0 at t ¼ 0; tf ; ð14Þ

where Yi; ’Yi and .Yi are the kinematic joint angle, joint velocity and joint acceleration and Yid is
the required joint angle.

From the previous results, it was observed that most motion takes place in the first half of
duration, so that higher torques are needed. The actuators used in industrial robot manipulators
for driving robot arms, however, is limited in the maximum torque which they can exert.
Therefore we need the constraints for the actuator torques. That constraints can be written as
follows:

tminpjtijptmax i ¼ 1; 2;y; n: ð15Þ

It is the purpose of this paper to find the optimal tip path satisfying the above optimality
condition. Hence, we can define the design variables as the each joint trajectories that make the
optimal path of the arm tip.

3.2. Functional development of path

In order to formulate the optimal design problem, we need the functional development of the
each joint trajectory. Fourier and polynomial approximation techniques are commonly used in
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the functional expansion of generalized co-ordinates. A polynomial function exactly satisfies the
boundary conditions, but contains the unwanted higher harmonics that excite the system
resonance. Another demerit of this polynomial function is that we cannot assure the convergence
of the solution by increasing the terms of the polynomials. On the other hand, a Fourier series
expansion has opposite characteristics: guarantees of convergence by adding terms and
dissatisfactions of boundary conditions. So we propose the approximation method of the each
joint trajectory to combine the advantages of the two functions.

Any joint trajectory can be expanded by a finite cosine Fourier series using a half range
expansion:

yiðtÞ ¼ ai0 þ
XM

m¼1

aim cos
mp
tf

t: ð16Þ

This approach, however, has the following disadvantages:

(1) Convergence is guaranteed only in (0; tf ). To satisfy the requirements on arbitrary conditions,
convergence should be extended from (0; tf ) to [0; tf ].

(2) Although yiðtÞ converges to the optimal solution, there is no guarantee that the derivative of
yiðtÞ will converge to the derivative of the optimal solution.

(3) The rate of convergence of the Fourier series depends on the optimal solution. This rate can
be quite slow.

To overcome these disadvantages, we approximate each of the joint co-ordinates by the sum of
a fifth order polynomial and a finite-term Fourier series.

yiðtÞ ¼ liðtÞ þ siðtÞ; ð17Þ

where

liðtÞ ¼
X5

j¼0

lijt
j; siðtÞ ¼

XM

m¼1

aim cos
mp
tf

t:

Here, the constant term of the Fourier series has been included in the fifth order polynomial, liðtÞ:
The boundary condition requirements can be written as

yið0Þ ¼ lið0Þ þ sið0Þ;

yiðtf Þ ¼ liðtf Þ þ siðtf Þ;
’yið0Þ ¼ ’lið0Þ þ ’sið0Þ;
’yiðtf Þ ¼ ’liðtf Þ þ ’siðtf Þ;
.yið0Þ ¼ .lið0Þ þ .sið0Þ;
.yiðtf Þ ¼ .liðtf Þ þ .siðtf Þ: ð18Þ

These equations can be used to determine the coefficients of the polynomial in terms of the
coefficients of the Fourier series and the boundary values. Solving the above boundary condition
equations gives the following closed-form expression of the six coefficients:

lij ¼ lijðaim; boundary value of yi; ’yi; .yiÞ: ð19Þ
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Therefore, we can remedy the disadvantages of the Fourier series expansion, not increasing the
number of terms to be designed. Also, the boundary conditions can be embedded naturally in the
approximation to eliminate the kinetic requirements at both ends. The design variables are the
coefficients of the Fourier series, aim ðm ¼ 1; 2;y;MÞ:

If the design variables aim are determined, the joint displacements, velocities and accelerations
can be obtained by Eq. (17). Then the required torques to track the desired trajectory can be
computed by the inverse dynamics. Applying these torques to the flexible dynamic equations, the
dynamic responses of the flexible manipulator can be numerically obtained. From these results,
we can compute the value of the performance index in Eq. (13). If this value cannot satisfy the
optimality criterion, the optimization routine iterates by adjusting the design variables aim until
the minimum point is reached.

3.3. Selection of design variables

In Section 3.2, each joint trajectory was functionally developed by the combined polynomial
and finite-term cosine Fourier series. But still the joint trajectories are expanded by all the
sequential Fourier series up to the highest harmonic number. In that case, it is unavoidable that
some Fourier coefficients which have a negligible contribution to the reduction of residual
vibration are included in the expansion. Thus if we take all the terms up to the highest harmonic
number, the computation efficiency becomes worse. In general the accuracy of the optimal
solution can be increased and its computing time can be greatly reduced, if we can remove the less
contributing terms. For this reason, a technique to remove the less contributing terms in the
combined Fourier series expansion is required.

The concept of correlation coefficients can be used to select the necessary Fourier terms as
follows. The correlation coefficients between the x position error of the arm tip, xe and mth
harmonic function of Fourier series, sm ¼ cos ðmpt=tf Þ are defined as follows:

rxesm
¼

Sxesm

Sxexe
Ssmsm

¼
PNd

k¼1 xeðkÞsmðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNd

k¼1 x2
eðkÞ

PNd

k¼1 s2
mðkÞ

q : ð20Þ

The correlation coefficients between the y position error and the mth harmonic function, ryesm
can

be defined analogously. The correlation coefficient rxesm
defined in Eq. (20) will lie between �1

and +1. And if the absolute value of it is in the vicinity of 1, it means that the correlation between
xe and sm is high and sm should be included in the expansion of the joint co-ordinates. In contrast,
if the absolute value is near 0, sm can be excluded in the expansion.
rxesm

has a different acceptance region according to the level of significance:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nd � 3

p
2

ln
1 þ rxesm

1 � rxesm

� 	








Xza=2; ð21Þ

where Nd is the number of the sampling data, z is the standardized normal variable, and a is the
level of significance. If rxesm

satisfies the above inequality, we can say that a correlation exists
between xe and sm at the a level of significance. The same theory can be applied to ryesm

:
Therefore, we can greatly reduce the number of design variables by selecting the harmonic
functions satisfying inequality (21) only.
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4. Results and discussion

The optimal path is designed for the two-link manipulator to evaluate the proposed approach.
In order to analyze the dynamic response of the flexible manipulator, parameters such as mass,
stiffness and Young’s modulus must be provided. The arm construction we considered consists of
rectangular aluminum beams of 1m length each. The mass is 3.5 kg, the dimension of the cross-
section is 3	 4 cm, and Young’s modulus is 7.1	 103 kgf/mm2. The joint spring constant is
2 kNm/rad. The order of mode function is s1 ¼ s2 ¼ 3 for each links. The duration time is 1 s. The
manipulator starts its motion at y10 ¼ �90
; y20 ¼ 90
 and ends at y1f ¼ 0
; y2f ¼ 45
:

The initial path is chosen as the cycloidal motion. The motion of the arm tip for cycloidal
function is shown in Fig. 4. Cycloidal motion is one of the very smooth types of motion, largely
used in the design of the cam profile. The actuator torques of the rigid manipulator required to
track the desired trajectory can be found by the inverse dynamics. To evaluate the effects of the
flexibility, a time series of computed torques are plugged into the flexible dynamic equations. The
tracking errors and residual vibrations of the arm tip will be shown and discussed in later part of
this chapter, compared with the optimized results.

Residual vibrations are composed of the tip position error in the x and y directions. The
correlation coefficients between the x and y position error of the arm tip for the cycloidal motion
and the harmonic functions of the Fourier series are shown in Fig. 5. If the number of data is 50,
the correlation coefficients should be higher than 0.35 at the level of significance a ¼ 0:01 to
satisfy Eq. (21). Only the third and fourth harmonic function in the x direction error, and the
fourth, fifth, sixth in the y direction error satisfy this criterion. These harmonic numbers are equal
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to the variation of the first natural frequency of the system. Therefore the manipulator path can
be developed by using only the 3, 4, 5 and 6th harmonic functions of the Fourier series and
polynomial function without serious errors. Needless to say, the computation efforts can be
greatly reduced when each joint trajectory is expanded by only 4 terms. The constraints for
maximum torque are set at 100 and 60Nm, respectively. The maximum torque, 60Nm, is
equivalent to the maximum torque for cycloidal motion.

4.1. Optimized path without torque limits

The optimally designed tip path is shown in Fig. 6. In this case we set no limits for the
maximum torques. First of all, we can see that the optimized path is much different from the
cycloidal motion which has a nearly straight tip path. It is seen from Fig. 6 that Link 1 exhibits a
fast motion and Link 2 displays a clear inward motion during the first half of the path. This is in
the opposite direction of the cycloidal motion, comparing Fig. 6 with Fig. 4. After Link 1 has
almost completed its move, Link 2 moves outwards to the required final position. This means that
most of the motion is accomplished in the first half; and in the second half, the arm tip approaches
the final position compensating for the position errors caused by the fast motion.

To evaluate the difference, the optimized path and computed torques are plugged into the
dynamic equations derived in Eq. (2). The tracking errors and residual vibrations of the arm tip in
the x, y directions are shown in Fig. 7 compared with those results for the cycloidal motion. As
shown in the figure, the optimized path results in a very small residual vibration, while cycloidal
motion yields a relatively large vibration. This can be more obviously seen in Fig. 8, in which the
residual vibration of the arm tip is plotted in space co-ordinates. The maximum amplitudes of the
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Fig. 5. Correlation coefficients of tip position error for cycloidal motion: (a) x-position error; (b) y-position error.
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Fig. 6. Arm motion and tip path for unlimited optimal motion.

Fig. 7. Tip position error for cycloidal (dashed) and unlimited optimal motion (solid): (a) x-position; (b) y-position.
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residual vibration are 3.43mm in the x direction and 5.75mm in the y direction for the cycloidal
motion, while it reduces to 0.56mm in the x direction and 0.34mm in the y direction for the
optimized path. The maximum amplitudes are significantly lower, only 16.3 percent of the
maximum amplitude for the cycloidal motion in the x direction and only 5.9 percent in the y
direction.

The prominent frequency components of the residual vibration for the cycloidal motion are
2.36 and 10.82Hz. The addition of the frequency components around the first frequency, 2.36Hz,
drastically reduces the magnitude of this frequency in the residual vibration for the optimized
path. Physically, this means that optimized path developed by the Fourier series (including these
frequency components) offsets the occurrence of the oscillation with these frequencies. This fact
can be assured by the results that the residual vibration in the y direction, in which the first
frequency component is more prominent, is largely reduced compared to the x direction.

4.2. Optimized path under torque limits

The results in Section 4.1 are for the unlimited optimal path, in which the maximum torque for
driving the manipulator arms is 4 times large as that of cycloidal motion. In this section, we design
the optimal path under some torque constraints and compare it with the path designed under no
torque constraints. When the maximum torque is limited by 100Nm, we can obtain the optimal
path as shown in Fig. 9. The shapes of the input torques are similar to the unlimited case, but we
can see from Table 1 that the maximum torque is limited by 98.306Nm for actuator 1. From the
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Fig. 8. Residual vibration of arm tip for cycloidal (dashed) and unlimited optimal motion (solid).
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results it is found that the tip path tries to follow the unlimited path but returns to the target
position without completing the motion developed in unlimited path, due to the torque
constraints. The residual vibration of the arm tip for the torque-limited path is shown in Fig. 10. It
can be seen that the magnitude of residual vibration becomes larger compared with the unlimited
case, especially in the x direction. The vibration in the y direction remains almost unchanged.
From Table 2, it can be seen that the maximum amplitudes of position error is 27.8 percent of that
for cycloidal motion in the x direction, and 7.8 percent in the y direction.

The optimized path in which the maximum torque is limited by 60Nm is presented in Fig. 11.
The torque limit, 60Nm , is equivalent to the maximum torque for cycloidal motion. The optimal
path is very similar to that of cycloidal motion because the torque limits for both cases are almost
same as shown in Table 1. The magnitudes of residual vibration for this path are larger than those
of the unlimited path and torque-limited path (jtijo100) as shown in Fig. 12. It is, however, seen
that the position errors are smaller than those for cycloidal motion yet. This is due to the fact that
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Fig. 9. Arm motion and tip path for torque-limited optimal motion, jti jo100:

Table 1

A comparison of maximum torque

Cycloidal Unlimited optimal

path

Torque-limited

optimal path

(jti jo100)

Torque-limited

optimal path

(|ti jo60)

jt1j 57.859 233.334 98.306 59.829

jt2j 11.786 80.878 33.114 12.123
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although the maximum torque is limited by same value, the residual vibration can be reduced
when the magnitudes of position errors is decreased at final time tf and the ratio of these errors
satisfies the optimal value.

5. Conclusions

A method was presented for generating the path of a flexible manipulator under torque
constraints, which significantly reduces residual vibration. This is based on an optimized path that
has been constructed from a combined Fourier series and polynomial, with coefficients of each
harmonic term selected to minimize the residual vibration. In modelling the dynamics of a flexible
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Fig. 10. Residual vibration of arm tip for cycloidal (dashed) and torque-limited optimal motion (solid), jti jo100:

Table 2

A comparison of maximum position error

Cycloidal Unlimited optimal

path

Torque-limited

optimal path

(jtjo100)

Torque-limited

optimal path

(jtjo60)

xe 3.4326 0.5628 0.9557 1.1354

ye 5.7585 0.3367 0.4482 1.1852
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Fig. 12. Residual vibration of arm tip for cycloidal (dashed) and torque-limited optimal motion (solid), jti jo60:

Fig. 11. Arm motion and tip path for torque-limited optimal motion, jti jo60:
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arm, the virtual link co-ordinates are used. These co-ordinates are not only convenient for
modelling and optimization, but also advantageous for reducing computational complexity.

The manipulator path was developed by a combined Fourier series and polynomial. This
expansion satisfies both the guarantees of convergence by adding terms and the matching of the
boundary conditions. The concept of correlation was used to select the minimum number of
design variables, i.e., Fourier coefficients, only contributing to the reduction of the residual
vibration, which largely reduces the computing time.

The optimization algorithm has been applied to a two-link planar manipulator. Through
simulation, the efficiency and usefulness of the optimized path were shown. Regardless of the
torque constraints, the optimized path produced motion with considerably lower residual
vibration compared to a cycloidal motion. For the case of unlimited optimal path, the magnitude
of residual vibration reduces by 90.2 percent, and 84.2, 75.7 percent for the torque-limited cases,
respectively. From these results, it can be concluded that even the input torques are limited, the
residual vibration of a flexible manipulator could be drastically reduced by selecting an
appropriate path.
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