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1. Introduction

Since the disturbance from the road may induce uncomfortable shake and noise in the vehicle
body, it is important to study the vibrations of the vehicle. Many studies have been carried out on
the dynamic response and the vibration control with linear mechanical model. However, an
automobile is a non-linear system in practice because it consists of suspensions, tires and other
components that have non-linear properties. Therefore, the chaotic response may appear as the
vehicle moves over a bumpy road.

A vehicle can be modelled as a complex multi-body dynamic system. The degree of complexity
depends on the aim of modelling. Several models have been developed in the researches related to
the dynamic behavior of vehicle and its vibration control. The quarter-car model (2-d.o.f. system)
for studying the heave motion [1–3], the half-car model (4-d.o.f. system) as a two-wheel (front and
rear) model for studying the heave and pitch motions [4–6], and the full vehicle model (basically
7-d.o.f. system) as a four-wheel model for studying the heave, pitch and roll motions [7]. The
4-d.o.f. model allows the study of both the heave and pitch motions along with the deflection of
tires and suspensions. All of these quantities are of great importance in the design of vehicle. Since
the model is also relatively simple to analyze when compared to the 7-d.o.f. full 3-D vehicle model,
and yet can reasonably predict the response of the latter [8], the 4-d.o.f. half-vehicle model is used
by many researchers. In this paper, the chaotic vibration of the 4-d.o.f. half-vehicle model with
non-linear spring and damping element is investigated. The study begins by introducing a
non-linear 4-d.o.f. half-vehicle model. Next, the numerical simulation is conducted and the
dynamic responses of the model are investigated. Resonance curves, bifurcation diagrams and
Poincar!e maps are used in the investigation. The dominant Lyapunov exponent is used to identify
the chaotic motion of the system. The results indicate that the chaotic vibration may exist in the
ground vehicle.
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2. Simulation model

The longitudinal view of the 4-d.o.f. half-vehicle model with non-linear springs and
dampers is illustrated in Fig. 1. The definition of symbols used is given in the appendix.
The model consists of a rigid vehicle body, front and rear unsprung masses, springs and
dampers of front and rear suspensions and tires. The vehicle body has rigid heave and
pitch motions and the unsprung mass has only heave motions. The static equilibrium position
is used as the origin for both heave displacement xbðtÞ and angular displacement of the vehicle
body mass yðtÞ; and also for heave displacements of both front and rear unsprung mass, xf ðtÞ
and xrðtÞ:

Suspension of the vehicle is simplified to non-linear spring and non-linear damper. The
suspension spring is assumed to have the following characteristics:

fs ¼ ks sgnðDsÞjDsjn; ð1Þ

where fs is the spring dynamic force, ks is the equivalent stiffness, Ds is the deformation of the
spring that can be calculated by the displacement of both extremes of the spring, and sgnð�Þ is the
signum function. The unit of Ds is in cm and ks in N/cm [4,9]. In Eq. (1), n is an exponent
representing non-linearity of the spring and it is referred as the non-linear coefficient of the
suspension spring. As an example, linear and non-linear relations between fs and Ds are shown in
Fig. 2 where fs is plotted with solid line as n ¼ 1:4: The dashed line in this figure is the
characteristics of a linear spring as n ¼ 1:

The non-linear damping forces of suspensions is given by

fsc ¼ csD ’xs; ð2Þ
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Fig. 1. Non-linear half-vehicle model.
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where fsc is the damping force and D ’xs is the relative velocity of the extremes of the damper. The
damping coefficient cs is expressed by

cs ¼
cu; D ’xsX0;

cd ; D ’xso0;

(
ð3Þ

where cu and cd are damping coefficients for tension and compression, respectively.
The tire of the vehicle is also modelled by a non-linear spring. The spring force of the tire is

expressed by Eq. (1) but with a smaller value of the exponent n: The damping of the tires is
assumed to be viscous damping, then the damping force is calculated as

ftc ¼ ctD ’xt; ð4Þ

where ct is the viscous damping coefficient and D ’xt is the relative velocity of extremes of the
damper.

The sinusoid forcing function is used to describe the excitations caused by road surface. Thus,
the road roughness is approximated by the equation

xfd ¼ A sinð2pftÞ; ð5Þ

where A and f is the amplitude and the frequency of the sinusoid road disturbance, respectively.
The excitation to the rear tire is defined as

xrd ¼ A sinð2pft þ aÞ; ð6Þ

where a is related to the time delay between the forcing functions xfd and xrd :
By applying Newton’s second law, the equation of the heave motion of the vehicle body can be

expressed as

mb .xb ¼ � kf 2 sgnðDbf 2ÞjDbf 2jnf 2 � cf 2ð ’xb � ’xf � lf ’y cos yÞ

� kr2 sgnðDbr2ÞjDbr2j
nr2 � cr2ð ’xb � ’xr þ lr ’y cos yÞ � mbg ð7Þ
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Fig. 2. Non-linear characteristics of the suspension and tire spring.
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and the equation of motion for pitch is

J .y ¼ ½kf 2 sgnðDbf 2ÞjDbf 2j
nf 2 þ cf 2ð ’xb � ’xf � lf ’y cos yÞ	lf cos y

� ½kr2 sgnðDbr2ÞjDbr2j
nr2 þ cr2ð ’xb � ’xr þ lr ’y cos yÞ	lr cos y; ð8Þ

where

Dbf 2 ¼ xb � Dsf 2 � xf � lf sin y;

Dbr2 ¼ xb � Dsr2 � xr þ lr sin y:

In above expressions, Dsf 2 and Dsr2 denote static deformation of the suspension spring with
stiffness kf 2 and kr2: The damping coefficients cf 2 and cr2 are defined by Eq. (3).

By applying Newton’s second law again on the front and rear unsprung masses, the equations
of motion can be formulated.

Front wheel:

mf .xf ¼ kf 2 sgnðDbf 2ÞjDbf 2jnf 2 þ cf 2ð ’xb � ’xf � lf ’y cos yÞ

� kf 1 sgnðxf � Dsf 1 � xfdÞjxf � Dsf 1 � xfd jnf 1

� cf 1ð ’xf � ’xfdÞ � mf g: ð9Þ

Rear wheel:

mr .xr ¼ kr2 sgnðDbr2ÞjDbr2jnr2 þ cr2ð ’xb � ’xr þ lr ’y cos yÞ

� kr1 sgnðxr � Dsr1 � xrdÞjxr � Dsr1 � xrd jnr1

� cr1ð ’xr � ’xrdÞ � mrg; ð10Þ

where Dsf 1 and Dsr1 are static deformation of the tire spring with stiffness kf 1 and kr1: The static
deformations Dsfi and Dsri ði ¼ 1; 2Þ can be evaluated by Eq. (1).

3. Numerical results

Owing to the non-linearity of the differential equations (7)–(10), the dynamic response of the
vehicle model was studied numerically with the fourth order Runge–Kutta algorithm provided by
MATLAB. In the computation, the absolute error tolerance was less than 10�6: Since numerical
integration could give spurious results with regard to the existence of chaos due to insufficiently
small time steps [10], the step size was verified to ensure no such results were generated as a result
of time discretization. The vehicle parameter set assumed for the numerical study is shown in
Table 1.

It is known that the dynamics of a system may be analyzed through a frequency-response
diagram, which is obtained by plotting the amplitude of the oscillating system versus the
frequency of the excitation term [11,12]. For the studied system, the frequency-response diagram
was calculated numerically. The amplitude was defined as the maximum absolute value of the
displacement and the control parameter was defined as the forcing frequency of the excitation
from road surface.

Fig. 3 represents one of the frequency-response diagrams of the model when the forcing frequency
f is slowly increased and decreased. The damping coefficients were cf 2u ¼ cr2u ¼ 500 kg=s;
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cf 2u=cf 2d ¼ cr2u=cr2d ¼ 1:39; cf 1 ¼ cr1 ¼ 10 kg=s and amplitude of the forcing function A ¼
0:08 m; respectively. The diagrams were calculated by using an increment Df ¼ 0:01 Hz as the
variation of the control parameter. As illustrated in Figs. 3(a), (c) and (d), the frequency-response
diagrams of the heave motion of vehicle body and the two unsprung masses are similar. The first
jump is observed at f ¼ 3:6 Hz; then the second jump is at f ¼ 4:6 Hz as forcing frequency
increased. The phenomenon of the two jumps can also be observed in response diagram of the
pitch motion of vehicle body shown in Fig. 3(b). However, this diagram exhibits a more
complicated and different behavior. This is confirmed by the presence of more jumps in the
diagram as the forcing frequency increased or decreased. Fig. 3 shows that the responses of
the system have instability region as 3:0ofo5:4 Hz; which indicates that the chaotic responses
are possible when the forcing frequency is within or near the instable region [13–15].

A widely used technique for examining the changes of responses in a dynamic system under
parameter variations is the bifurcation diagram. To make the bifurcation diagram, some measure
of the motion is plotted as a function of a system parameter [16]. In this study, the bifurcation
diagram is obtained by plotting the Poncar!e points of the displacement and one of the system
parameters.

As shown in Fig. 4, the bifurcation diagram is obtained by plotting the Poncar!e points of the
displacement yðtÞ against the damping coefficient cr2u: The parameters of excitation and damping
coefficients used in the computation were A ¼ 0:08 m; f ¼ 3:6 Hz; a ¼ p=9 rad; cf 2u ¼ 500 kg=s;
cf 2u=cf 2d ¼ 1:39; cr2d ¼ 360 kg=s and cf 1 ¼ cr1 ¼ 10 kg=s: In this diagram, cr2u varied from 0 to
3000 kg=s according to 150 equal steps. For every parameter cr2u; the responses of the system from
0 to 400 s that was 1440 forcing cycles, were computed. To eliminate the transient responses, only
the last 250 points of the Poincar!e section associated with the 250 last periods were saved. The
initial conditions were set to zeros for every parameter. The different behavior was observed as the
values of cr2u were in the range of 0–3000 kg=s: In Fig. 4, we observed that the responses of the
system could become chaotic very quickly as the coefficient cr2u is around 200 kg=s: This implies
that the periodic responses of the model may jump to chaotic one even there is only a small change
in damping coefficients.
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Table 1

Parameters for numerical simulation

mb 1180:0 kg

J 633:615 kg m2

mf 50:0 kg

mr 45:0 kg

lf 1:123 m

lr 1:377 m

kf 2 36 952:0 N=m
kr2 30 130:0 N=m
kf 1 140 000:0 N=m
kr1 140 000:0 N=m
nf 2 1.5

nr2 1.5

nf 1 1:25
nr1 1.25

Q. Zhu, M. Ishitobi / Journal of Sound and Vibration 275 (2004) 1136–11461140



Fig. 5 represents the bifurcation of yðtÞ by varying the values of the parameter a from 0
 to
360
: The increment of a was 1
: The time span for the computation was from 0 to 400 s: The
initial condition was set to zero. As the computation for Fig. 4, the last 250 Poincar!e points were
preserved for plotting the diagram. The enlargements of the bifurcation diagram in Fig. 5 are
shown in Figs. 6(a) and (b). These bifurcation diagrams exhibit period windows and crisis as the
time delay a is around 0oaop=3 and 1:6poao2p:
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Fig. 3. Frequency-response diagrams when the forcing frequency f is slowly increased and decreased (A ¼ 0:08 m;
a ¼ p=9; 0ofo6 Hz; the remaining parameters are shown in Table 1): (a) maxjxbðtÞj; (b) maxjyðtÞj; (c) maxjxf ðtÞj; and
(d) maxjxrðtÞj:
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Fig. 5. Bifurcation diagram of yðtÞ obtained by varying a ð0pap2pÞ:

Fig. 6. Enlargements of the bifurcation diagram of Fig. 5.

Fig. 4. Bifurcation diagram of yðtÞ as a function of cr2u ð0pcr2up3000 kg=sÞ:
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One of the time histories of xbðtÞ; yðtÞ; xf ðtÞ and xrðtÞ are plotted in Fig. 7. The time history data
of the first 1600 forcing cycles were not used in order to guarantee that the data used were in a
steady state. To determine whether the responses in these figures were chaotic, the method by
investigating correlation dimension D2 and the dominant Lyapunov exponent was implemented
[17]. The Grassberger–Procaccia algorithm [18,19] was used to estimate D2 and Wolf’s algorithm
[20] was used to calculate the dominant Lyapunov exponent. The time histories of xbðtÞ; yðtÞ; xf ðtÞ
and xrðtÞ were sampled with a sampling period of 0:0043 s and each datum was 105 samples long.
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Fig. 7. Time histories of chaotic motion of the system (A ¼ 0:08 m; f ¼ 3:6 Hz; a ¼ p=9 rad; the remaining parameters

are shown in Table 1).
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To create time-embedded vectors in the computation, the value of time delay was determined by
the use of average mutual information [21]. The computation gave the values of D2 for D2xb

¼
2:02; D2y ¼ 1:64; D2xf

¼ 2:01; and D2xr
¼ 1:69; respectively. On the other hand, the dominant

Lyapunov exponents calculated were lxb
¼ 0:78; ly ¼ 6:32; lxf

¼ 2:32; and lxr
¼ 3:93 in the unit

of bits/s. The Poincar!e maps of the responses of the system corresponding to time histories in
Fig. 7 are shown in Fig. 8. Each Poincar!e map contains 4300 sampling points. Fig. 8 shows that
the strange attractors exist. These results indicated that the responses of the system were chaotic.

4. Conclusions

The chaotic responses and bifurcations of a four-degree-of-freedom vehicle model that is
subjected to two sinusoid disturbance with time delay are studied through numerical simulation.
It is found that the chaotic response may appear in the instable region of frequency-response

ARTICLE IN PRESS

Fig. 8. Poincar!e maps of chaotic motion of the system (A ¼ 0:08 m; f ¼ 3:6 Hz; a ¼ p=9 rad).
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diagram. The bifurcation diagram shows that the chaotic response could be sensitive to variation
of damping of the suspension. Although the mechanical model of the vehicle is only a simplified
one and the parameters used do not agree closely with the practical data for an automobile, the
results may still be useful in dynamic design of the ground vehicle. The confirmation of the
existence of the chaos in this kind of model by experiment is left for further study.

Appendix. Nomenclature

mb vehicle body mass
J vehicle body inertia
mf front unsprung mass
mr rear unsprung mass
xbðtÞ displacement of mb

yðtÞ angular displacement of mb

xf ðtÞ displacement of mf

xrðtÞ displacement of mr

xfdðtÞ excitation to the front tire
xrdðtÞ excitation to the rear tire
lf front length
lr rear length
kf 2 front suspension spring stiffness
cf 2 front suspension damping
kr2 rear suspension spring stiffness
cr2 rear suspension damping
kf 1 front tire stiffness
cf 1 front tire damping
kr1 rear tire stiffness
cr1 rear tire damping
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