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Abstract

The problem of vibration of a non-prismatic beam resting on an inertial elastic half-plane described by
classical elastokinetics equations is solved using Chebyshev series approximation. As a result, closed
analytical formulae for the sought solution’s coefficients—the passive foundation pressure function and the
system displacement function—were obtained. The method was applied to solve the problem of
harmonically excited vibration.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The use of variable cross-section beam systems in modern engineering structures has been
increasing due to the necessity for the rational shaping and economical designing of structures and
for architectonic reasons. Solutions of many static problems, including stability problems, can be
found in a monograph by Krynicki and Mazurkiewicz [1]. An analytical solution, consisting in the
Fourier series expansion of the displacement function and the application of variational methods,
was presented in a paper by Heidebrecht [2]. Fourier series supplemented with power polynomials
were applied to solve linear, variable-coefficient differential equations (derived from, e.g., variable
cross-section beam vibration problems) in a paper by Ganga Rao and Spyrakos [3]. A rigidity
matrix and an inertia matrix for a beam with linearly varying height was determined by Gupta [4].
Non-prismatic beams were also studied by Eisenberger who in Ref. [5] determined rigidity matrix
elements for several kinds of non-prismatic beams. Jointly with Reich [6] he applied the finite
element method to a static analysis and a dynamic analysis to solve the stability problem,
approximating the beam’s displacements by polynomials of degree three. In Ref. [7] he presented
formulae for rigidity matrix elements for a beam element with variable rigidities described by
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power series. Klasztorny [8] applied the same polynomial approximation to determine matrices
for Euler and Timoshenko beam finite elements with variable parameters, resting on the Winkler
foundation. The Eisenberger formulae describing rigidity and inertia matrices for bars with
varying rigidity and density [7] were extended to bars resting on a two-parameter foundation
and subjected to non-potential loads in a paper by Glabisz [9]. They were applied there to solve
several stability problems relating to non-prismatic columns, using, similarly as in Refs. [7,8],
power series to approximate the displacement function. The author of the present paper
applied Chebyshev series to solve the vibration problem for a non-prismatic beam resting on a
non-homogenous two-parameter elastic foundation in Refs. [10,11]. The solution in the form
of a series with respect to Chebyshev polynomials presented in Ref. [10] was obtained by solving
an infinite system of algebraic equations for harmonic vibration. The equations’ coefficients
were described by closed analytical formulae. The results obtained in Ref. [10] were used in
Ref. [11] to determine a dynamic matrix of rigidity for non-prismatic finite elements. The
described elements were then employed to solve elementary and more complex problems of
stability. The problem of the influence of boundary conditions, polynomial beam density and
rigidity expansion coefficients and two-parameter foundation rigidity parameter expansion
coefficients on the system’s eigenfrequencies was considered by Elishakoff [12]. Wave problems in
a sectionally non-prismatic finite beam were investigated by Burr et al. [13]. The vibration
of a beam resting on a two-parameter elastic foundation, generated by different kinds of loads,
is analyzed in a paper by Ghani Razaqpur and Shah [14], but the analysis is limited to prismatic
beams.

In the present paper, the problem of the linear harmonic vibration of a beam with variable
strength and geometric parameters, resting on an inertial elastic half-plane described by classical
elastokinetics equations, is considered. It is assumed that the beam’s variable parameters, such as
flexural rigidity, density and load, can be expanded into series with respect to Chebyshev
polynomials of the first kind. Using the theorems found in monograph [15] and the results
reported in Refs. [10,11], formal relationships between the passive foundation pressure function
expansion and the displacement function expansion are determined. The solution of the problem
of interactions between the beam and the foundation (the determination of the unknown
coefficients of the passive foundation pressure function and the displacement function) is based on
the method used by Sejmov [16] to solve the vibration problem for a stiff block foundation resting
on an inertial elastic half-plane. After calculating the unknown coefficients of the passive
foundation pressure function, the sought displacement function coefficients are determined. The
method is illustrated by applying it to a numerical example in which the vibration of a non-
prismatic beam, generated by a uniformly distributed harmonic load and a linearly variable
asymmetrical load, is considered.

2. Problem formulation

A rectilinear non-prismatic Euler beam of length 24, resting on an inertial elastic half-plane and
subjected to dynamic normal loads P(X,?) and static axial forces N(X) (N >0 in tension), is
considered. The beam and the half-plane are joined with bilateral constraints in the normal
direction (Fig. 1).
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Fig. 1. Diagram of system.

The beam linear transverse vibration is described by the following differential equation:
o oW 0 ow W
— | EJX)—— | — = NX)—= ——=P(X,t) — R(X,1 1
where W is the displacement perpendicular to the bar’s axis, E is Young’s modulus, J is a moment
of inertia of the bar’s cross-section, p is the mass per unit length and R(X, ¢) an elastic foundation
reaction function.

The cross-sectional forces—bending moments and shearing forces—are given by the formulae
ol (4 0 ol /4 ow
— TX,t)=——|E]— — 2
ox?’ X, 0 8X< J6X2>+N8X @

The inertial elastic half-plane displacement functions are described by the two conjugate partial
differential equations

oV 2V U AV orv
U + 5 U+ + = Pp

M(X,t)= —EJ

ox2 ' oy2 oX oYy ' or2
82_U+82_U T+ 62_U_|_82_V __ou 3)
Mox2 " ay2 “TH\ax2 Taxor) T P ar

and the boundary conditions

oyy(X,0,1) = —R(X)e'" for—a<X< +a,

oxy(X,0,0) =0 for— oo<X< + o0, 4)
where U(X), V(X) are, respectively, horizontal and vertical displacements of the half-plane, 4, u
are Lamé constants and p is the elastic foundation’s density.

Because of the constraints introduced between the beam and the half-plane, the following
relation holds for the displacements:

V(X,0,1) = W(X,t) for—a<X< +a (5)
Further considerations are limited to harmonic vibration. If the relations
x=X/a, y=7Y/a,
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WX, 1) = W(X)e = aw(x)e",
V(X,0,1) = V(X,0)e" = av(x,0)e'”,
U(X,0,7) = UX,0)e'" = au(x,0)e”,
P(X,1) = P(X)e" = (Po/a)p(x)e"”,
R(X,1) = R(X)e™" = (Py/a)r(x)e"" (6)

are put into Eqgs. (1)—(4), this equation of the beam’s vibration is obtained:

7002+ (2 aE_"(x)>a3—W+ (azE_"(x) N )55 gl

ox ) ox3 ox?
ON(x) ow

2 — g = n(p(x) — () ™

and the cross-section forces (2) are expressed by the formulae

M(ax)a Yo o*w

m(x) =

El, ox%
T (ax) a2 0 Pw  —_Pw _Oow
(x)=——-"+— EJ — FEJ— N— 8
) EJy <8x >6x2 o3 M e ®
where
a* Py _ a*p,

EJ = EJ)EJ, N = PyN, pp=pypg n= 9)

£l YT El
@d EJy, EAy, py, Po are reference quantities. To simplify the notation, EJ, N, pp instead of
EJ, N, pp will be used.

When relation (6) is used, the equations describing the vibration of the half-plane are expressed
by the formulae

251,!

@22
6x2 -+ ,b’ 5+ 6 6y fxu
6 v
2 2 2
axz 5+ B2 —p (10)
and the boundary conditions assume the form

Oy = —Por(x)e'Ja for — 1<x< + 1, (11
oy =0 for — oo <x< + o0,

where % = c3/ = u/(h+ 2u),k = wa/cy and ¢} = (2 +2u)/p, ¢ = u/p are the velocities of
propagation of, respectively, longitudinal and transverse waves in the foundation.
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3. Chebyshev series expansion of elastic half-plane displacement function

The method of potentials and the Fourier transformation are applied to solve the system of
Egs. (10). Without going into details of this classical technique of solving elastokinetics problems,
the final solution is

P, ke k2402 — B2 (o) .
v(x,0) = — / e ' do, (12)
2rap J - (202 — K2)2 — 424 ] o2 — ﬁ2K21 /o2 — 12

where 7(«) is the Fourier transform of pressure function r(x). Unknown passive foundation
pressure function r(x) in the form (see Ref. [16, p. 70])

700 = (1) 12 ), (13)
=0

where T;(x) are Chebyshev polynomials of the first kind and the modified sum symbol X’ defines
the following operation Y, a) = 2ao + a4+ a + az+ -, is sought.
When the Fourier transform is performed on Eq. (12) and the integral formulae

1 +1 B )
- / (1= x%) 7P Tyx)e™™ dx = (= 1)'au(@),
—1

1 +1 B ) -
— ] =) T P Ty )e ™ dx = i(= 1) T (), (14)

(where J;(x) is the Bessel function of the first kind) are used, then

(o) = ” (1 - 2)—1/2T (x) fox d
TC; ry / . X 1(X)E X
o) 1/2 / «© , 0
= (;) (Z (= D'radau(e) + i Z(—1)1r21+1J21+1(0<)) : (15)
1=0 =0

If transform (15) is substituted into formula (12),

© ) ;ﬂ/@ rard () o
U(X, O) = Z ( 1) / e*lfx«\ d(x
0 00(2052_’62)2_4“2\/m\/a2—;{2
Poi & © Kz\/mVZH—IJZH—I(“) o
e ' [ ——— e (10)
Clﬂ —o (20(2 _ K2)2 o 4a2\/m 062 _ K2

Displacement function (16) (see Ref. [16, p. 71]) is expanded into a series with respect to the
Chebyshev polynomials of the first kind

o0

o(x) = ) @] Ti(x) = Z o Ti(x), (17)

1=0
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where

o0

> alf1=1alf1+ ailf1+ wlf1+ - (18)

1=0

By definition, the expansion’s coefficients ¢;[v] are given by
2 1
av] == / (1 = X)) Ty(x) dx. (19)
TJ-1
Relation (14) and the formula
Ju(@"™z) = e"1,(2) (20)

are used and the substitution ¢ = o/« is introduced to obtain

Po~, on [T 2/ & = B Iu(kd)I0n(kd)
) = v = = 0 1) [ @,
=g O Q-1 -4 /E-pVE -

Py & , © 20/ E = B Ta1 (k)T (16)
i [V) = Vot = — > (=) ryp de. @
au =0 0 (252_1)2_452 /é2_ﬁ2\/€2—_1

Infinite integrals (21) are subjected to further transformation. To simplify the notation, the
symbols

Py =2 /0 PRI (KEAE, [ —n=2m (22)

( & - ﬂ2>
. (23)
Q& — 12 —48%,/& — B2/ & — 1)

The additional condition in formula (22) means that numbers /, n specifying the orders of the
Bessel functions, are simultaneously even or simultaneously uneven. It is assumed that />n.
In formula (22) the substitution

are introduced where

F(5)=<

2J,(x) = HP(x) + HD (x) (24)
is performed where
HO(x) = Ju(x) + iNu(x),  HP(x) = J,(x) — iN,(x) (25)

are Hankel functions of the first and second kind, and this relation is obtained
o0 o0
Png = / FEOLcOHP (1) dé + / FOL(cOHP (1) dé. (26)
0 0

Integrals (26) are calculated by moving the integration onto a complex plane. The appropriate
integration contours are shown in Figs. 2 and 3. The signs and the characteristic values of
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Fig. 2. Integration contour in case when integrand includes function Hzl)(z). A, B are branch points and P is pole.

n
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Fig. 3. Integration contour in case when integrand includes function H?(z). A, B are branch points and P is pole.

multi-valued functions v, = /22 — 2, v» = /2> — 1, where z = ¢ +in, in formula (23) are
presented in Fig. 4. Using known theorems relating to integration on a complex plane, one gets

o) = / FONEOHD(c8) dé + / FOIOHD (8) dé
0 0

o0 0 N S
= / I dé + / Ldé= Ldz+ / I dz + / Ldz—2m) resh.  (27)
0 0 OBR (0] R
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Fig. 4. Signs and characteristic values of multi-valued function v; = /22 — [32, vy = v/z2 — 1 on complex plane.

After appropriate transformations using relation (20) and the formula
H(e"z) = —e"™HP(2) (28)

results in

A r* VB & o
o =2 / HOHO () d
0 Q8 1P +42\ P - EVI-E

1 462(62 _ ﬁ2)m o
" /ﬁ QE 1) 1 1664 — gy = &) (OH () de

52 o ﬁ2
_n v NiE)HP (18, |
(& -1 =48y & - Ve -1

l—n=2m, I[I=n (29)

When [ <n, Bessel function products J;( )H(z)() which occur in formula (29) should be replaced
by J,.( )H(z)() The details of the presented method of calculating infinite integrals can be found in
Ref. [17, pp. 132-134].

4. Solution of non-prismatic beam vibration problem

If a passive foundation pressure function (13) is substituted into Eq. (7), one obtains

84 OEJ(x)\ & 0*EJ Pw  ON(x)0
EJ()= + (2 a)fx)>a—xf ( axz(x) nN(x )) n aff)a—‘; — Wgppw

= n <p<x> — (1) i/rm(x)) . (30)
=0
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A solution of differential Eq. (30) in the form of the Chebyshev series

o0

wx) =D awT(x) = > 'wiTy(x) (31)
1=0

1=0

will be sought.
To solve Eq. (30), the theorem relating to ordinary differential equations ([15, p. 231]) is
applied:

Theorem. If function f(x) satisfies the linear differential equation of order n >0

3 Pu0)f ") = ) (32)
m=0
and
0u(0) = S (- 1y ( " ) P0G, m=0,1,.m, (33)
7=0 m=j

where (;) =n!/m(n—m)! and the Chebyshev series coefficients in  functions

(0N, (01 )Y, ..., Ouf, P are determinate, then for each integer k the following identity is true:

n

Z 2nfm Z bnmj(k)ak—m+2j[Qm(x)f(x)]
m=0 Jj=0

n

= bu(k)ag_n2 [ P(x)], (34)
j=0

where by,,j(k) are polynomials of integer variable k

S m
bumj(k) = (=1Y ( ; )(k = Wk = m 4 2k +j + 1), (K =)~

m=0,1,...,n; j=0,1,...,m, (35)

forn=20,

(k), = {k _ (36)
(k+Dk+2)..(k+n—1) forn=1,273, ...

and ay[h] is the kth coefficient of the Chebyshev series expansion of function h(x) with respect to the
Chebyshev polynomials of the first kind.

The proof of this theorem can be found in Ref. [15, pp. 231-234]. To apply the above theorem,
it is necessary, among other things, to expand the right side of Eq. (30) into a Chebyshev series.
Since function (1 — x?)~!/? relating to the foundation reaction has no such expansion, the left side
and the right side of Eq. (30) are multiplied by (1—x?).
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Functions P,,, P in the modified Eq. (30) are defined by the respective formulae

o) = (1 = DB, i) =20 - ) P
P = - PO v, Py = -2,
ox ox
Py(x) = —(1 = X’ gpp(x),
P(x,H)=n ((1 — X)p(x) = (1 = x2)!/? i ’r,Tl(x)> . (37a—f)
1=0
If relation (33) is applied, then functions Q,, associated with P,, assume the form
000 = (1 = DB, 0100 =20~ Ty gy ),
Os(x) = (1 — )azE‘](x) ~ 12 azs;c(x) — 12EJ(x) — (1 — ¥)nN(x),
0s(x) = 4x 62EJ2(x) 26EJ()c) . 2)n@N(x) 4N,
ox ox ox
2
0s9 = 272 12w T 2N — (1 - gy (38)
In further transformations, the relations (see [15, p. 128, (33), p. 124, (17), p. 123, (11)])
1 © ’
alf ()g(0) = 5D anlfWar-nlg] + ar-nlg). (39)
m=0
1
a = 2—1(61;71 —ay,,), 1#0, (40)
a[[me(X)] —-m Z <,;/Z ) apmi2j, M= 0, 1, 2, (41)
=0
and this expansion of function (1 — xz)l/2 ([15, p. 143, (4)])
(1= =~ —Z 4m2 T L), (42)

where a; = a)[f] and a) = ;[0f /0x], will be used. If formulae (37f), (38) are substituted into
formula (34) and complex transformations are performed using formulae (39)—(41), this infinite
system of algebraic equations for determining coefficients w; of the expansion of displacement
function w(x) is obtained as

0]
Z (Exs 4 nNi; + o’ gGr)w;
=0

:n<Fk+Z/r1RkJ>, k=0,1,2,3,..., (43)

=0
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where
Epy = — 2(k + D)(k + 2)(k 4 3)(k — 4)(k — 5)(I — Dlex_1_»
— 2(k — D(k — 2)(k — 3)(k + 4)(k + 5)(I — Dlexri+2
+ (4(k* = 9)(K* — )kl + 11)=8(k + 2)(k + 3)(k — DI(Tk — 23))ex—;
+ (4(k* = 9)(K* — Ikl — 11)+8(k — 2)(k — 3)(k + DI(Tk + 23))exts
+ (2(% = 9)(K* — 4)(k* — 1)(k — 2] — 4)
—2(k* — 9)(k> — &)k — I+ D)((k + Dk — [ +2) — 12(k — 1))
—8(k* — 9)(k — 1)(k — 2)(k — )(k — [ +2) — 4(k — 1)(k — 2)(k — 3)(k — [ + 2)(k — [ + 3))ex_112
+ (20 = 9)(k* — 4)(k* — 1)(k + 2] + 4)
— 20 = N> — Ak +1— D)((k — Dk +1—2)+ 12(k + 1))
F8(K* — 9)(k + 1)(k + 2)(k + D(k + 1 — 2) — 4(k + 1)k + 2)(k + 3)(k + 1 — 2)(k + 1 — 3))exy1-2
—4(k* = 9)(I* — 4 (I = 2)[(k — I+ 2)ex—i12 + (k + 1 — 2)ery-2] for 1 =0,1;
—4 3771 [24102K — 23) + (k2 = 9)(k* — 4)(1 — D))k — I + 2j)ex—1o for [ =2,3;
—961 37— (2K — 23)(k — I + 2)ex—112
—(k* = 9)(k* — 41 = 2)[(k — I + ex—r12 + (k + 1 — 2)ex 2] for />4;
(44)

Niy =3k + 1Dk + 2)(k + 3)(k = 514 — mey1-4) — (k + 2)(k + 3)2k* — 9k + 13)(n—1-2 — miy1-2)
+ 307 = 9k + )y — i) — (k = 2)(k = 3)Q2k> + 9k + 13)(mg—112 — Ns42)
+ 5k = Dk = 2)(k = 3)(k + )14 — Ny 1+4), (45)

Grs = g((k + D)k + 2)(k + 3)(gr—1-6 + gi+1-6) — 6(k — 1)(k + 2)(k + 3)(gr—1-4 + Gi+1-4)
+ 150k + 1)(k = 2)(k + 3)(gk—1-2 + Grs1-2) — 20k(k> = T)(Gr—1 + gir1)
+ 15(k — D)(k + 2)(k = 3)(gk—1+2 + gir142) — 6(k + 1)k = 2)(k = 3)(Gk—1+4 + Gicr14+4)
+ (k = D(k = 2)(k = 3)(gk-116 + Gr+i16)), (46)

Fie =3(—(k + 1)(k + 2)(k + 3)pi—6 + 6(k — 1)(k + 2)(k + 3)pi—4
150k + D)k — 2)(k + 3)pr_s + 20k(k> — T)pre — 15(k — Dk + 2)(k — 3)prsa

+ 6(k + 1)(k — 2)(k — 3)piya — (k — 1)(k — 2)(k — 3)pi+6), 47)
R _2<(k+ Dk +2)(k+3)  (k+ Dk +2)(k + 3)
TR k= 1—42 -1 (k+1—4 —1

AR =k +3) AR —4(k+3) | 6k(K*—9)  6k(k*—9)
k—1-2°—-1 (k+1-2=-1 *-0D>=-1 (k+D)*-1
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AR =Dk =3) AR =4k —3) (k= Dk —2)k—3)
k—1+2%—1 (k+l+27—1 (k—1+47% -1
(k= Dk —2)(k —3)

‘ Gt lid? 1 )((k—i—l—i—l)modZ). (48)

Parameters e, 1y, g;, p; in formulae (44)—(47) are expansion coefficients of this function

EJ() = Z’esz(x), Nx) = Z’nle<x),
pp(x) = Z g Ti(x), p(x) = me(x) (49)

Details on the transformation of Eq. (34) can be found in the author’s papers [10,11].

For k =0,1,2, 3, the first four equations in the infinite system of algebraic Eqs. (43) are satisfied
as regards identity (the number of the equations is equal to the order of Eq. (32)). The equations
are replaced by equations representing boundary conditions. In the considered case, the boundary
conditions have this form (see formulae (8))

m(F1) = —EJ(x) azw(f) —0,
Ox x=%1
2
(F1) = < aa EJ(x )>a W) e )83w(x)+ AN (x )aw(x) —0. (50)
x=F1

To calculate the values of the forces at the bar’s ends (formula (50)), one uses the Chebyshev
series expansions of functions EJ(x), N(x) and the following relations ([15, p. 48, (14), (16)])
T,(-D) =" T«H=1,
T)(—1) = —(-=1)'n?, T)1)=n%
T,(-1) = (=)'’ = 1)/3, T,(1)=n’(n* - 1)/3,
TV(—1) = —(=1)'n*(n* — 1)n* — 9/15, TV(1) = n*(n* — 1)(n* — 9)/15. (51)

The values of polynomials T,(x) and their derivatives at points F1 are substituted into
formulae (49) specifying the expansions of functions EJ, N, 0EJ/0x, to obtain

= EJ(-1) = Z eTi(=1) = Z (—e, EJ,=EJ+1)= Z eTi(1) = Z el

OEJ
EJ =—
- ox

o0

Z e/T)(1) = Z Pey,

N_=N(-1) = Z’n,T,(—l) = Z’(—l)’n,, N, = N(+1) = Z’n,T,(l) = Z’n,. (52)
=0 =0

=0 =0

OEJ]
_ 2
Eje,T’( 1) = §j( Pe, EJ' = =

x=—1 xX=
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Using the calculated values of polynomials TU(F1) and the values of constants
EJ_,EJ. ,EJ' ,EJ' ,N_,N,, one gets four additional equations describing the
boundary conditions

0 o0
m(—1)=m_=—EJ > (=D = Dw = > Boyw =0,
=0

0
m(+1)=m, = —EJ+% PP = Dw;, = Z By jw; =0,
=0
(=D =1 =) (~1P[-3P = DES +&@ 1) (* —4EJ_ —nN_Jw; =Y 'Byywi =0,
= =0
(+) =1, ==Y PP = DEJ, + &P = 1)(> = HEJ —nNJw =Y 'Byw =0. (53

The four Egs. (53) and Eqgs. (43) (for Kk =4,5,6,...) form an infinite system of algebraic
equations allowing one to determine the unknown coefficients of the expansion of displacement
function w(x) (formula (31)). If this system is written in a simplified form

© ’
> 'Bewr=0, k=0,1,2,3,
(e0]

©
/(Ek,z + nNy; + wngk,l)Wl =n <Fk + Z/Vle,l> , k=4)5,6,.... (54)

=0

5. Expansion of beam—elastic half-plane interaction problem

In the considered problem, the following conditions of consistency between the half-plane and
the beam (formula (5) with dimensionless quantities)

v(x,0) = w(x) for —1<x< +1 (55)
corresponding to the relation
w=v, [=0,12,..., (56)

where v(x,0) is the amplitude of displacement of the half-plane’s boundary and w(x) is the
amplitude of vibration of the beam’s axis, were assumed. After substituting relation (56) into
system of Egs. (54), using Eqgs. (21), (22) and (27) and performing appropriate transformations,
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one gets the infinite system of algebraic equations

P x_, ©_
0 Z 2m (Z (_1)m+lBk,2l (p21,2m>

m=0 =0

ap
o8] o0
+ Z T2m+1 (Z(—l)nHlBk,le ¢2l+1,2m+1>

m=0 1=0

=0, k£=0,1,23,

< ! PO *© !
=2 (@ (Z (=" G <Pzz,2m> + ”Rk,2m>
=0

m=0

— Zr2m+l — Z(—l)' M Choret 1o |+ 1Re2mi
=0 ar\ 1=

= nF., k=4,5,6,..., (57)

where
Crs = Exj + nNij + 0*gGy. (58)
This system of equations allows one to determine unknown coefficients r,,. If coefficients r,, are
substituted into formulae (21), the terms of the expansion of sought half-plane displacement

function (17) and, if relation (55) is taken into account, beam displacement function (31) can be
determined.

6. Numerical example
To illustrate the method, it will be applied to the problem of the harmonically excited vibration

of the beam. The beam’s cross-section is symmetrical relative to axis X and the function
describing the beam’s height has the form (Fig. 5)

H(X) = —a(((x/a)* — 1) — 1)/50. (59)
After a change to dimensionless quantities (6) the function is expressed by the formula
h(x) = —((x* — 1) — 1)/50. (60)

The other parameters for the problem are: for the beam E =28 x 101°N/m’; pp, =
2400 kg/m3 (ppy 1s mass per unit volume): a = I m and for the half-plane p = 1.5 x 108 N/m?>;

H(0) = a/25
H(X)

HC-a)=a50 = H(a) = a/50
 — X

-a a

Y

Fig. 5. Characteristic values of function H(X) describing beam’s height.
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p = 2000kg/m>; v = 0.3. Two kinds of loads: a uniformly distributed load (Fig. 6) and a linearly
variable antisymmetrical load (Fig. 7) act on the beam. The spatial distributions of the loads are
expressed by these functions

PiX)=p1=5, P(X)=p—=-3X. (61)
2a a 2a
The functions in the dimensionless form are described by the formulae
pix) =35 pax) =3x. (62,63)

The beam’s dimensionless geometric characteristics after the expansion into Chebyshev series
assume the form

J(x) = k(3 x 252To(x) — 111Ta(x) + 18T4(x) — Tg(x)) x 107,
A(x) = (1 x 6To(x) — Ta(x)) x 1072, (64)

where A(x) is the beam’s cross-sectional area. Hence after the substitution of the other numerical
values one gets EJ(x) and pp = pppA(x). Calculations were performed for four excitation
frequencies: w; = 25w rad/s, w, = 50mrad/s, w3 = 100xrad/s, ws = 200nrad/s. In order to
solve an infinite system of algebraic Egs. (57), it is limited to a finite system. Then the
displacement function and the passive foundation pressure function are expressed by the finite
sums of Chebyshev series

Iw Iw

W) = Wil r() = (1=x)72 Y TrT). (65)
=0 =0
Poa
T\T\f\a\
\'\+\1\l p, =3P, /2a
— B X
— —
\

Fig. 6. Spatial distribution of load acting on system—symmetrical load.

Po
I I PP ] ] im=h/2a
— —
— )

Y
Y

Fig. 7. Spatial distribution of load acting on system—asymmetrical load.



548 P. Ruta | Journal of Sound and Vibration 275 (2004) 533-556

Testing the convergence of the solutions, the system was solved for an ever larger
approximating base size lw = 12, 24, 36, 48 and Iw = 13, 25, 37, 49 for the symmetrical load
and the asymmetrical load, respectively. The functions yielded by the calculations are shown in
Figs. 8-11. Since functions r(x), w(x) assume complex values, their real parts Re(z) and imaginary
parts Im(z) are shown in the figures which also include functions abs(z), arg(z) representing,
respectively, the modulus and the argument of complex number z. Graphs of function
r(x)\/1 — x2, determined for the loads described by respectively formula (62) and (63),
are shown in Figs. 8 and 10. Graphs of displacement function w(x) are shown in Figs. 9
and 11. The calculations were performed for excitation frequency w = 100mrad/s. The
graphs shown in Figs. 12-15 represent the relationships between functions r(x)v/ 1 — x2, w(x)
calculated for different excitation frequencies w = 257, 507, 1007,200m rad/s In this case,
parameter /w equals 48 or 49. Complex displacement functions w(0), w(1) (for the beam’s
middle and end) versus dimensionless frequency parameter wa/c; for a case when the
respective load shown in Figs. 6 and 7 acts on the system are plotted in Figs. 16
and 17. Frequencies o = 257,507, 1007,200nrad/s assumed for the calculations
correspond to the following dimensionless frequency parameter values wa/c; =
0.287,0.573,1.147,2.294.

, Rer(x) v1-x? Imr(x) v1-x* x 107

absr(x) y1-x? arg r(x) v1- x?
-0.04
-0.05
-0.06
a1 05 05 1 a -05 05 1

'EEEE p(x) expliwt)

w=100Ttrad/s .

Fig. 8. Graphs of complex function r(x)\/1— x? (r(x)—passive foundation pressure function) for different
approximating base sizes /w = 12 ( ), 24 ( )y 36 (e ), 48 (—) in case when load shown in Fig. 6 acts on
system.
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‘r Rew(x) x 10° ‘ Imw(x) x 10°

b absw(x) x 10° arg w(x)

1,05 05 1

0.5 1

CEE gy Poewien .

w=100Ttrad/s .

Fig. 9. Graphs of complex function w(x) for different approximating base sizes lw = 12 ( ), 24 ( ), 36 (- ),

48 (—) in case when load shown in Fig. 6 acts on system.

, Rer(x) v1-x? L Im () V1-x?
0.75 . 0.03
0.50 0.02
0.25 0.01
-0, -0.01
-50 -0.02
-0.75 0.03
. abs r(x) v1-x* , arg r(x) v1-x2
06 25}
20
0.4 3
15¢
10}
05§
K] 05 05 1 1 05 S
D><Q P(X) exp(iwt) ,
w=1001Trad/s .

Fig. 10. Graphs of complex function r(x)v/1— x2 (r(x)—passive foundation pressure function) for different
approximating base sizes /w =13 ( ), 25 ( ), 37 (e ), 49 (—) in case when load shown in Fig. 7 acts on system.
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4 Rew(x) x 10° . Imw(x) x 10°
o 3 2 -
_ -~
2 N _
1
1 <
21
2 7
3 = ~ -~ 2
A absw(x) x 10° A arg w(x)
~, N\ 35 y, ”~
\ 3.0 / 25
¢ 25 / 20 §f
20 15 §
1.5 g
0 1o §
0, 05 §
i 05 05 Y 05 05 T
st -0.5 |-
% p(x) exp(iwt) |
w=100T1trad/s .

Fig. 11. Graphs of complex function w(x) for different approximating base sizes Iw = 13 ( ), 25 ( ), 37 (e ),

49 (—) in case when load shown in Fig. 7 acts on system.

Rer(x) y1- x? T Im r(x) ¥y1- x? x 10

absr(x) V1-x* b arg r(x) ¥1-x* x10°

05 ™ -1, -03\'_’/6.5 ll >
p(x) x exp(iwt)
R e

Fig. 12. Graphs of complex function r(x)y/1 — x2 for different excitation frequencies w = 257 ( ), S0m (- - -),
1007 (- ), 2001t (—) in case when load shown in Fig. 6 acts on system.
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T Re w(x) x 10° b Imw(x) x 10°

‘‘‘‘‘‘
o,

T Popemen:
lw=148.

Fig. 13. Graphs of complex function w(x) for different excitation frequencies w = 257 ( ), 507 ( ), 1007 (-+ev ),
2007 (—) in case when load shown in Fig. 6 acts on system.

To obtain passive foundation pressure—time 7 relations one should use relations (6) and perform
the transformations

r(x,t) = rex, ) + irg(x, 1) = r(x) exp(imw?) = (Rer(x) + i Im r(x)) exp(iw?)
= abs(r(x)) exp(i(w? + arg(r(x))))
= abs(r(x)) cos (wt + arg(r(x))) + i abs(r(x)) sin (wt 4+ arg(r(x))). (66)

Similarly as for the displacement function, one gets

w(x, 1) = w(x)exp (iwt) = we(x, 1) + iws(x, 1)
= abs(w(x)) cos (ot + arg(w(x))) + 1 abs(w(x)) sin (w? + arg(w(x))). (67)

Graphs of functions r.(x,?), ry(x,?) and w.(x, 1), ws(x,?) for different values of time ¢ are
shown in Figs. 18-21. Similarly as in the previous cases, the action of loads specified by formulae
(62) and (63) was analyzed.

It follows from the obtained results that a sufficiently good approximation of the solutions is
obtained for lw = 36 (37). The differences between the results for /w = 36 (37) and Iw = 48 (49)
are slight. Considering an influence of the dimensionless frequency parameter wa/c, on the
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Re r(x) ¥v1-x* Im r(x) v1-x* x 10?

0.75 06 [
0.50
0.25 0.
s T
0 -0.2
.50 -04
-0.75 -0.6

abs r(x) ¥1-x* arg r(x) v1-x2

0.6 25
2.0
4 15
0. 10
05
1 0.5 0.5 17 0.5 0.5 1

~J  p(X) expliawt) ,

lw =49.

Fig. 14. Graphs of complex function r(x)y/1 — x? for different excitation frequencies @ = 257 ( ), 507 ( ),
1007 (- ), 2007 (——) in case when load shown in Fig. 7 acts on system.

A Rew(x) x 10° Ar Im w(x) x 10°
1
-2
-3
b abs w(x) x 10° T arg w(x)
“--_n,\ 3.0 e
< ‘7./
Neo | f
\ 2. Ve
W5 4
b
0.5
1 05 05 [ >
—Xd  p(X¥) exp(iat)

Fig. 15. Graphs of complex displacement function w(x) for different excitation frequencies w = 257 ( ), 507 ( ),
1007 (- ), 2001 (—) in case when load shown in Fig. 7 acts on system.
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A Imwx10°% Rew x 10°

2 F

Fig. 16. Graphs of complex displacement functions w(1) (——, Re; , Im), w(0) (- , Re; , Im) for different
values of dimensionless frequency parameter wa/c;when system is subjected to load shown in Fig. 6.

L Imwx 10° Rew x 10°

w(1)

w(0) = 0

Fig. 17. Graphs of complex displacement function w(l) (—, Re; , Im) for different values of dimensionless
frequency parameter wa/c;when system is subjected to load shown in Fig. 7.

displacement function one notes that it is significant for the lower dimensionless frequencies
(wa/c; < 1) and small for the higher ones (wa/c; > 1), when the load is symmetric (Fig. 16). It the
case of asymmetrical load the influence in question is significant in the whole given range of
parameters (Fig. 17).
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r(xt) T r.(xt)
\/tz to
t 0.4 ty
\— t
1 7
0.2
t, t,
e —— —
af 05 05 1
0.2
ts t; '
t, 0.4 |
ts tI,/\

t,=0.25x107% j (9

Fig. 18. Graphs of passive foundation pressure functions ry(x,?) = abs(r(x)) sin (100%z + arg(r(x))) and r.(x,?) =
abs(r(x)) cos (1007 4 arg(r(x))) for different values of time ¢ in case when load shown in Fig. 6 acts on system.

w,(X,t) w,(X,t)
:" 2.0 L
L] ‘
15
ts - t
ts /Joj ty
. /z.
1,/ 0.5 05 1
t, /(Og— /\ t X
t; / tof— ts
/ //Ts_‘
t t
t,i / 20 [ t7
6

t; =0.25x107 j (s)

Fig. 19. Graphs of displacement functions w;(x, ) = abs(w(x)) sin (1007¢ 4 arg(w(x))) and w.(x, ) = abs(w(x)) cos (1007 +
arg(w(x))) for different values of time ¢ in case when load shown in Fig. 6 acts on system.

7. Conclusion

The obtained theoretical results and the provided numerical example validate the proposed
method of solving the problem of vibration of non-prismatic beams resting on an inertial elastic
foundation and demonstrate its usefulness. Because of the very good approximating properties of
Chebyshev polynomials, it seems that the proposed method will be particularly useful for solving
the problem of vibration of beams with complex geometry and an arbitrary distribution of mass
and strength parameters. The formulae derived in this paper are readily applicable to complex
cases of harmonically excited vibration.
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r.(xt)

ryx.t)

2.0
ts 1.5
ts 1.0
b 0.5
to

TR 0.5

ts -0.5
1 -1.0
t, 15

2.0

t; =0.25x107 (9)

Fig. 20. Graphs of passive foundation pressure functions ry(x,?) = abs(r(x))sin (100nz + arg(r(x))) and r.(x,?) =
abs(r(x))cos(1007z + arg(r(x))) for different values of time 7 in case when load shown in Fig. 7 acts on system.

\ W, ()

W, (X,t)

4.0
s 3.0
L 2.0
ts

1.0
4
ts -1 -0.5 B -

1.0
ty ——
t -2.0
t -3.0

-4.0

t; =025%x107 j(s)

Fig. 21. Graphs of displacement functions w;(x, t) = abs(w(x)) sin(1007z + arg(w(x))) and w.(x, t) = abs(w(x)) cos(1007z +
arg(w(x))) for different values of time ¢ in case when load shown in Fig. 7 acts on system.
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