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Abstract

The solution of the convected wave equation, with uniform axial flow, in cylindrical co-ordinates, is used
together with non-uniform impedance wall boundary conditions, to specify the acoustic modes in a
cylindrical or annular nozzle. The radial eigenfunctions in this case are Bessel functions, and the method
applies equally well to sheared and swirling mean flows, provided that the appropriate eigenfunctions are
used. The eigenvalues or radial wavenumbers are determined by: (i) the roots of a linear combination of
Bessel functions for a cylindrical nozzle with uniform wall impedance; (ii) the roots of a 2 � 2 determinant
whose terms are linear combinations of Bessel and Neumann functions, for an annular nozzle with uniform
but distinct impedances at each wall; (iii) the roots of an infinite determinant for a cylindrical nozzle with
circumferentially non-uniform wall impedance; (iv) the roots of the determinant of a 2 � 2 block of infinite
matrices for an annular nozzle with distinct, non-uniform impedance distributions at the two walls. The
case of circumferentially non-uniform but axially uniform wall impedance, allows the existence of an axial
wavenumber for each frequency and each eigenvalue or radial wavenumber. The acoustic liner may be
optimized by maximizing the decay of a particular wave mode, e.g., the slowest decaying, or a combination
of them, e.g., the total acoustic energy.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Acoustic liners are widely used in jet engine inlet [1,2] and exhaust [3–10] ducts, as a passive
means of noise reduction, in addition to mean flow effects [11–20]. The use of liners carries a
weight penalty and may also adversely affect thrust and fuel consumption. The optimization of
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acoustic liners [21–23], gains additional freedom by the possibility of non-uniform impedance
distribution [24–28]. In contrast with an uniform liner, the tailoring of the impedance
distribution offers the prospect of greater acoustic attenuation for the same weight,
or reduced weight for the same acoustic attenuation. The non-uniform liner may not
be effective at low frequencies, for which passive attenuation is weak. It may not carry a
significant advantage at high frequencies, which are readily absorbed by an uniform liner. The
non-uniform liner should be most advantageous over the uniform liner at the intermediate
frequencies, i.e., wavelengths of sound comparable to the scale of non-uniformity of the
liner, for which the tailoring of the impedance distribution to the waveforms is most effective at
attenuating them. These issues may be illustrated by considering a cylindrical duct with
impedance varying circumferentially [29–32], axially or in both directions [33]. The case of
circumferentially non-uniform impedance is used in the present paper to discuss the issues of
optimization.

The need to consider non-uniformity of the impedance distribution on a scale comparable to
the acoustic wavelength suggests that the acoustics of non-uniform liners is best studied via exact
solutions of the acoustic wave equation, with the appropriate impedance wall boundary
conditions. It can be easily seen that a non-uniform liner causes modal re-distribution,
e.g., an isotropic mode m ¼ 0 is modified by a circumferentially non-uniform liner into a non-
isotropic mode, ma0; which implies that the scattering effects generates harmonics
m ¼ 1; 2;y : The effect of modal redistribution must be taken into account when assessing a
non-uniform liner, since its effectiveness at absorbing a particular mode may be gained at the
expense of reinforcing other modes. The non-uniform liner may be expected to change the natural
modes of sound in a nozzle, e.g., of cylindrical or annular shape. The modelling of the acoustics of
non-uniformly lined nozzles is similar in the absence of mean flow and in the presence of axial,
shear [18–20] or swirling [34] flow, provided that the appropriate eigenfunctions are used. The
latter are known to be Bessel functions in the case of a cylindrical nozzle with uniform axial flow.
It should be borne in mind that vortical flows can absorb sound, in addition to the effect of the
liner.

The starting point for our analysis is the solution of the convected wave equation (Section 2) for
an uniform axial flow, in cylindrical co-ordinates (Section 2.1), applying to an annulus with
dissimilar wall impedances (Section 2.2) or to a cylindrical nozzle with lined walls (Section 2.3).
The case of non-uniform wall impedance varying circumferentially (Section 3) is considered both
for the annular (Section 3.1) and for the cylindrical (Section 3.2) nozzles. The eigenvalues for the
natural modes are specified by the roots of an infinite determinant in the cylindrical case,
involving the Bessel eigenfunctions at the wall. In the case of an annular nozzle the
Bessel and Neumann functions at the inner and outer walls lead to a four-block matrix, each
block of infinite size, with the determinant of the whole matrix specifying the normal modes
through its roots. The case of a cylindrical nozzle with uniform impedance is chosen to
identify (Section 3.3) the mode with slowest axial decay. The wall liner is then made (Section 4)
non-uniform, choosing the amplitude and phase of the first harmonic of the impedance
distribution, to maximize the decay of the slowest decaying mode (Section 4.1). The accuracy of
this optimization is checked, as concerns the decay rate of the mode (Section 4.2) and
the optimal impedance distribution (Section 4.3). Other liner optimization strategies are discussed
(Section 5).
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2. Sound fields in a lined annular nozzle

The sound fields in a lined annular nozzle are determined by solving the convected wave
equation in cylindrical co-ordinates with uniform axial flow (Section 2.1), and by applying
boundary conditions at the inner and outer radius of the annulus, which may have distinct
impedances (Section 2.2); these are taken to be uniform, including the particular case of a
cylindrical nozzle (Section 2.3), before proceeding to circumferentially non-uniform liners.

2.1. Convected wave equation in cylindrical co-ordinates

The acoustic pressure p satisfies the convected [35,36] wave equation with sound speed c:

ð1=c2Þð@=@t þ v � =Þ2 � =2
� �

pðx; tÞ ¼ 0; ð1Þ

written in cylindrical co-ordinates x � ðr; y; zÞ in the case of a uniform axial flow of velocity
v ¼ Uez:
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pðr; y; z; tÞ ¼ 0; ð2Þ

in an annulus (Fig. 1) of length L; so that

R � r2XrXr1 � sR; 0pzpL � mR; 0pyo2p; ð3a–cÞ

Here m ¼ L=R is the aspect ratio based on the outer radius, and the hollowness s ¼ r1=r2 is the
inner radius as a fraction of the outer radius; for a cylindrical (hollow) nozzle, r1 ¼ 0 ¼ s; and for
an annular nozzle 0oso1: The impedance boundary condition [37] relates the Fourier time
spectra of the acoustic pressure perturbation *p and acoustic velocity perturbation *v:

pðr; y; z; tÞ ¼
Z þN

�N

*pðr; y; z;oÞe�iot do; vðr; y; z; tÞ ¼
Z þN

�N

*vðr; y; z;oÞe�iot do; ð4a;bÞ
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Fig. 1. Annular nozzle with circumferentially non-uniform impedance distributions Z1ðyÞ over the inner surface of

radius r1 ¼ sR with 0oso1; and Z2ðyÞ over the outer surface of radius r2 ¼ R:
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the two walls may have distinct non-uniform wall impedances %Zs:

s ¼ 1; 2: *pðrs; y; z;oÞ ¼ %Zsðy; z;oÞ ns � *vðrs; y; z;oÞ; ð5aÞ

where *v is the acoustic velocity perturbation spectrum and ns is the unit vector normal to the wall,
directed away from the fluid and towards the wall interior; s ¼ 1 refers to the inner wall and s ¼ 2
to the outer wall. In an annular cylindrical nozzle, n1 and n2 are radial vectors but n1 points to the
axis whereas n2 points away from the axis. This can be taken into account writing

s ¼ 1; 2: *pðrs; y; z;oÞ ¼ ð�1Þs %Zsðy; z;oÞ *vrðrs; y; z;oÞ; ð5bÞ

note that vr is the radial component of the velocity perturbation v and is related to the acoustic
pressure perturbation p by the linear radial component of the linearized momentum equation:

rð@=@t þ U@=@zÞvrðr; y; z; tÞ þ ð@=@rÞpðr; y; z; tÞ ¼ 0; ð6Þ

where r denotes the mean flow mass density in (6).
Since the coefficients of wave equation (2) do not depend explicitly on ðy; z; tÞ; it is convenient to

use Fourier representations in these three variables, both for the acoustic pressure p and radial
velocity vr perturbations

pðr; y; z; tÞ ¼
XþN

m¼�N

eimy
Z þN

�N

dk eikz

Z þN

�N

Pmðr;o; kÞ e�iot do; ð7aÞ

vrðr; y; z; tÞ ¼
XþN

m¼�N

eimy
Z þN

�N

dk eikz

Z þN

�N

Vmðr;o; kÞ e�iot do: ð7bÞ

viz.: (i) a Fourier series in the azimuthal direction (3c), with integer azimuthal wavenumber m;
(ii) a Fourier integral in the axial direction (3b), with axial wavenumber k; (iii) a Fourier integral
in time, involving the ðmÞ-mode spectrum of the acoustic pressure Pm and radial velocity Vm; for a
wave of frequency o and axial wavenumber k at radius r: The radial dependence of the acoustic
pressure spectrum is specified by substituting Eq. (7a) in Eq. (2), leading to [38,39] the Bessel
equation

P � Pmðr;o; kÞ: r2P00 þ rP0 þ ðk2r2 � m2ÞP ¼ 0; ð8Þ

where the radial wavenumber is given by

k2 � ðo� kUÞ2=c2 � k2: ð9Þ

The solution of Eq. (8) in an annulus is a linear combination of Bessel Jm and Neumann Ym

functions:

Pmðr;o; kÞ ¼ Amðo; kÞJmðkrÞ þ Bmðo; kÞYmðkrÞ; ð10Þ

where the amplitudes Am and Bm may depend on frequency and axial wavenumber and are
determined by initial conditions and/or boundary conditions at the entry and exit from the duct.

2.2. Annular nozzle with dissimilar wall impedances

Substitution of the acoustic pressure (7a) and radial velocity (7b) perturbations
in the radial component of the linearized momentum equation (6), leads to the polarization
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relation

�irðo� kUÞVmðr;o; kÞ þ ðd=drÞPmðr;o; kÞ ¼ 0; ð11Þ

which may be applied at the walls (5b), with generally dissimilar impedances:

i
o
c
� kM

	 

Pmðr;o; kÞ � ð�1ÞsZsðd=drÞPmðr;o; kÞ ¼ 0: ð12Þ

Two dimensionless parameters were introduced: the Mach number M ¼ U=c; and the specific
impedance, defined (13) as the ratio of the wall impedance to the impedance of a plane wave,

Zs � %Zs=ðrcÞ: ð13Þ

Substitution of the radial eigenfunctions (10) in the boundary conditions (12) leads to

s ¼ 1; 2: i
o
c
� kM

	 

½AmvJmðkrsÞ þ BmYmðkrsÞ�

� ð�1ÞsZs½AmkJ0mðkrsÞ þ BmkY0
mðkrsÞ� ¼ 0; ð14Þ

where prime denotes the derivative of the Bessel and Neumann functions with respect to their
arguments.

Using the dimensionless parameter (15),

a � o=kc � Mk=k ð15Þ

and noting that r1 ¼ sR; r2 ¼ R the linear homogeneous system of Eq. (14), written in matrix
form, is

iaJmðksRÞ þ Z1J
0
mðksRÞ iaYmðksRÞ þ Z1Y

0
mðksRÞ

iaJmðkRÞ � Z2J
0
mðkRÞ iaYmðkRÞ � Z2Y

0
mðkRÞ

" #
Am

Bm

" #
¼ 0: ð16Þ

Since the amplitudes Amðo; kÞ and Bmðo; kÞ cannot all vanish, the 2� 2 determinant of the
coefficients must vanish

0 ¼ D0ðklmnÞ � ½iaJmðkr1Þ þ Z1J
0
mðkr1Þ�½iaYmðkr2Þ � Z2Y

0
mðkr2Þ�

� ½iaJmðkr2Þ � Z2J
0
mðkr2Þ�½iaYmðkr1Þ þ Z1Y

0
mðkr1Þ�: ð17Þ

The vanishing of the 2 � 2 determinant of coefficients in Eq. (16) is the dispersion relation (17),
whose roots are the radial wavenumbers klmn; in the case of uniform, generally dissimilar wall
impedances.

2.3. Cylindrical nozzle with uniform wall impedance

In a cylindrical nozzle (Fig. 2), the solution of Eq. (8) which is bounded at the origin is

Pmðr;o; kÞ ¼ Amðo; kÞJmðkrÞ ð18Þ

and simplifies the boundary condition (17) to

iaJmðkRÞ � ZJ0mðkRÞ ¼ 0: ð19Þ

The dimensionless frequency

O � oR=c; ð20Þ
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is related to the dimensionless axial and radial wavenumbers

z ¼ Rk; x ¼ Rk ð21Þ

by Eq. (9), viz.

x ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO� MzÞ2 � z2

q
ð22Þ

and appears in a in Eq. (15) as

a ¼ ðO� MzÞ=x: ð23Þ

Substitution in the boundary condition (19) leads to

iðO� MzÞ Jm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO� MzÞ2 � z2

q� �
� Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO� MzÞ2 � z2

q
J0m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO� MzÞ2 � z2

q� �
¼ 0; ð24Þ

where the ð7Þ sign was dropped because of the parity of the Bessel functions of the first kind of
integer order. If there is no flow, M ¼ 0 and the boundary condition (24) simplifies to

iOJm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � z2

q� �
� Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � z2

q
J0m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � z2

q� �
¼ 0: ð25Þ

Since this equation is even on z; it has symmetric solutions 7z: In terms of x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � z2

p
; the

boundary condition is written as

iOJmðxÞ � ZxJ0mðxÞ ¼ 0; ð26Þ

which is its simplest form.
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distribution.
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3. Nozzle with circumferentially non-uniform wall impedance

The cases of one- and two-dimensional non-uniform wall distribution can be treated
similarly, using single or double Fourier series, viz., one for each direction, for example,
circumferential and axial. The case of circumferentially varying wall impedance is
treated in detail for the annular nozzle with dissimilar wall impedances (Section 3.1), including
the particular case of the cylindrical nozzle (Section 3.2). One notes that the distinction between
cut-off (evanescent) and cut-on (propagating) modes, that exists for sound in a rigid walled
nozzle, is not so clear in the case of an impedance wall, even when the impedance is uniform
(Section 3.3).

3.1. Dissimilar inner and outer impedance distributions

The wall impedances at the inner s ¼ 1 and outer s ¼ 2 radius are represented by a Fourier
series

s ¼ 1; 2: ZsðyÞ ¼
XþN

m0¼�N

Zm0

s eim0y ð27Þ

with amplitudes Zm0

s of the harmonics m0 of the impedance given by

Zm0

s ¼
1

2p

Z 2p

0

ZsðyÞe�im0y dy: ð28Þ

The Fourier representation (27), (28) applies to the wall impedance distributions
which are functions of bounded variation, and thus allow discontinuous impedance
distributions, e.g., ducts in which only some parts are lined. The impedance distributions may
be different on the inner and outer walls, and they appear in the boundary conditions (5b). The
equation of momentum (6) can be used to eliminate the radial acoustic velocity perturbation
spectrum

r ¼ rs:
1

c
�ioþ U

@

@z

� �
*pðr; y; z;oÞ þ ð�1ÞsZsðyÞ

@

@r
*pðr; y; z;oÞ ¼ 0: ð29Þ

The acoustic pressure is given both by Eqs. (4a) and (7a), leading to

*pðr; y; z;oÞ ¼
XþN

m¼�N

eimy
Z þN

�N

dk eikzPmðr; k;oÞ ð30Þ

with the radial eigenfunctions specified by Eq. (10)

*pðr; y; z;oÞ ¼
XþN

m¼�N

eimy
Z þN

�N

dk eikz½AmJmðkrÞ þ BmYmðkrÞ�; ð31Þ

as a superposition of azimuthal and axial harmonics, with wavenumbers, respectively, m; k;
related to frequency o and radial wavenumber k by Eq. (9).

Substitution of the decomposition into harmonics ðm; kÞ of the acoustic pressure
(31) and harmonics m0 of the wall impedances (27) into the boundary conditions
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(29) yields

0 ¼ i
o� Uk

c

XþN

m¼�N

eimy½Amðo; kÞJmðkrsÞ þ Bmðo; kÞYmðkrsÞ�

� ð�1Þs
XþN

m;m0¼�N

eiðmþm0ÞyZm0

s k½Amðo; kÞJ0mðkrsÞ þ Bmðo; kÞY0
mðkrsÞ�: ð32Þ

Use of Eqs. (9) and (15) simplifies these two boundary conditions toXþN

m¼�N

eimy ia½AmJmðkrsÞ þ BmYmðkrsÞ�

(

� ð�1Þs
XþN

m0¼�N

Zm�m0

s ½Am0J0m0 ðkrsÞ þ Bm0Y0
m0 ðkrsÞ�

)
¼ 0; ð33Þ

where, in the second term, m þ m0 was replaced by m0; and then m exchanged with m0: Since each
of the terms in curly brackets must vanish, introducing the identity matrix dmm0 leads to the linear
homogeneous system of equationsXþN

m0¼�N

½iaJm0 ðkrsÞdmm0 � ð�1ÞsZm�m0

s J0m0 ðkrsÞ�Am0 ðo; kÞ

þ
XþN

m0¼�N

½iaYm0 ðkrsÞdmm0 � ð�1ÞsZm�m0

s Y0
m0 ðkrsÞ�Bm0 ðo; kÞ ¼ 0: ð34Þ

Since the amplitudes Am0 and Bm0 cannot be all zero, the determinant of coefficients must vanish:

0 ¼ DðkmnÞ ¼
iaJmðkr1Þdmm0 þ Zm0�m

1 J0mðkr1Þ iaYmðkr1Þdmm0 þ Zm0�m
1 Y0

mðkr1Þ

iaJmðkr2Þdmm0 � Zm0�m
2 J0mðkr2Þ iaYmðkr2Þdmm0 � Zm0�m

2 Y0
mðkr2Þ

�����
�����: ð35Þ

This is a 2� 2 determinant, of which each of the four terms is an infinite determinant m;m0 ¼
0;71;y;7N; its roots specify the radial wavenumbers kmn or axial wavenumbers kmn; and
hence the decay of the modes.

3.2. Cylindrical nozzle with circumferentially varying wall impedance

A particular case r1 ¼ 0 is the cylindrical nozzle of radius R with a specific wall impedance ZðyÞ
given by

ZðyÞ ¼
XþN

m0¼�N

Zm0eim0y ð36Þ

with coefficients of harmonics

Zm0 ¼
1

2p

Z 2p

0

ZðyÞe�im0y dy: ð37Þ

This case is obtained by setting the coefficients Bm to zero in Eq. (10) and omitting
the boundary condition at the inner wall. Eq. (34) reduces to the first term, where m and m0
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can be interchanged:

XþN

m¼�N

½iaJmðkRÞdmm0 � Zm0�mJ0mðkRÞ�Amðo; kÞ ¼ 0: ð38Þ

This is an infinite system of equations (one for each value of m0) and, since not all Am vanish, the
determinant must vanish:

DðknÞ ¼ det Nm0m ¼ 0; ð39Þ

where the matrix Nm0m is given by

Nm0m ¼ iaJmðkRÞdm0m � Zm0�mJ0mðkRÞ: ð40Þ

The roots of Eq. (39) specify the radial wavenumbers kn; and, through Eq. (9), the axial
wavenumbers kn for a given frequency.

Using a in Eq. (23), determinant (39) can be written, centred on element Nmm; as

DðknÞ

¼

i
O� Mz

x
Jm�1ðxÞ � Z0J

0
m�1ðxÞ �Z�1J

0
mðxÞ �Z�2J

0
mþ1ðxÞ

�Zþ1J
0
m�1ðxÞ i

O� Mz
x

JmðxÞ � Z0J
0
mðxÞ �Z�1J

0
mþ1ðxÞ

�Zþ2J
0
m�1ðxÞ �Zþ1J

0
mðxÞ i

O� Mz
x

Jmþ1ðxÞ � Z0J
0
mþ1ðxÞ

������������

������������
¼ 0; ð41Þ

where only the central 3 � 3 part is written explicitly. To find the roots of the determinant, x is
expressed in terms of z using Eq. (22), where the 7 sign can be dropped:

x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðO� zMÞ2 � z2

q
; ð42Þ

because when the sign of x is reversed, the signs of the terms of rows with m odd in determinant
Eq. (41) are reversed, and thus the roots of the determinant remain the same.

When there is no mean flow inside the duct, M ¼ 0 and Eq. (41) can be simplified to

DðknÞ ¼

iðO=xÞJm�1ðxÞ � Z0J
0
m�1ðxÞ �Z�1J

0
mðxÞ �Z�2J

0
mþ1ðxÞ

�Zþ1J
0
m�1ðxÞ iðO=xÞJmðxÞ � Z0J

0
mðxÞ �Z�1J

0
mþ1ðxÞ

�Zþ2J
0
m�1ðxÞ �Zþ1J

0
mðxÞ iðO=xÞJmþ1ðxÞ � Z0J

0
mþ1ðxÞ

�������
�������

¼ 0: ð43Þ

In this case the determinant depends only on x and O and its roots specify the axial wavenumber
through

z ¼ 7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � x2

q
: ð44Þ
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In the presence of mean flow Ma0; the roots x of Eq. (41) specify the axial wavenumber z by
solving Eq. (42), viz.,

ð1 � M2Þz ¼ �OM7
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
O2 � ð1� M2Þx2

q
; ð45Þ

which simplifies to Eq. (44) for M ¼ 0:

3.3. Fundamental longitudinal mode with uniform impedance

In the case of a rigid wall, the boundary condition (5a) is replaced by zero normal velocity
vr ¼ 0; or zero normal gradient of the acoustic pressure @p=@r ¼ 0; corresponding to infinite
impedance Z ¼ N in Eq. (25). In this case the radial wavenumbers are the roots of J0mðxÞ ¼ 0 in
Eq. (26). Thus, if jmn denote the roots of the derivative of the Bessel function Jm; the radial
wavenumbers are real:

J0mðjmnÞ ¼ 0 ) kmn ¼ jmn=R: ð46Þ

The corresponding axial wavenumbers

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðo=cÞ2 � ð jmn=RÞ2

q
ð47Þ

are: (i) real for propagating or cut-on modes if oR=c > j jmnj; i.e., for the lowest order modes;
(ii) for sufficiently high radial order n; such that j jmnj > oR=c the modes are imaginary, i.e., cut-off
or evanescent.

For impedance wall condition, even in the case of uniform impedance (19), the radial
wavenumber kmn is generally complex, and even in the absence of mean flow, the axial
wavenumber kmn is also complex (9):

kmn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o=c
� �2�k2

mn

q
ð48Þ

and the preceding distinction is not so clear. The real part of the axial wavenumber specifies the
periodicity of the acoustic field along the axis of the duct; whereas the imaginary part specifies its
decay:

expðikmnzÞ ¼ exp½iz ReðkmnÞ� exp½�z ImðkmnÞ�: ð49Þ

One considers as an example a cylindrical nozzle of radius R ¼ 1 m without mean flow U ¼ 0; for
the circumferential mode m ¼ 14; which could be generated by a compressor or turbine stage with
m=2 ¼ 7 blades. The dimensionless axial wavenumber z is plotted versus dimensionless frequency
O in Fig. 3, which shows the first 10 modes, for a specific impedance

Z0 � %Z0=rc ¼ 2:5 � i0:4: ð50Þ

Generally, impedance (5a) is a function of frequency, and would have different values for distinct
modes. In Fig. 3 and subsequent figures the same impedance is considered for all modes, in order
to make more clear the modal interaction associated with non-uniform impedance. It is clear that
higher order n modes, for a fixed frequency O; decay faster, i.e., have larger ImðznÞ: For each order
n; as the frequency increases, the imaginary part reduces, but the transition is not abrupt, i.e.,
there is no abrupt jump from cut-off to cut-on modes. The slowest decaying mode z1 with uniform
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impedance Z0; is considered next, in order to optimize the impedance distribution ZðyÞ to
maximize the decay of acoustic pressure.

4. Maximization of the axial decay of the acoustic field

The effect of a circumferentially non-uniform acoustic liner on a cylindrical nozzle is
exemplified (Section 4.1) by showing how the axial wavenumber varies with the amplitude of the
first harmonic of the impedance, to maximize its imaginary part or spatial decay. This specifies the
optimum impedance distribution, with an accuracy which can be estimated by performing the
calculations in several alternative ways (Section 4.2). Using these methods it is possible to
implement a liner optimization strategy (Section 4.3), which selects the modes with slowest axial
decay and maximizes their axial decay by selecting the non-uniform impedance distribution.

4.1. Impedance distribution for the fastest acoustic decay

A possible optimization criterion for a circumferentially non-uniform acoustic liner is to
maximize the imaginary part of the axial wavenumber for the most significant modes. This can be
illustrated by changing the circumferential liner impedance to maximize the imaginary part of the
axial wavenumber of the slowest decaying mode z1; calculated above for an uniform liner. The
baseline case is taken to be a wave of frequency f ¼ 1 kHz in a cylindrical nozzle of radius
R ¼ 1 m; so that the dimensionless frequency is O ¼ oR=c ¼ 2pfR=c ¼ 18:48 for a sound speed
c ¼ 340 m=s: The roots of Eq. (26) specify the dimensionless radial wavenumber xn and hence by
Eq. (44), the dimensionless axial wavenumber zn: The root leading to the smallest imaginary part
of zn ¼ kn=R; and hence Eq. (49) the slowest decay, is

z1 ¼ 8:03438þ i3:020068: ð51Þ

The imaginary part should be maximized next by optimizing the circumferential impedance
distribution. The impedance distribution is made circumferentially non-uniform by adding to Z0
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the first terms of the Fourier series (36), viz.:

ZðyÞ ¼ Z0 þ Z1e
iy þ Z�1e

�iy; ð52Þ

choosing the combination

Z1 ¼ Z�1 ¼ eZ0; ð53Þ

so that it takes the form

ZðyÞ ¼ Z0ð1 þ e cos yÞ: ð54Þ

The complex impedance correction can be chosen at will, provided that Re½ZðyÞ� > 0 for all y; viz.,
ReðeÞ > �1; this will be satisfied by taking jejo1; i.e., an impedance correction smaller than the
baseline value.

In the no-flow case (M ¼ 0) the dimensionless wavenumbers x are given by the roots of
determinant (43). For computational purposes it can be truncated to a 3� 3 determinant centred
on the m ¼ 14 element. The axial dimensionless wavenumber z can then be determined by use of
Eq. (44). The roots D ¼ 0 of Eq. (43) are determined as follows. First, the values of D are
calculated on a grid, then the points where ReðDÞ change sign and where ImðDÞ change sign are
determined. The intersection of both sets of points gives approximated values of the roots, which
are then used to determine more precise values using the secant method. The radial and axial
wavenumbers were determined for

0pRe ðeÞp1; �1pIm ðeÞp1: ð55Þ

In the present case, where only the first terms of the Fourier series (36) are used, the determinant
D depends only on e2:

DðknÞ ¼

iðO=xÞJm�1ðxÞ � Z0J
0
m�1ðxÞ �eZ0J

0
mðxÞ 0

�eZ0J
0
m�1ðxÞ iðO=xÞJmðxÞ � Z0J

0
mðxÞ �eZ0J

0
mþ1ðxÞ

0 �eZ0J
0
mðxÞ iðO=xÞJmþ1ðxÞ � Z0J

0
mþ1ðxÞ

�������
�������

¼ 0: ð56Þ

Therefore there is no need to determine the wavenumbers for negative values of ReðeÞ: In Fig. 4
the axial wavenumbers determined are presented for representative values of ReðeÞ: For small
values of ReðeÞ and ImðeÞ —typically jReðeÞjp0:2 and jImðeÞjp0:4—changes in wavenumber due
to the non-uniformity are small enough to clearly identify each wavenumber with a definite value
of m: In this range it is possible to find values of e that maximize the imaginary part of the
dimensionless axial wavenumber z and thus the mode decay. As e increases, mode coupling
strengthens and change in z increases. It is no longer possible to clearly assign each wavenumber
obtained using the 3� 3 determinant for a single value of m: Therefore, for large values of e; mode
mixing due to the non-uniform wall impedance makes impossible a one-to-one correspondence
with the modes in a nozzle with rigid walls or uniform wall impedance.

4.2. Truncation of determinant and accuracy of optimization

The results of the previous section were obtained by determining the roots of the infinite
determinant (56) truncated to a 3 � 3 determinant. To understand how this affects the results, the
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eigenvalues were determined for uniform impedance and, for a few values of e; for 2� 2; 3� 3;
4� 4 and 5 � 5 determinants. The values of e were chosen small enough that the radial
eigenvalues could by assigned to m ¼ 14: The radial eigenvalues obtained, presented in Table 1,
show that the difference in the results obtained with determinants 3 � 3; 4� 4 and 5� 5 is small.
Truncation to 3 � 3 determinant is therefore possible without serious loss of accuracy. Table 1
also shows that the accuracy of the results from 3� 3 determinant tend to reduce as e increases.
This is to be expected, since, when going from a n � n determinant to a ðn þ 1Þ � ðn þ 1Þ the
additional term that appears is proportional to e2: Therefore, the smaller the value of the
correction, the better the accuracy obtained with a 3� 3 determinant.
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A large value of e leads to a strong coupling between the modes. Therefore, it would be expected
that the roots of the truncated determinant vary much more. Larger determinants include more
modes that will couple with the modes already included in smaller determinants and change its
values significantly. This is apparent in Table 2, where radial eigenvalues determined for e ¼
0:7þ 0:6i are presented. The real part vary by a few percent and the imaginary part vary by more
than 20%. The conclusion is that truncation of the infinite determinant (56) to a 3 � 3
determinant is reliable for small values of e; in the range of jReðeÞjp0:2 and jImðeÞjp0:4; when
mode coupling is weak, as seen on (Section 4.1); and that truncation into a small determinant is
unreliable for values of e outside that range, because of strong mode coupling; in this case
truncation may still be possible, but to a larger size of determinant.

4.3. Optimization strategy for non-uniform liner

Having discussed the effect of the non-uniform liner on the acoustic modes (Section 4.1), and
the accuracy of the calculations (Section 4.2), an example of the implementation of the
optimization strategy is given. The starting point is the set of dimensionless radial wavenumbers x;
which are given by the roots of the infinite determinant (56). These specify through Eq. (45) the
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Table 2

Dimensionless radial eigenvalues determined using determinant (56) truncated in several different ways, for non-

uniform impedance e ¼ 0:7 þ 0:6i in Eq. (54), applied to a cylindrical nozzle without mean flow, with uniform baseline

wall impedance (50)

Determinant e ¼ 0:7þ 0:6i

2� 2 ðm ¼ 13; 14Þ 17:2087� 0:96035i
2� 2 ðm ¼ 14; 15Þ 16:7119� 1:30537i
3� 3 ðm ¼ 13–15Þ 17:0455� 1:07537i
4� 4 ðm ¼ 12–15Þ 16:8800� 0:97081i
4� 4 ðm ¼ 13–16Þ 17:0323� 1:05448i
5� 5 ðm ¼ 12–16Þ 16:8800� 0:95862i

Table 1

Dimensionless radial eigenvalues determined using determinant (56) truncated in several different ways, for four

different values of non-uniform impedance correction e in Eq. (54), for a cylindrical nozzle without mean flow, with

uniform baseline wall impedance (50)

Determinant e ¼ 0:1þ 0:1i e ¼ 0:1þ 0:2i e ¼ 0:2þ 0:1i e ¼ 0:2þ 0:2i

Uniform impedance 16:9741� 1:4295i 16:9741� 1:4295i 16:9741 � 1:4295i 16:9741 � 1:4295i
2� 2 ðm ¼ 13; 14Þ 16:9833� 1:4128i 16:9686� 1:3831i 17:0165 � 1:4090i 17:0087 � 1:3654i
2� 2 ðm ¼ 14; 15Þ 16:9634� 1:4286i 16:9509� 1:4429i 16:9546 � 1:4124i 16:9334 � 1:4246i
3� 3 ðm ¼ 13–15Þ 16:9729� 1:4123i 16:9481� 1:3960i 16:9953 � 1:3940i 16:9712 � 1:3662i
4� 4 ðm ¼ 12–15Þ 16:9725� 1:4121i 16:9467� 1:3978i 16:9951 � 1:3918i 16:9663 � 1:3646i
4� 4 ðm ¼ 13–16Þ 16:9729� 1:4122i 16:9478� 1:3959i 16:9956 � 1:3939i 16:9711 � 1:3654i
5� 5 ðm ¼ 12–16Þ 16:9725� 1:4121i 16:9464� 1:3977i 16:9954 � 1:3917i 16:9662 � 1:3639i
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eigenvalues of the axial dimensionless wavenumber z; which will differ from case (46) of uniform
impedance z0: When the impedance perturbation is not large, it is in general possible to identify
the eigenvalue closest to, or corresponding to z0; which is denoted z: The mode with the slowest
axial decay (51) is z1 ¼ 8:03438þ i3:020068: The optimization strategy is to select the complex
amplitude e of the first harmonic of the impedance distribution (54), so as to maximize the
imaginary part of Eq. (51), and achieve the fastest axial decay.

The imaginary part of z; which specifies the axial decay, is plotted versus the real and imaginary
part of the impedance perturbation e in Fig. 5, using a 3 � 3 determinant (56) centred on mode
m ¼ 14: The maximum value of the imaginary part of the dimensionless axial wavenumber is

Imðz1Þ ¼ ImðkRÞ ¼ 3:220793 ð57Þ

and occurs for an impedance correction

e ¼ 0:2� i0:3; ð58Þ

leading in Eqs. (52) and (54) to a final impedance

ZðyÞ ¼ 2:5 � i0:4 þ cos yð0:38� 0:83iÞ ð59Þ

as a continuous function of azimuthal angle y; which could be approximated by uniform splices.

5. Discussion

The preceding optimization method could be refined in several ways e.g., by (i) considering
more parameters in the non-uniform impedance distribution and by (ii) using more elaborate
optimization criteria. Concerning (i), additional terms in the Fourier series (36) could be
considered beyond (52)–(54), e.g., for an even wall impedance distribution

ZðyÞ ¼ Z0 1þ
XN
n¼1

en cosðnyÞ

" #
; ð60Þ
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where besides the optimization with regard to e1 � e; there could be optimization with regard
to en:

en ¼ Zn=Z0 ¼ Z�n=Z0; ð61Þ

up to a sufficient order to tailor precisely the circumferential distribution of impedance ZðyÞ: Note
that if the circumferential impedance distribution ZðyÞ is a function with continuous derivative for
0pyo2p; i.e., ZAC1ð0; 2pÞ; then coefficients (37) are Oð1=ðm0Þ2Þ; and the Fourier series (36)
converges absolutely and uniformly in the usual sense:

C0: ZðyÞ ¼ lim
M-N

XþM

m0¼�M

Zm0 eim0y: ð62Þ

The case of discontinuous impedance distribution is important, since it corresponds to a nozzle
lined by impedance patches. In this case [40] coefficients (37) are Oð1=m0Þ and the Fourier series
(36) converges non-uniformly in the usual sense (62). The non-uniformity of convergence at the
points of discontinuity leads to the Gibbs phenomenon, which can be explained as (i) at a point of
discontinuity y ¼ y0 of the impedance ZðyÞ; the Fourier series converges [41] to the mean of the
right and left values ½Zðy0 þ 0Þ þ Zðy0 � 0Þ�=2; (ii) since series (62) is a continuous function, it
cannot follow the jump of the impedance from Zðy0 � 0Þ to Zðy0 þ 0ÞaZðy0 � 0Þ; and thus it
oscillates on either side of the discontinuity. Adding more terms to the Fourier series does not
eliminate the oscillations near the discontinuity, it just confines them to a narrower interval in the
neighbourhood of the discontinuity. These spurious oscillations can be interpreted [43,44] as
sources localized at the points of discontinuity; the non-uniform convergence of the series at the
points of discontinuity may give the appearance of non-uniqueness of the solution when
computational methods are used since the sum of the series may change when the order of the
terms are altered. The problem of non-uniform convergence of the Fourier series (36) for a
discontinuous impedance, when coefficients (37) are Oð1=m0Þ; can be overcome [41] replacing the
usual method C0 of summation of series (62) by the C"esaro C1 sum:

C1: ZðyÞ ¼ lim
M-N

XþM

m0¼�M

1�
m0

M

� �
Zm0eim0y: ð63Þ

It can be shown [41] that: (i) when the Fourier series Eq. (36) converges C0 as in Eq. (62), it also
converges C1 as in Eq. (63) to the same sum, e.g., for an impedance distribution with continuous
first derivative; (ii) in the case of a discontinuous impedance distribution of bounded variation,
when the C0 sum (62) converges non-uniformly, the C1 sum (63) converges uniformly.

The preceding aspect of the representation of a discontinuous impedance distribution by a
conditionally continuous Fourier series was a purely mathematical issue; a more fundamental
physical consideration arises in connection with discontinuous impedance distributions. At the
point of discontinuity, the boundary condition (12) does not apply; this point is a singularity,
where a wave source could be located. This possibility is excluded by applying an additional
condition, e.g., integrability of the wave field in the neighbourhood of the discontinuity [42]. An
additional issue arises concerning the convergence of the two infinite series, or the accuracy of the
two truncated series associated with the problem, viz.: (i) N terms for the series of eigenfunctions
(31) representing the wave field; (ii) M terms for the Fourier series (27) representing the wall
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impedance. Convergence may fail, and accuracy will be poor, if: (i) N is kept fixed and M

increased, because of inadequate representation of the wave field; (ii) M is kept fixed and N
increased, because of poor representation of the wall impedance. Convergence requires a suitable
ratio M=N; to ensure good matching of the wave field and wall impedance; a good choice of M=N

can lead to satisfactory accuracy with a moderate number of terms [43,44]. This question arises
not only for discontinuous wall impedance, but also for changes in cross-section or perforated
diaphragms, when matching acoustic ducts [42] or electromagnetic waveguides [43–45]. This
issue arises, for example, in connection with the step wall impedance distribution in the
one-dimensional problem dealt with in Ref. [28]. It does not arise in examples (52) of the present
three-dimensional problem, which use continuous wall impedance distributions.

The optimization criterion could be the spatial decay of the acoustic energy for a superposition
of modes

EmðzÞ ¼
X

n

Enme�2z ImðknmÞ; ð64Þ

instead of just one. The energy Enm of each mode would be equal in the case of equipartition
Enm ¼ Em0; or it could be determined for each mode by considering the problem of sound
generation in a non-uniformly lined duct. In these more elaborate implementations, the method of
optimization of acoustic liners would still retain the same basic features demonstrated before. In
the choice of liner optimization strategies it is important to take into account the issue of mode
identification or classification. The widely used distinction between cut-off (evanescent) modes
with imaginary axial wavenumber and cut-on (propagating) modes with real axial wavenumbers
applies clearly to a nozzle with a rigid wall. In the case of a nozzle with a uniform wall impedance,
for a real frequency, the axial wavenumbers will have an imaginary part, specifying their spatial
decay, but they can still be traced back to the modes of a rigid walled nozzle, for each
circumferential wavenumber m: A circumferentially non-uniform wall impedance couples
different m modes, and if it is sufficiently non-uniform the modes become mixed (see Fig. 4),
and can no longer be traced back to the cut-on or cut-off modes of a rigid walled nozzle. Thus, for
a strongly non-uniform liner, the minimization of the total acoustic energy remains a feasible
strategy, even when the identification of individual modes as cut-off or cut-on is no longer
possible: the acoustic energy has to be calculated summing over all modes whose amplitude is not
so small as to make a negligible contribution. The simplest optimization strategy is selecting the
slowest decaying mode, and choosing the impedance distribution to maximize its decay. This
strategy is optimal, if this mode remains the slowest decaying, i.e., if other modes do not become
dominant as a consequence of the weakening of this mode. This may be the case for a weakly
non-uniform liner, if the slowest decaying mode is clearly separated from all others. If there are
other modes which decay nearly as slow as the slowest, then they could become dominant if only
the slowest decaying mode is subject to optimization. In the case of a strongly non-uniform liner,
the modes are mixed, and thus optimization with regard to individual modes must give way to
collective optimization, e.g., via the acoustic energy.

A non-uniform liner may be a passive acoustic attenuation method with some features in
common with active noise reduction. Active noise reduction uses additional sound sources, with a
location, amplitude and phase chosen as to reduce the noise level in certain regions: the noise level
can be increased in other regions. A non-uniform liner is chosen so as to absorb more effectively
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some modes, but could enhance others, so that only an assessment of the total acoustic energy can
ensure an overall improvement. Compared to active noise reduction, the non-uniform liner is
simpler and since it introduces no energy into the system, it runs less risk of having a negative
effect in the case of poor optimization. A non-uniform liner may be less useful at: (i) low
frequencies, when sound absorption is weak; (ii) high frequencies, when sound absorption is
effective almost regardless of impedance distribution. The non-uniform liner is most effective at
intermediate frequencies, when the impedance distribution can be ‘‘tailored’’ to absorb the more
prominent acoustic modes. Since the non-uniform liner generates other modes, it is essential to
assess correctly the benefit of the non-uniform impedance distribution. A suitable optimization
criterion is, as stated before, the total acoustic energy, say in the frequency range and direction of
the radiation of interest. The liner optimization may give different results depending on engine
operating conditions or noise source. The compromise between different noise sources would be
facilitated by an adaptive liner, whose impedance could be varied. Short of such an active–passive
liner, i.e., active adaptation to passive attenuation, a fixed non-uniform liner will have to be a
compromise between the optima for each noise environment it should operate in.

Acknowledgements

The present work was supported by the Silencer(r) project (G4RD-CT-2001-00500) of the
Aeronautics Programme of the European Union.

References

[1] H.D. Meyer, Effect of inlet reflections on fan noise radiation, American Institute of Aeronautics and Astronautics

Journal 34 (9) (1996) 1771–1777.

[2] S.J. Horowitz, R.K. Sigman, B.T. Zinn, An iterative method for predicting turbofan inlet acoustics, American

Institute of Aeronautics and Astronautics Journal 20 (12) (1982) 1693–1699.

[3] S.D. Savkar, Radiation of cylindrical duct acoustic modes with flow mismatch, Journal of Sound and Vibration 42

(1975) 363–386.

[4] W. Koch, Radiation of sound from a two-dimensional acoustically lined duct, Journal of Sound and Vibration 55

(2) (1977) 255–274.

[5] S.W. Rienstra, Acoustic radiation from a semi-infinite duct in a uniform subsonic mean flow, Journal of Sound and

Vibration 94 (2) (1984) 267–288.

[6] R. Martinez, Diffracting open-ended pipe treated as a lifting surface, American Institute of Aeronautics and

Astronautics Journal 26 (4) (1988) 396–404.

[7] A. Snakovska, H. Idczak, B. Bogusz, Modal analysis of the acoustic field radiated from an unflanged cylindrical

duct—theory and measurement, Acustica 82 (1996) 201–206.

[8] A. Snakowska, H. Idczak, Prediction of multitone sound radiation from a circular duct, Acustica 83 (1997)

955–962.

[9] P. Joseph, C.L. Morfey, Multimode radiation from an unflanged, semi-infinite circular duct, Journal of the

Acoustical Society of America 105 (5) (1999) 2590–2600.

[10] S.T. Hocter, Exact and approximate directivity patterns of the sound radiated from cylindrical duct, Journal of

Sound and Vibration 227 (2) (1999) 397–407.

[11] R.M. Munt, Acoustic radiation from a semi-infinite circular duct in an uniform subsonic mean flow, Journal of

Fluid Mechanics 83 (1977) 609–640.

ARTICLE IN PRESS

L.M.B.C. Campos, J.M.G.S. Oliveira / Journal of Sound and Vibration 275 (2004) 557–576574



[12] L.M.B.C. Campos, The spectral broadening of sound by turbulent shear layers, Part 1: the transmission of sound

through turbulent shear layers, Journal of Fluid Mechanics 89 (1978) 723–749.

[13] L.M.B.C. Campos, The spectral broadening of sound by turbulent shear layers, Part 2: the spectral broadening of

sound and aircraft noise, Journal of Fluid Mechanics 89 (1978) 723–749.

[14] H.E. Plumblee, P.E. Doak, Duct noise radiation through a jet flow, Journal of Sound and Vibration 65 (4) (1979)

453–491.

[15] P.A. Nelson, C.L. Morfey, Aerodynamic sound production in low speed flow ducts, Journal of Sound and Vibration

79 (2) (1981) 263–289.

[16] M. Willatzen, Sound propagation in a moving fluid confined by cylindrical walls—exact series solutions for

radially dependent flow profiles, Acustica 87 (2001) 552–559.

[17] M.S. Howe, The damping of sound by turbulent wall shear layers, Journal of the Acoustical Society of America 98

(1995) 1723–1730.

[18] L.M.B.C. Campos, P.G.T.A. Serr*ao, On the acoustics of an exponential boundary layer, Philosophical

Transactions of the Royal Society of London, Series A 356 (1998) 2335–2378.

[19] L.M.B.C. Campos, J.M.G.S. Oliveira, M.H. Kobayashi, On sound propagation in a linear flow, Journal of Sound

and Vibration 219 (5) (1999) 739–770.

[20] L.M.B.C. Campos, M.H. Kobayashi, On the reflection and transmission of sound in a thick shear layer, Journal of

Fluid Mechanics 420 (2000) 1–24.

[21] A.D. Rawlins, Radiation of sound from an unflanged rigid cylindrical duct with an acoustically absorbing internal

surface, Proceedings of the Royal Society of London, Series A 361 (1978) 65–91.

[22] K. Ogimoto, G.W. Johnston, Modal radiation impedances for semi-infinite unflanged circular ducts including flow

effects, Journal of Sound and Vibration 62 (4) (1979) 598–605.

[23] W. Koch, W. M .ohring, Eigensolutions for liners in uniform mean flow ducts, American Institute of Aeronautics and

Astronautics Journal 21 (2) (1983) 200–213.

[24] W. Koch, Attenuation of sound in multi-element acoustically lined rectangular ducts in the absence of mean flow,

Journal of Sound and Vibration 52 (4) (1977) 459–496.

[25] M.S. Howe, The attenuation of sound in a randomly lined duct, Journal of Sound and Vibration 87 (1) (1983)

83–103.

[26] S.W. Rienstra, Contributions to the theory of sound propagation in ducts with bulk-reacting lining, Journal of the

Acoustical Society of America 77 (5) (1985) 1681–1685.

[27] D.A. Bies, C.H. Hansen, G.E. Bridges, Sound propagation in rectangular and circular cross-section ducts with

flow and bulk-reacting liner, Journal of Sound and Vibration 146 (1) (1991) 47–80.

[28] B. Regan, J. Eaton, Modelling the influence of acoustic liner non-uniformities on duct modes, Journal of Sound and

Vibration 219 (5) (1999) 859–879.

[29] W.R. Watson, An acoustic evaluation of circumferentially segmented duct liners, American Institute of Aeronautics

and Astronautics Journal 22 (9) (1984) 1229–1233.

[30] C.R. Fuller, Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall

admittances, I: semi-infinite ducts, Journal of Sound and Vibration 93 (3) (1984) 321–340.

[31] C.R. Fuller, Propagation and radiation of sound from flanged circular ducts with circumferentially varying wall

admittances, II: finite ducts with sources, Journal of Sound and Vibration 93 (3) (1984) 341–351.

[32] P.G. Vaidya, The propagation of sound in ducts lined with circumferentially non-uniform admittance of the form

Z0 þ Zq expðiqyÞ; Journal of Sound and Vibration 100 (4) (1985) 463–475.

[33] L.M.B.C. Campos, J.M.G.S. Oliveira, On the acoustic modes in a cylindrical nozzle with an arbitrary impedance

distribution, in preparation.

[34] C.K.W. Tam, L. Auriault, The wave modes in ducted swirling flows, Journal of Fluid Mechanics 371 (1998) 1–20.

[35] A.D. Pierce, Acoustics, An Introduction to its Physical Principles, 1st Edition, McGraw-Hill, New York, 1981.

[36] L.M.B.C. Campos, On waves in gases, Part I: Acoustics of jets, turbulence, and ducts, Reviews of Modern Physics

58 (1) (1986) 117–182.

[37] J.W.S. Rayleigh, Theory of Sound, Dover, New York, 1945.

[38] A.R. Forsyth, Theory of Differential Functions, Cambridge University Press, Cambridge, 1902.

[39] G.N. Watson, Bessel Functions, Cambridge University Press, Cambridge, 1944.

ARTICLE IN PRESS

L.M.B.C. Campos, J.M.G.S. Oliveira / Journal of Sound and Vibration 275 (2004) 557–576 575



[40] H.S. Carslaw, Theory of Fourier Series and Integrals, Dover, New York, 1930.

[41] E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, Cambridge University Press, Cambridge, 1927.

[42] A.E. Heins, H. Feshbach, The coupling of two acoustical ducts, Journal of Mathematics and Physics 26 (3) (1947)

143–155.

[43] P.H. Masterman, P.J.B. Clarricoats, Computer method of solving waveguide–iris problems, Electronics Letters 5

(1969) 23–25.

[44] P.H. Masterman, P.J.B. Clarricoats, Computer field-matching solution of waveguide transverse discontinuities,

Proceedings of the IEE 118 (1) (1971) 51–63.

[45] A. Wexler, Solution of waveguide discontinuities by modal analysis, IEEE Transactions on Microwave Theory and

Techniques MTT-15 (1967) 508–517.

ARTICLE IN PRESS

L.M.B.C. Campos, J.M.G.S. Oliveira / Journal of Sound and Vibration 275 (2004) 557–576576


	On the optimization of non-uniform acoustic liners on annular nozzles
	Introduction
	Sound fields in a lined annular nozzle
	Convected wave equation in cylindrical co-ordinates
	Annular nozzle with dissimilar wall impedances
	Cylindrical nozzle with uniform wall impedance

	Nozzle with circumferentially non-uniform wall impedance
	Dissimilar inner and outer impedance distributions
	Cylindrical nozzle with circumferentially varying wall impedance
	Fundamental longitudinal mode with uniform impedance

	Maximization of the axial decay of the acoustic field
	Impedance distribution for the fastest acoustic decay
	Truncation of determinant and accuracy of optimization
	Optimization strategy for non-uniform liner

	Discussion
	Acknowledgements
	References


