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Abstract

For the purpose of understanding the effects of rotation on wave propagation within a tire’s treadband,
the vibration of an inflated, circular cylindrical shell, rotating about a fixed axis has been considered here.
The equations of motion of the rotating shell are formulated in a fixed reference frame (i.e., Eulerian co-
ordinates). By assuming wave-like solutions for the free vibration case, the natural frequencies and
corresponding wave-like basis functions can then be obtained. A natural frequency selection procedure is
introduced that can be used to associate each of the basis functions with a single natural frequency. The
basis functions are then superimposed to represent the forced response of the system when driven by a point
harmonic force at a fixed location in the reference frame. By using the procedure described here, the
coefficients of the basis functions can be obtained directly by solving an uncoupled ordinary differential
equation. Finally, the resulting forced responses are presented in both the spatial and wave number
domains, and the wave number spectrum of the rotating shell is compared with that of a stationary shell.
Based on the results presented here, it is suggested that at typical rotational speeds it may be possible to use
a stationary tire analysis to predict the characteristics of a rotating tire after performing a simple kinematic
compensation.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In two previous articles, the stationary-tire dispersion relations that characterize a tire’s
dynamics and its potential for sound radiation were considered [1,2]. The first article described
both an experimental measurement procedure and a wave number decomposition technique for

ARTICLE IN PRESS

$A shorter version of this article was presented at INTER-NOISE 2002.

*Corresponding author. Tel.: +1-765-494-2139; fax: +1-765-494-0787.

E-mail address: kimyj1@purdue.edu (Y.-J. Kim).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.06.003



analyzing the radial vibration of a tire. In the second article, analytical and numerical models of
tire treadbands that were found to reproduce the significant features of measured tire dispersion
relations were described. The objective of the work described in the present article was to extend
the earlier analytical model to determine the effects of rotation on a tire’s dispersion relations. For
this purpose, a tire treadband has been modelled as a simply supported, rotating circular
cylindrical shell. Both inflation pressure and rotational stiffening were accounted for in the model.

2. Background

In a rotating shell, a moving particle whose motion is described in local co-ordinates that rotate
with the shell is subject to Coriolis acceleration. As a result, the circumferential phase speeds of
the pair of positive- and negative-going waves in the local co-ordinates differ from each other
(when the shell is stationary, they are identical regardless of the wave propagation direction). The
latter difference is also observed when the shell motion is described in fixed reference co-ordinates
(i.e., Eulerian co-ordinates), since, in addition to the effects of Coriolis acceleration, the
circumferential phase speed of the positive-going wave increases by the rotation speed, while that
of the corresponding negative-going wave decreases by the same amount. Since the natural
frequency associated with a particular circumferentially propagating wave can be related to both
the circumferential wave number and the circumferential phase speed, the natural frequency
associated with the positive-going wave in the rotating shell is different from that associated with
the corresponding negative-going wave. Consequently, a single natural frequency that in the
stationary shell case is associated with a pair of positive- and negative-going waves splits into two
natural frequencies when the shell rotates. That is, in the stationary shell, the positive- and
negative-going waves interfere with each other at a single natural frequency to yield a
circumferential standing wave pattern (i.e., mode shape); however, in the rotating case, a standing
wave pattern cannot be generated at a single natural frequency.
When a rotating shell is analyzed by using a circumferential mode shape represented by a

circumferential sine or cosine function, the pair of natural frequencies associated with that mode
shape can be found; however, the natural frequencies cannot be associated with a particular
circumferentially propagating wave direction. Since the set of mode shapes represented by the
circumferential sine and cosine functions is a complete set, as is the set of wave-like basis functions
represented by the circumferential complex exponential functions (i.e., positive- and negative-
going waves), the forced response can be represented with equal accuracy by the superposition of
either the mode shapes or complex exponential functions. However, the modal solution procedure
requires one to solve the complete system differential equations to determine the modal
coefficients since a pair of circumferential sine and cosine mode shapes share two natural
frequencies (i.e., the modal coefficients are coupled with each other) [3–5]. Note that the
circumferential mode number, n, must be an integer due to circular periodicity; thus, to obtain a
complete set of circumferential sine and cosine functions, n should range from zero to positive
infinity, while a complete set of circumferential complex exponential functions is obtained by
allowing n to range from negative to positive infinity [6].
Padovan obtained the complete set of natural frequencies and corresponding mode shapes for

rotating, prestressed circular cylindrical shells [6]. By using those natural modes, Huang and
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Soedel obtained the forced response of a rotating ring, a special case of a rotating circular
cylindrical shell (i.e., no spatial variation was allowed in the axial direction) [3,4]. Note that a ring
model can be used to analyze the vibrational characteristics of a rotating tire; however, such a
model cannot account for the effects of the cross-sectional modes (in the axial direction). Note
also that Kropp has modelled a stationary tire as a stationary ring [7].
Forced solutions for the case of a rotating, prestressed circular cylindrical shell were previously

obtained by Huang and Soedel [5]. They expressed their forced responses in terms of sinusoidal
and cosinusoidal modes; however, only circumferential sine or cosine functions were used to
represent the forced responses, and the n ¼ 0 circumferential mode (i.e., the breathing mode), that
can be important in terms of sound radiation, was not considered. Unless the shell’s motion is
represented as a sum of both circumferential sine and cosine functions, including the n ¼ 0
circumferential mode, spatial phase information in the circumferential direction cannot be
represented accurately. Note, however, that in two earlier papers dealing with rotating rings,
Huang and Soedel used a complete set of modes [3,4].
In the past, the equations of motion and the solutions for rotating shells were mainly

formulated in a local co-ordinate system [3–6]. However, that type of formulation creates
difficulties when applying a sinusoidal point force at a fixed point to simulate a contact patch
excitation of a rotating tire since, in the local frame, the response is Doppler shifted. In contrast, a
system described in fixed reference co-ordinates, as here, responds at the frequency of the input
force.
Another approach to representing the effects of tire rotation was followed by Vinesse and

Nicollet, who modelled a tire as a two-dimensional membrane [8]. They derived the equations of
motion in a fixed reference frame, and obtained continuous dispersion curves, each associated
with a particular cross-sectional mode shape, by using a wave-like solution (expressed in terms of
a continuously varying circumferential wave number). They also obtained an approximate forced
response, which was expressed as a function of time and circumferential position (but not as a
function of cross-sectional position), for the case of a rotating point force. In their work, however,
effects of flexural stiffness and circumferential curvature were neglected, and in-plane motion was
not allowed.
Here, it was decided to express the equations of motion for the case of a rotating, inflated

circular cylindrical shell in fixed reference co-ordinates since the forced response in fixed reference
co-ordinates can be used directly to perform a sound radiation analysis. A wave-like basis
solution, which comprises a mode shape in the cross-sectional direction (i.e., axial direction)
and a wave-like solution in the circumferential direction, was then used to obtain the complete
sets of natural frequencies and corresponding basis functions (the cross-sectional mode
shape is represented by sine and cosine functions, and the circumferential wave-like solution is
expressed by a complex exponential function). Here, a natural frequency selection procedure that
can be used to associate each wave-like basis function with a single natural frequency is proposed.
By the superposition of the basis functions, the forced response of the system can be obtained
when the system is driven by a point harmonic force at a fixed location in the reference frame.
Since a single basis function is associated with only one natural frequency, a basis function
coefficient can be found by solving a single ordinary differential equation. In addition, the wave
number decomposition procedure [1] has been applied to the resulting forced responses, thus
allowing the dispersion relations for a rotating shell to be represented from the viewpoint of a
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fixed observer so that they can be easily compared with the dispersion relations for a stationary
shell.

3. Tire treadband model

Fig. 1 shows a cylindrical shell model of a tire treadband: the shell is assumed to rotate about a
fixed axis coincident with the origin of the reference co-ordinate system. Note that the local
co-ordinate system, attached to the treadband, rotates with the treadband and that the reference
co-ordinate system is fixed. In the present analysis, the effects of inflation pressure and rotational
stiffening were accounted for through resultant in-plane residual stresses. However, static
deformation of the shell due to either inflation or rotation was neglected, i.e., the treadband was
assumed to vibrate around its static, uninflated shape.
When shear deformation, rotary inertia, and non-linear effects are neglected, a set of equations

describing the three-dimensional motion of the shell can be derived in local co-ordinates [9]. Those
equations can be transformed into the reference co-ordinate system by application of Reynolds’
theorem, i.e.,

D

Dt
¼

@

@t
þ O

@

@f
; ð1Þ

where the left hand side represents the time derivative in the local (Lagrangian) co-ordinates, the
first term on the right hand side is the time derivative in the reference (Eulerian) co-ordinates, O is
the angular rotational speed and f is the circumferential angle in the reference frame. After
applying Eq. (1), the governing equations can be expressed as

Lxðux; uf; urÞ þ l
Dux

Dt
þ rh

D2ux

Dt2
¼ qxðx;f; rÞ; ð2Þ

Lfðux; uf; urÞ þ l
Duf

Dt
þ rh

D2uf

Dt2
þ 2O

Dur

Dt
� O2uf

� �
¼ qfðx;f; rÞ; ð3Þ

Lrðux; uf; urÞ þ l
Dur

Dt
þ rh

D2ur

Dt2
� 2O

Duf

Dt
� O2ur

� �
¼ qrðx;f; rÞ; ð4Þ
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Fig. 1. Model of tire treadband: a circular cylindrical shell with simply supported edges.
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Lxðux; uf; urÞ ¼ �
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; ð5Þ
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; ð6Þ

Lrðux; uf; urÞ ¼ �
@Qxr

@x
�
1

a

@Qfr

@f
þ

Nff

a
� Nr

xx

@2ur

@x2
�

Nr
ff

a2
@2ur

@f2
; ð7Þ

where u is the displacement in the direction indicated by the subscript, Nij and Qij ði; j ¼ x; f; rÞ
are the resultant in-plane and shear forces (see Appendix A), respectively, the superscript, r,
denotes residual force, and q is the external force applied in the direction indicated by the
subscript. In addition, r is the density of the treadband, h is its thickness, l is the damping
constant, and a is the tire radius. In Eq. (7), the circumferential resultant in-plane force is related
to inflation pressure and rotational speed by

Nr
ff ¼ ap þ rha2O2; ð8Þ

where p is the inflation pressure [9].
The linear operators, Li ði ¼ x; f; rÞ; are associated with the system’s stiffness and thus Eqs. (7)

and (8) indicate how inflation pressure and rotation affect the treadband’s stiffness. When the
magnitudes of the two terms on the right hand side of Eq. (8) are compared, it can be concluded
that stiffening effects associated with rotation may be ignored compared to the stiffening effect of
inflation pressure at speeds typical of those experienced by a car tire running at normal speeds, at
least for the model considered here. The latter result will be demonstrated by calculation later in
this article.

4. Natural vibration

Simple support conditions were considered to apply constraints in the radial and
circumferential, but not the x direction, at the treadband edges. In that case, a set of
displacements satisfying those boundary conditions, i.e., sinusoidal or cosinusoidal functions in
the x direction, as appropriate, can be identified [5,9]. That set must also be periodic in the
circumferential direction. Based upon these various conditions, the set of displacements were
assumed to have the wave-like forms

uxmnðx;f; tÞ ¼ Amn cos
mpx

L

� �
exp iomnt � infð Þ; ð9Þ

ufmnðx;f; tÞ ¼ iBmn sin
mpx

L

� �
exp iomnt � infð Þ; ð10Þ

urmnðx;f; tÞ ¼ Cmn sin
mpx

L

� �
exp iomnt � infð Þ; ð11Þ

where the coefficients A, B and C are assumed to be real. By substituting Eqs. (9)–(11) into
Eqs. (2)–(4), and setting the input force and damping to zero, a matrix equation similar to that

ARTICLE IN PRESS

Y.-J. Kim, J.S. Bolton / Journal of Sound and Vibration 275 (2004) 605–621 609



defining an eigenvalue problem can be obtained, i.e.,

k11 � rh$2
mn k12 k13

k12 k22 � rhð$2
mn þ O2Þ k23 þ 2rhO$mn

k13 k23 þ 2rhO$mn k33 � rhð$2
mn þ O2Þ

2
64

3
75

Amn

Bmn

Cmn

2
64

3
75 ¼

0

0

0

2
64

3
75; ð12Þ

where

$mn ¼ omn � nO; ð13Þ
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mp
L

� �2
þ
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2

n

a

� �2� �
; ð14Þ

k12 ¼ �K
1þ n
2

mp
L

� � n

a

� �
; ð15Þ

k13 ¼ �
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a

mp
L

� �
; ð16Þ
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D
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2

mp
L

� �2
þ

n

a

� �2� �
; ð17Þ
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nK
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þ

nD

a2
mp
L

� �2
þ
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a

� �2� �
ð18Þ

and

k33 ¼ D
mp
L

� �2
þ

n

a

� �2� �2
þ

K

a2
þ Nr

xx

mp
L

� �2
þNr

ff
n

a

� �2
: ð19Þ

In Eq. (12), the stiffness terms, kij ði; j ¼ 1; 2; 3Þ; are associated with the linear operators, Li

ði ¼ x;f; rÞ; and they are given in Eqs. (14)–(19), where K is the membrane stiffness, D is the
bending stiffness, and n is the Poisson ratio. Here, the membrane stiffness is K ¼ Eh=ð1� n2Þ and
the bending stiffness is D ¼ Eh3=½12ð1� n2Þ�; where E is Young’s modulus. Further, in Eq. (13)
the left hand side is the natural frequency in local co-ordinates while the first term on the right
hand side is the natural frequency in the reference co-ordinate system. For future reference,
Eq. (13) will be referred to as the ‘‘kinematic relation’’.
The characteristic equation obtained from Eq. (12) is sixth order, i.e., there are six natural

frequencies associated with the (m,n)th wave-like solution. However, the six local natural
frequencies, of the negative-going, i.e., ðm;�nÞ wave-like solutions, where n > 0; each have the
same magnitude but opposite sign of those of the positive-going ðm; nÞ wave-like solutions. Thus,
when a local natural frequency is defined to be positive, the sign convention used in the assumed
displacements (see Eqs. (9)–(11)) means that a positive n denotes a positive-going wave and a
negative n a negative-going wave. Thus, for each positive or negative n, the three positive local
natural frequencies are chosen and the negative natural frequencies are discarded. There are then
only three distinct local natural frequencies associated with each ðm; nÞ wave mode, whether n > 0
or no0: Each of those frequencies is primarily associated with a particular wave type, i.e.,
flexural, longitudinal, or shear [2]. Note that the two local natural frequencies associated with the
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pair of wave-like basis functions propagating in opposite circumferential directions are different
even in the local frame owing to the effects of Coriolis acceleration, as will be shown later: this
phenomenon is referred to as ‘‘bifurcation’’ [6].
The natural frequencies for all possible combinations of m and n (for both positive and

negative n) can be found by numerically solving the characteristic equation derived analytically
from Eq. (12). By applying the sign convention described above, the three distinct natural
frequencies associated with each n can then be identified. The associated vectors represented by
½Amnl Bmnl Cmnl�T; where the index l ðl ¼ 123Þ denotes the three natural frequencies for each n,
can also be derived by using Eq. (12): i.e., the three sets of vectors can be calculated by
substituting each of the natural frequencies in sequence into Eq. (12). As a result, a single
natural frequency, omnl, can be associated with a particular wave-like basis vector function
represented by

Wmnlðx;fÞ ¼

Amnl cos
mpx

L

� �

iBmnl sin
mpx

L

� �

Cmnl sin
mpx

L

� �

2
66664

3
77775exp �infð Þ: ð20Þ

5. Forced vibration

The forced response can be expressed as a superposition of the basis functions given in Eq. (20),
i.e.,

uxðx;f; tÞ ¼
XN
m¼1

XN
n¼�N

X3
l¼1

Amnl cos
mpx

L

� �
exp �infð ÞZmnlðtÞ; ð21Þ

ufðx;f; tÞ ¼
XN
m¼1

XN
n¼�N

X3
l¼1

iBmnl sin
mpx

L

� �
exp �infð ÞZmnlðtÞ ð22Þ

and

urðx;f; tÞ ¼
XN
m¼1

XN
n¼�N

X3
l¼1

Cmnl sin
mpx

L

� �
exp �infð ÞZmnlðtÞ: ð23Þ

Note that for the purpose of compactness, the index, mnl is replaced by k in the following
equations. The weighting function (i.e., the coefficient of the basis function), ZkðtÞ; can be
calculated by substituting Eqs. (21)–(23) into Eqs. (2)–(4) and then applying Eqs. (12) and (13)
with damping and forcing terms included. The result is

.Zk þ
lk

rh
� i2Oðn þ 2gkÞ

� �
’Zk þ o2k � 2Ookðn þ 2gkÞ � inO

lk

rh

� �
Zk ¼

Fk

rhWk

; ð24Þ

where

Wk ¼ pLðA2
k þ B2k þ C2

kÞ; gk ¼
BkCk

A2
k þ B2k þ C2

k

ð25; 26Þ
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and

Fk ¼
Z 2p

0

Z L

0

qxAk cos
mpx

L

� �
þ iqfBk sin

mpx

L

� �
þ qrCk sin

mpx

L

� �h i
einfdx df: ð27Þ

Eq. (24) may then be solved to give ZkðtÞ for arbitrary temporal input forces. Note that the modal
damping constant, lk; in Eq. (24) is here expressed in terms of a constant modal damping ratio, x,
and the natural frequency, ok, as

lk ¼ 2rhxok: ð28Þ

Note also that the coefficient of the basis function can be found directly by solving the ordinary
differential equation, Eq. (24).
Next, consider a harmonic point force applied in the radial direction at a fixed point while the

forces in the other directions are assumed to be zero (i.e., qx ¼ 0 and qf ¼ 0). This radial force
applied at the center of the treadband simulates a contact patch excitation of a rotating tire and it
can be expressed as

qrðx;f; tÞ ¼ f0d x ¼
L

2
;f ¼ 0

� �
expðiotÞ; ð29Þ

where f0 is the constant amplitude of the force and d is the Dirac delta function. Given a harmonic
force as expressed in Eq. (29), the kth response function, ZkðtÞ; can also be expressed in harmonic
exponential form, i.e.,

ZkðtÞ ¼ Xk expðiotÞ; ð30Þ

where Xk is the amplitude of the kth basis function. By substituting Eqs. (29) and (30) into
Eqs. (24)–(28), the amplitude is obtained as

Xk ¼
f0Ck sinðmp=2Þ

rhWk½o2k � o2 � 2Oðn þ 2gkÞðok � oÞ þ i2ðo� nOÞokx�
: ð31Þ

6. Results and discussion

The tire treadband parameters used for the calculation presented here are listed in Table 1: they
were adapted from Ref. [7], were based on physical reasoning, or were obtained by direct
measurement of tires.
Fig. 2 shows the dispersion relations obtained by solving the system characteristic equation for

each combination of m and n; the dispersion relations are therefore defined at a set of discrete
points. Note that the x-axis of Fig. 2 and the following is the circumferential wave number, kf,
which is related to the circumferential mode number, n, by kf ¼ n=a: In Fig. 2, each trajectory of
the dispersion relation is associated with a particular cross-sectional mode index, i.e., m ¼ 1; etc.
as shown in Fig. 2(a).
For each combination of m and n, there are three natural frequencies associated primarily with

flexural, shear, and longitudinal motions in order of increasing frequency [2]. The stationary
dispersion relations are plotted in Fig. 2(a). In Fig. 2(b), the local natural frequencies are plotted
when the rotation speed was set to the artificially large value of O¼ 500 rad=s to exaggerate the
effects of rotation: a more typical range for automotive applications is from O ¼ 0 to 100 rad/s.
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By comparison of Fig. 2(b) with Fig. 2(a), two phenomena can be observed. First, it can be seen
that the speed of the flexural waves is increased by rotational stiffening (i.e., the slope of the
flexural modal trajectories is increased.). In contrast, the change of the speeds of the shear and
longitudinal waves is essentially negligible. Secondly, on close examination, it can be seen that
rotation causes the dispersion curves to be very slightly asymmetrical with respect to the zero
wave number axis: this is the so-called ‘‘bifurcation’’ effect. The latter asymmetry means that the
speeds of waves propagating in opposite circumferential directions with the same wavelengths are
different even when observed in the local co-ordinate system. However, the present results
indicate that this effect is negligible for the model considered here under normal circumstances
(see Fig. 2(c)). Results in local co-ordinates for a more typical rotational speed, O¼ 100 rad=s; are
plotted in Fig. 2(c). By comparison with the O = 0 results in Fig. 2(a), it can be seen that the
stiffening due to rotation is not very significant in this case, as explained earlier in connection with
Eq. (8).
Finally, the dispersion relations in the reference frame are plotted in Fig. 2(d), also for O =

100 rad/s. Note that the latter results were obtained from those of Fig. 2(c) by applying the
kinematic relation, Eq. (13). In Fig. 2(d), the asymmetry resulting from the kinematic effect of tire
rotation is very clear in contrast with the bifurcation effect in local co-ordinates (Fig. 2(c)).
For the purpose of validating the modelling and solution procedures, the stationary model

ðO ¼ 0Þ was reproduced by using a FE model [2]. The corresponding wave number-transformed
forced solutions (presented as radial velocity magnitudes) for a radial point force on the
treadband center-line calculated using FE and analytical procedures are plotted in Fig. 3. The two
results are identical for practical purposes.
The spatial distributions of the center-line radial velocities for a fixed-location radial point force

applied on the shell center-line are plotted at selected frequencies in the reference frame in Fig. 4,
and the complete set of results, along with the corresponding circumferentially wave number-
transformed results are shown in Fig. 5. Note that 0� in Figs. 4 and 5(a) indicates the drive point.
One interesting aspect of these results is that clear stationary wave patterns (with respect to the
fixed frame) appear even under rotation. In a sense, the stationary waves are strengthened by
damping, since the latter causes the dispersion trajectories to be broader, thus making it more
likely that there will be wave components propagating in opposite directions with the same
wavelength at the same frequency. It can also be seen in Fig. 4 that the rate of decay with distance
increases as the damping ratio is increased (cf. Figs. 4(a) and (b)) and that the effect of damping
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Table 1

Parameters for tire treadband

Young’s modulus E = 4.8	 108N/m2

Density r = 1200 kg/m3

Thickness h = 0.008m

Poisson ratio n = 0.45

Radius a = 0.32m

Width L = 0.16m

Damping ratio x = 0.05

Inflation pressure p = 206910 Pa (p=30 psi)

Sidewall tension Nr
xx = 2	 104N/m
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increases with frequency. Thus, at high frequencies the response becomes similar to a free-field
response as the damping is increased: e.g., at f¼ 3200 Hz; x ¼ 0:05; the response level drops by
approximately 40 dB by half-way around the treadband. The latter result is consistent with
measurements made on stationary tires [1,10]. Further, a comparison of the responses in the
positive- and negative-f regions of Fig. 4 (i.e., in the upstream and downstream directions,
respectively) shows that the levels are generally higher in the downstream direction. The latter
effect becomes clearer as the rotational speed increases (cf. Figs. 4(b) and (c)). These various
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Fig. 2. Dispersion relations derived from characteristic equation: 
, flexural wave, 	; shear wave, and þ; longitudinal
wave. (a) Natural frequencies when O ¼ 0; (b) natural frequencies in local co-ordinates when O¼ 500 rad=s; (c) natural
frequencies in local co-ordinates when O = 100 rad/s, and (d) natural frequencies in reference co-ordinates when

O ¼ 100 rad=s:
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effects can also be seen in Fig. 5(a). In the higher frequency region of Fig. 5(a) it is also clear that
several wave modes, each having different wavelengths, contribute significantly to the response
simultaneously. The latter is also clear in the wave number-transformed results shown in Fig. 5(b).
It can also be seen that the even cross-sectional modes (i.e., m = 2,4,6,y) are absent from the
results of Fig. 5(b) (compare with Fig. 2(d)) since the point force was applied at the center of
treadband. Also note that the trajectories in Fig. 5(b) are continuous (not discrete, as in Fig. 2), in
part because of the effect of damping. The asymmetry of the trajectory slopes in Fig. 5(b) also
indicates that waves travel more quickly downstream ðkf > 0Þ than upstream, as expected.
Finally, the input point mobility, iour=qr; associated with the negative- and positive-going wave

components is shown in Fig. 6. The results were calculated by summing Eq. (23) separately over
positive and negative n, and assigning half of the n ¼ 0 component to each summation. The
mobility associated with the positive-going (i.e., downstream) components is generally larger than
that associated with the negative-going components (except near the cut-on frequencies of
progressively higher order cross-sectional modes) which is consistent with the relative magnitudes
of the responses in the up- and downstream sections shown in Fig. 4. The sequence of small peaks
in the mobility from approximately 400 to 900Hz (most clearly visible in the positive-going result)
are related to the circumferential modes associated with the first cross-sectional mode ðm ¼ 1Þ:
The contributions of individual modes are not easily visible in the frequency ranges above the cut-
on frequencies of the m = 3 and 5 cross-sectional modes (near 1000 and 2600Hz, respectively).
The latter observation is also consistent with measured results for tires [10].
Since both the rotational stiffness and bifurcation effects are essentially negligible under the

conditions considered here, it is possible to map the stationary forced response (Fig. 3(b)) onto the
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Fig. 3. Comparison of analytical forced response (radial velocity) with FE simulation when O¼ 0 rad=s and x ¼ 0:05:
(a) FE simulation and (b) analytical solution.
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Fig. 4. Forced responses at 512Hz (solid line), 1600Hz (dashed line), and 3200Hz (dotted line): (a) O¼ 100 rad=s and
x ¼ 0:02; (b) O ¼ 100 rad=s and x ¼ 0:05; and (c) O¼ 500 rad=s and x ¼ 0:05:

Y.-J. Kim, J.S. Bolton / Journal of Sound and Vibration 275 (2004) 605–621616



rotational response by using Eq. (13) when the local natural frequency is assumed to be the
natural frequency of the stationary tire. In the latter case, Eq. (13) can be modified to compensate
for rotational effects in the wave number-frequency domain, i.e.,

f ¼ fs þ
kfa

2p
O; ð32Þ

where f and fs are the rotation-compensated and stationary tire natural frequencies, respectively.
For the purpose of validating Eq. (32), parametric representations of the dispersion relations

were obtained first by applying the Prony series procedure described in Ref. [1]: the resulting real
wave numbers are overlaid on the previous results (Figs. 3(b) and 5(b)) in Fig. 7. It can be seen
that the real wave numbers thus identified lie on the local maxima of the dispersion relations
obtained by application of the spatial Fourier transform. The stationary real wave numbers of
Fig. 7(a) were then modified by applying Eq. (32) to compensate for rotational effects: the results
are shown in Fig. 8 along with the direct results for the rotational case. It can be seen that the
compensated stationary dispersion relations are essentially identical with those of the rotational
case.

7. Conclusion

In the work described here, the treadband of a tire was modelled as an inflated, rotating circular
cylindrical shell in order to identify the effects of rotation. A wave-based solution procedure was
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Fig. 5. Forced response when O¼ 100 rad=s and x ¼ 0:05: (a) magnitude of vibration (radial velocity) at treadband
center and (b) dispersion relation obtained by circumferential wave number transform.
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used to obtain analytical solutions for both free and forced vibration cases. In particular, it was
shown that a natural frequency selection procedure described here could be used to select the
natural frequencies based on circumferentially propagating wave characteristics in the rotating
shell. Additionally, the forced solutions were obtained by the superposition of wave-like basis
functions: in the latter procedure, the superposition coefficient could be determined by solving an
uncoupled ordinary differential equation.
The results presented here show that rotation has two principal effects: stiffening of the

treadband and kinematic ‘‘tilting’’ of the dispersion curves. It was found, however, that the
rotational stiffening effect was not significant compared with the effect of inflation pressure, for
the model considered here, at typical rotational speeds. In contrast, the kinematic tilting effect was
found to be significant. Thus, it was concluded that a linear function, Eq. (32), could be used to
adjust stationary shell dispersion curves for the effects of rotation: the latter curves may then be
used to analyze the potential of a rotating tire to radiate sound.
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Appendix. A: Force and moment resultants

Expressions for the normal and shear forces in local co-ordinates are given by Soedel [9]. They
can also be used in Eqs. (5)–(7) described in the reference frame when the circumferential angle, y,
in local co-ordinates is replaced by the circumferential angle, f, in global co-ordinates. Then the
in-plane forces are expressed as

Nxx ¼ Kðe0xx þ ne0ffÞ; Nxf ¼
Kð1� nÞ

2
e0xf; Nff ¼ Kðe0ff þ ne0xxÞ; ðA:12A:3Þ

where the membrane strains are

e0xx ¼
@ux

@x
; e0xf ¼

@uf

@x
þ
1

a

@ux

@f
; e0ff ¼

ur

a
þ
1

a

@uf

@f
: ðA:42A:6Þ

The shear forces are represented in terms of moments, i.e.,

Qxr ¼
@Mxx

@x
þ
1

a

@Mxf

@f
; Qfr ¼

@Mxf

@x
þ
1

a

@Mff

@f
; ðA:7;A:8Þ

where the moments can be expressed in terms of curvatures as

Mxx ¼ Dðkxx þ nkffÞ; Mxf ¼
Dð1� nÞ

2
kxf; Mff ¼ Dðkff þ nkxxÞ: ðA:92A:11Þ

In Eqs. (A.9–A.11), the curvatures are expressed in terms of rotation angles as

kxx ¼ �
@bx

@x
; kxf ¼

@bf
@x

þ
1

a

@bx

@f
; kff ¼

1

a

@bf
@f

ðA:122A:14Þ

and

bx ¼ �
@ur

@x
; bf ¼

uf

a
�
1

a

@ur

@f
: ðA:15;A:16Þ
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