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Abstract

Although there are solutions for the axial vibration of compound bars, i.e., bars of different cross-section
connected in mechanical series, this note is to illustrate another solution. The primary objective is to
analyze this problem by a relatively new technique originated in 1986 and known as the differential

transformation (DT) method. The numerical solutions are compared with classical exact solution and other
studies in the literature. The accuracy, simplicity, and effectiveness of the DT approach are demonstrated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In certain design applications, it is advantageous to use several bars, each having different
properties (cross-sectional area, length, mass, and elastic modulus) and connected in mechanical

series. The individual portions are denoted as segments and the entire system is called a compound
bar (see Fig. 1). Such a system is analyzed here.
The first method of solution used here is the exact, classical solution of the set of governing

differential equations. However, this method becomes very unwieldy if there are more than two
segments. For instance, for a two-segment bar, the transcendental frequency equation consists of
two terms containing products of sines and cosines, i.e., to the second degree in trigonometric
functions. In contrast, the three-segment-bar frequency equation consists of sixteen terms
containing trigonometric functions to the fifth degree.
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In view of the aforementioned difficulties, it is desirable to investigate alternative methods of
solution. Here we use a relatively new method introduced by Zhou [1] to solve problems involving
electrical circuits. This method, called the differential transformation (DT) method, is based on the
Taylor series expansion and is exact in a series sense, i.e., it converges to the exact solution. This
method was first applied to eigenvalue problems by Chen and Ho [2]. Since then, researchers
started applying this DT method to solve many engineering problems [3–8]. These studies have
demonstrated that the DT method is simple and effective.

2. Classical solution

The system considered is a compound bar consisting of an arbitrary number ðnÞ of prismatic
segments. The governing differential equations of motion are

a2i ui;xx ¼ ui;tt; i ¼ 1;y; n; ð1Þ

where ai is the acoustic wave velocity of a typical segment i; ui ¼ uiðx; tÞ is the axial displacement
of segment i at position x and time t; and ð Þ;xx denotes @2ð Þ=@x2:
The general solutions of Eq. (1) are

uiðx; tÞ ¼ UiðxÞ cosot; ð2Þ

where o is the circular natural frequency and UiðxÞ; the mode shape of segment i; is governed by

a2i Ui;xx ¼ �o2Ui: ð3Þ

The general solutions for the mode shapes are

UiðxÞ ¼ ai cosðox=aiÞ þ bi sinðox=aiÞ; ð4Þ

where ai and bi are constants of integration.
The origin of the co-ordinate system is taken to be at the left end of segment 1. Considering the

n-segment compound bar to be fixed at both ends, for instance, one can write the two boundary
conditions and 2ðn � 1Þ junction conditions as follows

U1ð0Þ ¼ 0;

Ui

P
Li

� �
¼ Uiþ1

P
Li

� �
;

AiEiUi;x
P

Li

� �
¼ Aiþ1Eiþ1Uiþ1;x

P
Li

� �
;

^

Un

P
Ln

� �
¼ 0;

ð5Þ

where SLi ¼
Pi

j¼1 Lj and SLn ¼
Pn

j¼1 Lj:
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Fig. 1. A representative compound bar having three segments.
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For the example of a two-segment bar, Eqs. (5) reduce to

U1ð0Þ ¼ 0; U1ðL1Þ ¼ U2ðL1Þ; A1E1U1;xðL1Þ ¼ A2E2U2;xðL1Þ; U2ðL1 þ L2Þ ¼ 0: ð6Þ

Substituting Eq. (4) into Eqs. (5) leads to a set of 2n homogeneous algebraic equations in the
coefficients ai and bi ði ¼ 1;y; nÞ: The determinant of this set of equations must be set equal to
zero to guarantee a non-trivial solution. This frequency determinant is transcendental in the
frequency o because its coefficients are of the form of both sine and cosine functions. For a
two-segment bar, for instance, the frequency equation is

tanðoL1=a1Þ cotðoL2=a2Þ ¼ �ða2A1E1Þ=ða1A2E2Þ: ð7Þ

3. DT method

The problem can also be solved by use of the DT method. An arbitrary function f ðxÞ can be
expanded in a Taylor series about a point x ¼ 0 as

f ðxÞ ¼
XN
k¼0

xk

k!

dkf

dxk

" #
x¼0

: ð8Þ

The kth order differential transform of a function f ðxÞ about a point x ¼ 0 is defined as

FðkÞ ¼
1

k!

dkf

dxk

" #
x¼0

; ð9Þ

and the inverse differential transform is

f ðxÞ ¼
XN
k¼0

xkF ðkÞ: ð10Þ

Taking the differential transform of the governing equations, Eq. (3), yields

Fiðk þ 2Þ ¼ �ðo=aiÞ
2 FiðkÞ
ðk þ 1Þðk þ 2Þ

; ð11Þ

where Fi is the differential transform of UiðxÞ: Using the inverse differential transform
relationship of Eq. (10), one can express the two boundary conditions and 2ðn � 1Þ junction
conditions, Eqs. (5), in terms of Fið0Þ; Fið1Þ; and natural frequency o: To avoid a trivial solution,
the determinant of the coefficients of ai and bi must vanish and thus the natural frequency o can
be found.
For the example of a two-segment bar fixed at both ends, the differential transforms of the

governing equations are

F1ðk þ 2Þ ¼ �ðo=a1Þ
2 F1ðkÞ
ðk þ 1Þðk þ 2Þ

; F2ðk þ 2Þ ¼ �ðo=a2Þ
2 F2ðkÞ
ðk þ 1Þðk þ 2Þ

: ð12Þ
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Also, the differential transforms of the boundary and junction conditions (6) are

F1ð0Þ ¼ 0;
XN
k¼0

ðL1Þ
kF1ðkÞ ¼

XN
k¼0

ðL1Þ
kF2ðkÞ;

A1E1

XN
k¼0

kðL1Þ
k�1F1ðkÞ ¼ A2E2

XN
k¼0

kðL1Þ
k�1F2ðkÞ;

XN
k¼0

ðL1 þ L2Þ
kF2ðkÞ ¼ 0: ð13Þ

Substituting Eq. (11) into Eqs. (13) yields a set of four simultaneous algebraic equations with
undetermined differential transforms F1ð0Þ; F1ð1Þ; F2ð0Þ; and F2ð1Þ: Setting the determinant equal
to zero results in a polynomial equation in frequency squared ðo2Þ of order six. For instance, if
three terms of the series are used and k2 ¼ 1; k1=k2 ¼ d; L1 ¼ L2 ¼ 1; and m1 ¼ m2 ¼ 1; the
polynomial frequency equation is

1

6
�

1

18d

� �
ðo2Þ3 þ

1

4
�

d
3
�

1

12d

� �
ðo2Þ2 þ 1þ

1

6d

� �
ðo2Þ � ðdþ 1Þ ¼ 0; ð14Þ

where k1 and k2 are the axial stiffnesses (¼ A1E1=L1 and A2E2=L2) of segments 1 and 2.

4. Numerical results

As a first step toward evaluating the DT method, the case of a two-segment bar is studied for
various values of the ratio k1=k2: The following parameters are held fixed: k2 ¼ 1; L1 ¼ L2 ¼ 1;
and m1 ¼ m2 ¼ 1: The convergence of the DT method for the same two-segment bar is illustrated
in Table 1. The exact solution is the iterative solution of Eq. (7). It is noted that for k1=k2 values
up to 1.02, convergence requires only 15 terms, while for k1=k2 values of 4.00 and 9.00, 20 terms
are needed.
A question arises about the effect of symmetry on the rate of convergence of the DT solution.

To study this, two three-segment bars are considered. Both have the same material and
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Table 1

Convergence of the DT solution for the fundamental natural frequency o (rad/s) for a bar system consisting two

segments and fixed at both ends (Q is the number of terms)

k1=k2 Exact Q ¼ 8 Q ¼ 9 Q ¼ 10 Q ¼ 15 Q ¼ 20 Q ¼ 25

0.25 1.1503 1.1445 1.1509 1.1506 1.1503 1.1503 1.1503

0.49 1.3329 1.3254 1.3346 1.3335 1.3329 1.3329 1.3329

0.50 1.3388 1.3309 1.3404 1.3393 1.3388 1.3388 1.3388

0.98 1.5629 1.5327 1.5664 1.5662 1.5629 1.5629 1.5629

1.00 1.5708 1.5393 1.5743 1.5743 1.5708 1.5708 1.5708

1.02 1.5786 1.5458 1.5822 1.5824 1.5786 1.5786 1.5786

4.00 2.3005 2.0228 2.0826 4.6114 2.3016 2.3005 2.3005

9.00 2.7352 4.3903 2.1756 2.5302 2.7594 2.7352 2.7352
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L1 ¼ L2 ¼ L3 ¼ 1 and m1 ¼ m2 ¼ m3 ¼ 1: Case 1 (symmetric): k1 ¼ 1; k2 ¼ 4; k3 ¼ 1: Case 2
(nonsymmetric): k1 ¼ 1; k2 ¼ 2; k3 ¼ 4:
The results are presented in Table 2. The DT results for Case 2 converge slightly faster than those
for Case 1.
The next example considered is a four-segment circular-section shaft undergoing free torsional

vibration, which was studied by Beddoe [9]. Its boundary condition is considered free–free. The
input data are: material properties (steel): G ¼ 79:3 GPa; specific weight: 75:4 kN=m3; diameters:
d1 ¼ d4 ¼ 0:0508 m; d2 ¼ 0:0762 m; d3 ¼ 0:0635 m; lengths: L1 ¼ 1:310 m; L2 ¼ L3 ¼ 0:457 m;
L4 ¼ 0:762 m:
The first three natural frequencies are listed in Table 3. The changes necessary in our equations

to model the free–free boundary conditions are presented in Appendix A. As can be seen, the
agreement is very good.
Li [10] presented different ways to model the axial vibration of a multi-story building: ‘‘tapered

bar’’ model, ‘‘multi-segment bar’’ model, and the finite element method. Of course, the boundary
conditions used were fixed at the base and free at the top. Li [10] also reported experimental
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Table 2

Values of fundamental natural frequency o (rad/s) for two different three-segment bars each being fixed at both ends

Case Exact DT DT converged at

1 (symmetric) 1.0696 1.0696 Q ¼ 14

2 (nonsymmetric) 1.4881 1.4881 Q ¼ 12

Table 3

The three lowest natural frequencies (rad/s) for the four-segment shaft which is free at both ends

Mode Beddoe [9] Exact

1 5537 5551.1

2 8395 8415.5

3 12047 12080.1

Table 4

Input data for two multi-story buildings modeled by Li [10]1

20-Story building 16-Story building

Segment AE (N) L (m) m (kg/m) Segment AE (N) L (m) m (kg/m)

1 (base) 3.46 e11 12.9 3.49 e5 1 2.56 e11 13.0 2.91 e5

2 3.35 e11 11.6 3.29 e5 2 2.32 e11 12.0 2.97 e5

3 3.21 e11 11.6 3.18 e5 3 2.20 e11 12.0 2.90 e5

4 2.94 e11 11.6 3.09 e5 4 2.10 e11 12.0 2.93 e5

5 (top) 2.74 e11 11.6 2.91 e5

1Boundary conditions: fixed at the base, free at the top.
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results for the fundamental frequency. His results by the three different methods agreed well with
the experimental results for two different buildings, a 20-story and a 16-story one. Again,
the changes necessary in our equations to model the boundary condition of free at the top are
explained in Appendix A. Input data from Li’s Model 2 are listed in Table 4, and results are
presented in Table 5. The agreement between the present results and the other investigators’
results is good but not as good as in Table 3.
The addition of lumped masses and/or springs can easily be accommodated by incorporating

them in the ‘‘junction’’ or ‘‘end’’ boundary conditions as desired. However, in the interest of
brevity, no numerical results are presented for this situation.

5. Concluding remarks

Another exact method for free vibration analysis of compound axial or torsional bars has been
presented and evaluated. This method is a relatively new technique, known as the differential
transformation method. Analyses were applied to various example problems with up to five
segments, including classical solutions and some taken from the literature. Agreement among the
present exact methods and those of others was very good. Agreement between the exact classical
method and the DT method was perfect, shown in Tables 1–3, since DT is also an exact method.
Exact results by the classical method were not calculated. However, the present results were
compared with those of Li and the agreement was fair.
It should be pointed out that the DT method was more convenient to program than the classical

method.

Appendix A. Modifications necessary to handle other boundary conditions and tapered compound

bars

Some of the problems treated in the body of the paper have differential boundary conditions at
the ends of the compound bar than the main case of fixed at both ends. These changes in
boundary conditions change certain equations in the body of the paper as described here.
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Table 5

The three lowest natural frequencies (rad/s) for the two multi-story buildings specified in Table 4

Mode Li analyt. Li exp. DT No. of terms req’d. for DT convergence

20-Story building

1 26.3 27.3 27.6 15

2 70.4 — 79.1 21

3 110.3 — 131.2 25

16-Story building

1 29.7 29.9 29.1 15

2 77.8 — 85.1 15

3 124.5 — 141.8 25
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A.1. Free–free boundary conditions

In the case of torsional vibration of a circular-section shaft, all of the U ’s, A’s, and E’s in
Eqs. (5) are replaced by y’s, J’s, and G’s, respectively. For the case of both ends free, the first and
last equations in Eqs. (5) become

y1;xð0Þ ¼ 0; yn;xðSLnÞ ¼ 0:

A.2. Fixed–free boundary conditions

In the case of a building model, the base is fixed and the top is free. This necessitates only one
change in Eqs. (5); the last equation in the set becomes

Un;xðSLnÞ ¼ 0:

A.3. Tapered compound bars

By combining the present methodology for compound bars with the methodology of Ref. [7] for
tapered bars, one can handle tapered compound bars.
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