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Abstract

In this paper the genetic algorithm (GA) method is applied to the optimization problem of a linear one-
degree-of-freedom (1-DOF) vibration isolator mount and the method is extended to the optimization of a
linear quarter car suspension model. A novel criterion for selecting optimal suspension parameters is
presented. An optimal relationship between the root mean square (RMS) of the absolute acceleration and
the RMS of the relative displacement is found. Although the systems are linear, it is difficult to find such
optimal relation analytically. The optimum solution is obtained numerically by utilizing GA and employing
a cost function that seeks minimizing absolute acceleration RMS sensitivity to changes in relative
displacement RMS. The combination of RMS and absolute acceleration sensitivity minimization produces
optimal suspension that is robust to broadband frequency excitation. The GA method increases the
probability of finding the global optimum solution and avoids convergence to a local minimum which is a
drawback of gradient-based methods. Given allowable mount relative displacement (working space),
designers can use the results to specify the optimal mount and suspension. The cost function employed can
be extended to optimize multi-DOF (MDOF) and non-linear vibrating mechanical systems in frequency
domain. Applying the method to a linear quarter car model illustrates the applicability of the method to
MDOF systems. An example is given to demonstrate the optimality of the solution obtained by the GA
technique.
r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Isolation systems design presents a challenge to engineers because of the conflicting criteria
involved in their design. For example, in the automotive industry it is desired to reduce engine
vibration and ultimately the dynamic forces transmitted from the engine to the frame. Usually this
is achieved by using engine mounts or vibration isolators that connect the engine to the chassis.
On one hand, reducing vibration transmissibility entails using mounts as soft as possible. On the
other hand, constraints on engine deflection due to physical limitations restrict mount stiffness to
a lower boundary. Consequently, the design of passive mounts and isolation systems can be
treated as an optimization problem [1].
In this paper, an optimization criterion for the design of vibration isolation systems is

introduced. One of the advantages of this optimization criterion is that the optimal values of the
dynamical parameters of the system do not approach trivial solutions. Genetic algorithm (GA) is
used to numerically implement the method. GA is a stochastic optimization technique based on
the mechanics of natural evolution and survival of the fittest strategy found in biological
organisms. Two examples illustrate the effectiveness of the technique. First a non-dimensionalized
model of a linear mount is optimized. Next, the developed theory is extended and applied to
optimize a quarter car model as an example of a multi-degrees-of-freedom (MDOF) system.
Figs. 1 and 2 depicts a linear vibration isolation system and a linear quarter car model,

respectively. The goal is to develop a design chart utilizing GA to evaluate the optimum values of
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Fig. 1. Mathematical model of a linear mount.
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the main suspension stiffness and damping parameters for maximum isolation of the upper mass
from a harmonic base excitation in the frequency domain. To this end, a cost function using RMS
of both absolute acceleration and relative displacement is defined. Then the cost function is
minimized to create a design chart enabling the selection of the optimum natural frequency and
damping ratio.

1.1. Genetic algorithm

GA is a well-known method for global optimization of complex systems. The start of GA can
be traced back to 1950s, but the work done in 1970s by John Holland at the University of
Michigan led to GA, as we know it today [2,3]. In simple terms the algorithm represents a search
strategy based on the mechanics of natural selection and reproduction in biological systems. The
search procedure is derived from the process of natural selection and evaluation originally
observed and documented by Charles Darwin. The philosophy of ‘‘survival of the fittest’’ has been
adopted, implemented numerically, and developed for the general problem of optimization in
which natural evolution and adaptation to environment variation is simulated mathematically.
Because of the inherent advantage of being able to proceed with a large population of designs, the
method facilitates arrival at the globally optimal solution [4].
GA starts with a set of randomly selected potential solutions to the problem at hand, and makes

them evolve by iteratively applying a set of stochastic operators, known as selection, crossover
and mutation. The technique relies on objective function (fitness) evaluation [5]. The better
solution has higher fitness value. No gradient information is required; only evaluation of the
objective function and the constraints are necessary to determine fitness. Such a derivative
freeness technique makes GA versatile and gives it the ability to deal with problems with a
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Fig. 2. Schematic of a quarter car model.

R. Alkhatib et al. / Journal of Sound and Vibration 275 (2004) 665–691 667



complicated objective function where derivative is difficult to obtain or unattainable (non-
differentiable function). The stochastic and randomness nature of GA avoids the gradient-based
optimization methods drawback of getting trapped in local optima.
Only a brief description of the theory of GA is given in this paper as it is by now a well-

established optimization technique. The interested reader may consult Refs. [2,6,7] for many
practical and theoretical aspects of GA. DeJong [6] studied the use of GA in general function
optimization. He showed that the ability of the GA to learn from the history and exploit the
environment provided the basis of its effectiveness in optimization. Recent years have witnessed
an exponential growth in the use of GA in a vast variety of sciences and engineering fields. Forrest
[8] collected a good summary of GA applications to science and engineering problems up to 1993.
In vibration isolation systems the works reported by East et al. [9], Baumal et al. [10], and
Baldanzini et al. [11] may be mentioned.

1.2. Vibration isolation

The most important function of an isolator is to reduce the magnitude of motion transmitted
from a vibrating foundation to the equipment, or to reduce the magnitude of force transmitted
from the equipment to its foundation, both in time and frequency domain [12]. Different methods
exist to address time and frequency domain isolation system optimization [13]. Time domain
optimization deals with the dynamic response and transient characteristics of the system.
However, frequency domain optimization is concerned with the steady state performance of the
system. Optimization in the frequency domain is essential, specially when the excitation has a
different combination of frequencies. Optimization of the structure from a harmonic excitation
may be used for any type of periodic excitation, considering that any periodic excitation can be
expanded as a Fourier series of harmonic excitations.
Optimization in the frequency domain involves analysis of the frequency response function

(FRF) of the system, which relates the steady state response to the disturbance input. Derivation
of the required FRF is sometimes cumbersome particularly for statistical characteristics, and is
near impossible for non-linear system. In this case the, optimization process relies significantly on
numerical simulation rather than on an analytical solution.
Optimization of vibration isolation systems has been the subject of a vast amount of research

[14,15]. In the first few decades of the last century, researchers established the theory of vibration
isolation. Den Hartog [16] pointed out that prior to the middle of 1930s, vibration isolation theory
had not yet been introduced into the curriculum of technical schools. Now there are many
theories, and various passive, semiactive and active vibration isolation systems are available.
In the simplest approach to the problem of estimating the effectiveness of a vibration mount

(see Fig. 1), researchers assume that the engine or equipment to be isolated is a rigid mass m and
the mount is a massless mechanically paralleled spring and damper of stiffness k and resistance c.
The parameters m, k, and c are considered constant and independent of the frequency. For
foundation-excited vibration, we assume that the engine does not affect the vibratory foundation
velocity, whether the engine is rigidly or resiliently attached. This assumption is equivalent to the
assumption of an infinitely stiff and massive foundation [17].
The equations that govern the linear model of an isolator with a harmonic base excitation, and

the relevant transfer functions of the linear model may be found in any mechanical vibration texts
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such as Den Hartog’s [16]. The non-dimensionalized equation of motion for the system is

.xr þ 2xon ’xr þ o2
nxr ¼ Yo2 sinðotÞ; ð1Þ

where the parameters of Eq. (1) are related to the physical parameters of the system by

x ¼
c

cc

; on ¼

ffiffiffiffi
k

m

r
¼ 2pfn; cc ¼ 2mon; xr ¼ x � y: ð2Þ

The most important transfer functions for the system are: absolute displacement, g; relative
displacement, l; and absolute acceleration, a; which are defined as follows:

g ¼
X

Y

����
���� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2xðo=onÞÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðo=onÞ

2Þ2 þ ð2xðo=onÞÞ
2

q ; ð3Þ

l ¼
X � Y

Y

����
���� ¼ ðo=onÞ

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðo=onÞ

2Þ2 þ ð2xðo=onÞÞ
2

q ; ð4Þ

a ¼
.X

Y

����
���� ¼ o2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð2xðo=onÞÞ

2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� ðo=onÞ

2Þ2 þ ð2xðo=onÞÞ
2

q : ð5Þ

Figs. 3 and 4 depict the variation of the system relative displacement transmissibility, and
absolute acceleration amplitude transmissibility versus frequency ratio.
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2. Optimization problem

There are numerous practical applications where it is desired to isolate vibrating machines and
devices from the surrounding structure by minimize the vibration transmitted away from the
vibratory system. For example, engine mounts are typically used to isolate the engine from the
frame structure on which it is mounted. The goal of optimization processes is to achieve the best
possible vibration attenuation under various conditions. The procedure involves three major
tasks; first to choose what measure should be minimized to best depict the problem under study.
The next question of interest is to decide which parameters are allowed to vary during the
optimization. Finally, one has to decide what constraints must be satisfied in order to avoid trivial
solutions to the problem.
The choice of the objective function is paramount, since it determines which isolation system

design is best or optimum. There are various approaches to the selection of the objective function,
but none is universally accepted yet. Most of the criteria used in objective function for
optimization of vibratory systems are based on the acceleration, jerk, and displacement. The
reduction of the absolute acceleration is important in the optimization of suspensions since it
measures the transmitted force to the sprung mass. Hence, absolute acceleration is an essential
parameter of every cost function in the vibration isolation optimization theory. Relative
displacement transmissibility is another significant quantity to be taken into consideration. It
measures the ratio of the relative deflection amplitude of the isolator to the excited displacement
amplitude imposed at the foundation. A vibration isolator produces a reduction in absolute
acceleration, and absolute displacement vibrations by permitting deflection of the isolator [17].
The relative deflection is a measure of the clearance (known as working space, travel space, or
rattle-space) required in the isolator. The clearance should be bounded due to the physical
consideration in the mechanical design.
For mechanical systems, the frequency domain of interest is usually between zero and 20Hz.

Selected stiffness and damping should be optimum over the entire frequency domain. Developing

ARTICLE IN PRESS

Fig. 4. Frequency response of the absolute acceleration of linear 1-DOF base excited system.

R. Alkhatib et al. / Journal of Sound and Vibration 275 (2004) 665–691670



a passive vibration isolator requires a frequency-averaged optimum design. Hence, the optimum
stiffness and damping may be found by using some type of averaging characteristic in the
frequency domain. The root mean square (RMS) can be used as the average over the frequency
domain [0,20]Hz. The choice of constraints restricts the possibilities of candidate designs.
However, the choice of objective function, and constraints are limited by the practical
consideration.
For the system shown in Fig. 1, it is generally desired to select x and on such that the

absolute acceleration (or relative displacement) of the system is minimized and the
relative displacement (or the absolute acceleration) does not exceed a prescribed
level. The RMS of the acceleration and the RMS of the relative displacement are defined by
the functions

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

40p

Z 40p

0

a2 do

s
; Z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

40p

Z 40p

0

l2 do

s
: ð6; 7Þ

There is a tradeoff between the acceleration and relative motion, which is exploited to achieve
the optimal isolator. Fig. 5 illustrates this tradeoff. The ratio of RMS of the absolute acceleration
to the RMS of the relative displacement is a monotonically increasing function of on and x: If the
relative displacement RMS is kept constant, then the acceleration RMS increases with an increase
in of on or x: Also if the acceleration RMS is kept constant then the relative displacement RMS
decreases with an increase in on or x: Hence absolute acceleration and relative displacement
cannot both be minimized at the same time. In other words, decreasing absolute acceleration
necessarily increases the relative displacement and vice versa. Therefore, in the absence of a
constraint, the optimum design is the trivial solution of on ¼ 0 and x ¼ 0 (the no connection
case).
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By considering these design specifications, a general design optimization statement for the
mount system can now be given. An appropriate optimization criterion maybe defined as

Optimizatin criterion: minimize RMS of absolute acceleration with respect to RMS of relative
displacement for a given value of RMS of relative displacement.

The result of this optimization criterion is an optimal curve in the R–Z plane. Select a desired
value for relative displacement as the allowable mount deflection and find the associated values
for x and on:

3. Genetic algorithm optimization procedure

In this section a description of the implementation of GA to the optimization of a linear mount
system is given. GA is a subset of evolutionary algorithms that model and mimic biological
processes to find optimal solutions of highly complex problems. GA draws analogy to the natural
process of reproduction, natural selection and evolution in biological population, where genetic
characteristics stored in chromosomal strings evolves over generations to give individuals a better
chance of survivability in a static or changing environment. This chromosomal configuration
represents the generational memory and is partially transferred and altered when members of the
population reproduced. The basic idea of a GA is simple. First, a population of individuals is
created in a computer (typically stored as binary strings in the computer’s memory), and then the
population is evolved with use of the principles of variation, selection, and inheritance [8].
The three basic processes that affect the chromosomal makeup in natural evolution are

crossover of genetic information between the reproduction parents, an occasional mutation of
genetic information, and survival of the fittest to reproduce in upcoming generations. Crossover
process exchanges genetic structure between the parents and allows for beneficial genes to be
represented in the offspring. Mutation is a sudden and infrequent alternation in chromosomal
makeup, which causes new traits to surface in individuals. Individuals with favorable qualities
have better chance to adapt and survive, and therefore procreate.
GA, in a fashion analogous to their natural counterpart, uses chromosome-type representations of

feasible solutions of the problem to explore the searching space for improved solutions. GA incorporates
a bias reproduction strategy, where members of the population that are deemed most fit are preferred
for reproduction and given higher opportunity to strengthen the chromosomal composition of the
offspring generation. This approach is implemented by assigning a fitness value or scale indicating
the goodness of an individual of the population in a given generation during the evolution process. The
objective function serves as excellent candidate in measuring individual’s fitness.
Major component of GAs including encoding scheme, fitness evaluation, parents selection,

crossover operators and mutation operators are briefly explained next in the contest of the mount
optimization.

3.1. Principle of encoding scheme

The first step is to transform points in the parameter space into bit string representations. By
converting each parameter into its binary equivalent, it may be mapped into a fixed-length string
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of 0’s and 1’s (gene). Clearly, the string (gene) length determines the numerical precision with
which this parameter may be represented. For the mount problem, each variable xi is represented
by a 16-digit binary number with maximum and minimum values of the design variable mapped
to the maximum and minimum of the binary number as follows:

ximin ¼ 0000000000000000;

ximax ¼ 1111111111111111:

Two such binary numbers are needed for the mount optimization problem to represent
damping ratio and natural frequency ðx1;x2Þ ¼ ðx;onÞ with a domain of possible values limited to
0oxo1.5 and 0oono100 rad/s. The two genes are then placed end to end to create a 32-digit
string concatenated binary string chromosome of 0’s and 1’s

chromosome ¼ 1010111?|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gene1¼x

0011101?|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
gene2¼on

2
4

3
5:

This 32-digit string represents one design of the mount, so there are 216 possibilities
for each variable and 232 possible design. A sequence of such strings can be introduced
to construct a population of designs. An initial population of 100 designs was randomly
generated.

3.2. Cost function and fitness evaluation

GA use selection, crossover, and mutation operators to breed good solutions. ‘‘Goodness’’ of
the solution is measured by so-called ‘‘fitness function.’’ The fitness function is based on the
objective function of the problem and must be non-negative [18]. The fitness should be evaluated
for each design in every generation and it depends on the objective function value. The objective
function in the mount case should reflect how close is the design to the condition given in the
optimization criterion. If Zg is the given value of RMS of relative displacement where it is needed
to set the system such that

@R

@Z

����
Zg

¼ 0;
@2R

@Z2

����
Zg

> 0 ð8Þ

and ðxj;onj
Þ is the jth individual at any generation. Based on ðxj;onj

Þ two more points ðxi;oni
Þ and

ðxk;onk
Þ are defined, where

xi ¼ xj � e; oni
¼ onj

; xk ¼ xj þ e; onk
¼ onj

; e51: ð9Þ

The equation of a parabola passing through points ðxi;oni
Þ; ðxj;onj

Þ; and ðxk;onk
Þ is

R ¼ AZ2 þ BZþ C; ð10Þ
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where

A ¼ �
RiðZj � ZkÞ þ RjðZk � ZiÞ þ RkðZi � ZjÞ

�Z2i ðZj � ZkÞ � Z2j ðZk � ZiÞ � Z2j ðZk � ZiÞ
;

B ¼ �
RiðZ2j � Z2kÞ þ RjðZ2k � Z2i Þ þ RkðZ2i � Z2j Þ

�Z2i ðZj � ZkÞ � Z2j ðZk � ZiÞ � Z2j ðZk � ZiÞ
;

C ¼
�RiZjZkðZj � ZkÞ þ RjZkZiðZk � ZiÞ þ RkZiZjðZi � ZjÞ

�Z2i ðZj � ZkÞ � Z2j ðZk � ZiÞ � Z2j ðZk � ZiÞ
: ð11Þ

The minimum of parabola (11) occurs at

Zm ¼ �
1

2

RiðZ2j � Z2kÞ þ RjðZ2k � Z2i Þ þ RkðZ2i � Z2j Þ

RiðZj � ZkÞ þ RjðZk � ZiÞ þ RkðZi � ZjÞ
: ð12Þ

Now the cost function is defined such that Zj, Zm and Zg coincide with each other

Jj ¼ ðZj � ZmÞ
2 þ ðZm � ZgÞ

2 þ ðZg � ZjÞ
2; ð13Þ

along with the conditions

Rj > Ri; RjoRk: ð14Þ

3.3. Selection

After evaluating the fineness of each member of the current population, a selection process for
individuals to participate in the creation of the next generation is in order. The selection should be
biased toward individuals with higher fitness value analogous to survival of the fittest in natural
selection. Selection for reproduction among members of higher fitness ensures moving the search
toward producing more fit members in the population and eliminating the less fit ones. First the
population is ranked according to their fitness. A mating pool consisting of 50% of the population
with individual with the highest fitness is created. Members are selected from the mating pool and
paired (i.e., {parent1, parent2}) with selection probability proportional to their fitness value. If Jr is
the fitness measure of the rth member, it can be alloted a probability of Jr=

Pn
j¼1 Jj; where n is the

population size. Self-pairing is not permitted. The paired individuals are used to create new
individuals through crossover operators to replace the discarded ones.

3.4. Crossover

Crossover is the exchange of design characteristics among randomly selected pairs from the
parent pool. There are many types of crossover; the most general one (i.e., uniform crossover) is
briefly introduced here and implemented for the mount optimization. Uniform crossover looks at
each bit in the parents and randomly assigns the bit from one parent to one offspring and the bit
from the other parent to the other offspring. First a random mask is generated. This mask is a
random vector of ones and zeros and is the same length as the parents. When the bit in the mask is
0, then the corresponding bit in parent1 is passed to offspring1 and the corresponding bit in parent2
is passed to offspring2. When the bit in the mask is 1, then the corresponding bit in parent1 is
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passed to offspring2 and the corresponding bit in parent2 is passed to offspring1:

Parent1 01001101101011100001010101110111;

Parent2 11000110110110111111010011001001;

Mask 00011010001111001101101000101111;

Offspring1 01000111100110101101010101011001;

Offspring2 11001100111011110011010011100111:

3.5. Mutation

This step diversifies the population so that different areas of the parameters space can be
explored and also prevents the solution from premature convergence. A mutation operator is
capable of spontaneously generating new chromosomes. The most common way of implementing
mutation is by switching a 0 with a 1 or vice versa with a probability equal to the very low given
mutation rate. The mutation rate was taken to be 10% of the total number of binary digits in the
whole population. The size of the population passed from one generation to the other remains
constant. A complete iteration or new generation of designs is formed after completing all of the
above steps.

4. Application of the genetic algorithm

GA is applied to obtain the optimal design charts for the linear engine mount by running the
GA for a hundred points of given relative displacement RMS in the range 0:22pZgp1:35: For
each point, the algorithm stops after a fixed number of iteration set to be 500 iterations. The result
is the optimal values of the damping ratio and natural frequency corresponding to each given
relative displacement RMS.
Fig. 6 depicts the connected optimal points in the RMSð .xÞ–RMSðxrÞ plane that satisfies the

optimality condition (8). Connecting the optimal points together makes the optimal line. The
optimal line starts from a point between 1.4 and 1.5 on RMSðxrÞ axis showing a soft mount (low
stiffness and damping), and ends at a point close to (7000 s�2) on RMSð .xÞ axis showing a hard
mount (rigid connection). Point ð1; 0Þ indicates a no connection condition between the mass and
the base. The optimality condition (8) does not converge to the point ð1; 0Þ that the other optimal
conditions converge to.
Fig. 7 illustrates the variation of the natural frequency and damping ratio versus RMSðxrÞ.

After finding an optimal point in Fig. 6, the designer can find the dynamical parameters of the
mount from Fig. 7. The graphical illustration of the relationship between the natural frequency
and damping ratio on the optimal line is shown in Fig. 8. It demonstrates that at optimum
conditions, increasing the damping ratio is followed by an increase in the natural frequency, and
vise versa. The natural frequency reaches a saturating level. Increasing damping ratio beyond 0.6
does not affect the value of the optimal natural frequency. The level of acceleration for the
optimum mount always lies below the level of acceleration for a hard mount, which is desirable.
Its level of relative displacement may be less or greater than a soft mount. Reducing the working
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space requires increasing the acceleration response, which can be done by using a stiffer mount
and higher damping ratio.
Although, the level of R changes slowly for 0oZo1; it changes at a higher rate for Z > 1: In

other words, at high natural frequencies, the optimum RMS acceleration becomes insensitive to
damping. If the limit value of the RMS of the relative displacement (or acceleration) is known,
then the intersection of the corresponding vertical (horizontal) line in Fig. 6 with the line of
optimum indicates the optimum value of x and on and the corresponding level of acceleration
(relative displacement).
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Fig. 7. Optimal curves in on–RMSðxrÞ and x–RMSðxrÞ plane

Fig. 6. Optimal curve in RMSð .xÞ–RMSðxrÞ plane.
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Note that the RMS of the absolute acceleration R and the RMS of the relative displacement Z
are functions of two variables on and x as indicated in Eqs. (4)–(7):

R ¼ f1ðon; xÞ; Z ¼ f2ðon; xÞ: ð15; 16Þ

Hence, a pair of (on; x), uniquely determines R and Z: Theoretically, the variables can be changed
to define any of these four characters R; Z; x; and on as a function of the other two variables such
as

R ¼ g1ðZ; xÞ; R ¼ g2ðon; ZÞ: ð17; 18Þ

Consequently, x and on can be regarded as a surface in the spaces of (R;on; Z), and (R; Z; x).
The functions f1 and f2 or g1 and g2 determine the dynamical behavior of the system. Figs. 9
and 10 depict the surfaces f1 and f2 using Eqs. (15) and (16). Figs. 11 and 12 also illustrate the
behavior of the absolute acceleration RMS, R, using the surfaces g1 and g2 specified in Eqs. (17)
and (18).
Each pair of (on; x), (on; Z), or (Z; x) indicates a characteristic point on surfaces (15), (17), or

(18) respectively. The characteristic point uniquely determines the RMS of the frequency response
of the system. The point cannot leave the surfaces, but can slide on the surfaces. It means that the
upper and lower half-spaces, above and below the characteristic surfaces, are meaningless and
there are no real behaviors corresponding to those half-spaces. Hence, only two of the four
characters, R; Z; x; and on are independent and it is possible to reduce the number of independent
characters to one by introducing an optimal relationship between two of them. The design
procedure reduces to calculate the other three variables when the fourth one (usually the relative
displacement RMS, Z) is given.
Although there is no extremum on the functions f1; f2, g1; and g2; (see Figs. 9–12), it is possible

to find a curve on the surface g2; passing through the minimum of intersection of g2; and the
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planes indicated by on: This space curve is defined as the optimal curve. The optimal curve shown
in Fig. 13 depicts a relationship between on and x that makes R minimum with respect to Z; when
on is given. In other words, for any specific value of on there is a solution for @g2=@Z ¼ 0 such that
@2g2=@Z2 > 0: The shape of the optimal curve could be seen in the (R; Z)-plane view of the surface
g2; as illustrated in Fig. 14.
If in Fig. 13, #eZ; #eon

; #eR are the unit vectors along the axes Z; on; and R respectively, and rg2 is
the gradient of the surface g2; then the optimal curve is defined by

rg2 � #eZ ¼ 0; ð19Þ
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Fig. 10. Illustration of f2; the RMS of the relative displacement, Z; for a linear mount, as a function of natural

frequency, on; and damping ratio, x:

Fig. 9. Illustration of f1; the RMS of the absolute acceleration, R; for a linear mount, as a function of natural

frequency, on; and damping ratio, x:

R. Alkhatib et al. / Journal of Sound and Vibration 275 (2004) 665–691678



which shows that the gradient of g2 has no component on Z axes. Fig. 15 illustrates how the
optimal curve defined by Eq. (12) passes through the minimum points. On the optimal curve, R is
just a variable of on; and is not sensitive to small changes in Z: Since Z is a measure of working
space, this property is more important for actual working conditions.
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Fig. 12. Illustration of g2; the RMS of the absolute acceleration, R; for a linear mount, as a function of relative

displacement RMS, Z; and natural frequency, on:

Fig. 11. Illustration of g1; the RMS of the absolute acceleration, R; for a linear mount, as a function of relative

displacement RMS, Z; and damping ratio, x:
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5. Quarter car optimization

Next a linear 2-DOF quarter car model is analyzed. The same optimization criterion is
employed to obtain the optimal damping and stiffness values for the main suspension by
minimizing the RMS of the absolute acceleration of the sprung mass with respect to the relative
displacement RMS. The RMS values are used to create design curves for the suspension
parameters, which are very useful particularly in the presence of physical constraints such as a
limit on relative displacement.
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Fig. 14. Illustration of the (R; Z)-plane view of the surface R ¼ g2 on; Zð Þ:

Fig. 13. Illustration of the optimal curve on the surface g2; the acceleration RMS, R; for a linear mount, as a function

of relative displacement RMS, Z; and natural frequency, on:
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Schematically, a vehicle suspension mechanism can be represented using a linear system
consisting of two solid mass ms and mu denoted as sprung and unsprung masses, linked to each
other by a spring mechanism of stiffness ks; and a shock absorber with viscous damping
coefficient cs: The solid mass mu; represents the wheel; it is in direct contact with the ground
through a spring of stiffness ku [19]. This model is shown in Fig. 2. The damping requirement is in
conflict with ride comfort; i.e., high and low damping must alternate within the ranges of
excitation frequency in order to provide good vibration isolation over the entire frequency range.
The governing differential equations of motion for the model are

ms

d2

dt2
xs

� �
þ cs

d

dt
ðxs � xuÞ

� �
þ ksðxs � xuÞ ¼ 0; ð20Þ

mu
d2

dt2
xu

� �
þ cs

d

dt
ðxu � xsÞ

� �
þ ðks þ kuÞxu � ksxs ¼ kuy: ð21Þ

In order to investigate the frequency response, and develop an optimization procedure based on
frequency response, harmonic excitation is assumed, y ¼ Yeiot; and a periodic solution is sough
after of the form xs ¼ Xse

iot; xu ¼ Xue
iot; where Xs; Xu are complex amplitudes.

The following dimensionless characteristics are introduced:

ou ¼

ffiffiffiffiffiffi
ku

mu

s
; os ¼

ffiffiffiffiffiffi
ks

ms

s
; r ¼

o
os

; a ¼
os

ou

; e ¼
ms

mu

; x ¼
cs

2osms

ð22Þ

and after some manipulations, the transmissibilities m ¼ Xs=Y ; t ¼ Xu=Y and Z ¼ ðXs � XuÞ=Y ;
for sprung, unsprung and wheel travel, respectively, are found

m2 ¼
4x2r2 þ 1

½r2ðr2a2 � 1Þ þ ð1� ð1þ eÞr2a2Þ	2 þ 4x2r2ð1� ð1þ eÞr2a2Þ2
; ð23Þ
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Fig. 15. Illustration of the optimal curve defined byrg2 � #eZ ¼ 0 on the surface g2, the acceleration RMS, R; for a linear
mount, as a function of relative displacement RMS, Z; and natural frequency, on:
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t2 ¼
4x2r2 þ 1þ r2ðr2 � 2Þ

½r2ðr2a2 � 1Þ þ ð1� ð1þ eÞr2a2Þ	2 þ 4x2r2ð1� ð1þ eÞr2a2Þ2
; ð24Þ

Z2 ¼
r4

½r2ðr2a2 � 1Þ þ ð1� ð1þ eÞr2a2Þ	2 þ 4x2r2ð1� ð1þ eÞr2a2Þ2
: ð25Þ

Eqs. (23)–(25) show that the transmisibilities m; t; and Z are functions of four essential variables;
mass ratio e; damping ratio x; natural frequency ratio a; and excitation frequency ratio r: It is
important to note that the frequency ratios a and r only appears in even powers.
For a quarter car model, it is known that if muoms; then e > 1: Typical mass ratio for the

commercial vehicles lies in the range 3–8 with small cars near the former figure and large cars near
the large one [20]. Also note that the excitation frequency o would be equal to ou; when r ¼ 1=a;
and would be equal to os; when r ¼ 1: For a real model, the order of magnitude of the stiffness is
ku > ks; also ou > os; and then ao1: Therefore, r > 1 at o ¼ ou:
The following optimization criterion is defined, similar to the previous one used for the linear

mount, to optimize the suspension of the linear quarter car model:

Optimization criterion: minimize RMS of absolute acceleration U with respect to RMS of
relative displacement F, where U=RMS(u), F=RMS(Z), and u is the absolute acceleration of the
sprung mass

u ¼
.Xs

o2
1Y

¼ r2a2m: ð26Þ

Using this optimality condition, an optimal relationship between absolute acceleration RMS
and relative displacement RMS is found. The result is an optimal curve in the U�F plane. Select a
desired value for relative displacement as the traveling space, and find the associated values for x
and a at the intersection of the associated vertical line with the optimal curve. Mathematically, it is
equivalent to the constrained minimization

@U

@F
¼ 0;

@2U

@F2
> 0: ð27Þ

For a real problem, the values of mass ratio, e; and tire frequency ou are fixed and the designers
seek to find the optimum values of a and x: The parameters a and x include the unknown stiffness
of the main spring and the unknown damping of the main shock absorber, respectively.
Applying GA to this problem produces the optimal relationship between a and x: Figs. 16–18

show the results graphically. Fig. 16 represent the optimal curve in the U�F plane. The associated
value of a and x are depicted in Figs. 17(a) and (b), and the relationship between a and x is
indicated in Fig. 18.

6. Optimization example

Verification of the result can be done by analyzing the frequency response behavior of the
system using optimal parameters. The analysis of the frequency response is a good measure for
comparing the suspension parameters in order to find the effect of the RMS optimized parameters
on the steady state response. A harmonic base excitation is applied to the system. Note that the

ARTICLE IN PRESS

R. Alkhatib et al. / Journal of Sound and Vibration 275 (2004) 665–691682



result based on RMS optimization analysis is equivalent to variance optimization of a white noise
random excitation with zero mean value. Therefore, suspensions on the line of minima have an
optimal behavior in the random domain.
The behavior of the mount system for five different cases, indicated in Figs. 19 and 20, are

analyzed. Point 1 is a random picked point on the optimal line. Points 2 and 3 are two alternative
points with the same natural frequency as point 1. Points 4 and 5 are two points with the same
damping ratio as point 1. The relative displacement RMS and absolute acceleration RMS for
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Fig. 17. (a) Optimal x versus F for a quarter car model and (b) optimal a versus F for a quarter car model.
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Fig. 16. Optimal curve in-plane U–F for a quarter car model.
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points 1–5 are plotted in Fig. 20. Points 1, 2, 4, and 5 are close enough to compare, but point 3 is
an odd point. Therefore, points 3 indicates a significant different suspension which is a low
damped suspension. According to the optimal prediction, the behavior of point 1 is better than
the other trial points. The dynamical parameters of the selected mount systems are presented in
Table 1. Figs. 21 and 22 compare the absolute acceleration frequency response a, and relative
displacement frequency response l for the five point. Furthermore, Fig. 23 depicts the frequency
response of the absolute displacement g:
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Fig. 19. Five mounts in on–x plane.
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Fig. 18. Relationship between a and x at optimal condition for a quarter car model.

R. Alkhatib et al. / Journal of Sound and Vibration 275 (2004) 665–691684



As previously mentioned in Section 1, the frequency range 0ponp20Hz is of interest since
mechanical vibrations are located in this frequency bandwidth. Fig. 21 shows that the mounts
related to points 3 and 5 have a higher acceleration frequency response at the working frequency
range which confirm the prediction of Fig. 20. This characteristic can be termed ‘‘overoptimal.’’
The points below the optimal curve in the plane are termed ‘‘underoptimal,’’ because they show
less acceleration RMS compared to optimal points with the same relative displacement RMS.
Figs. 22 and 23 illustrate that point 3 has an unacceptable peak value of displacement. Suspension
5 has a high displacement at high frequencies. Even though that the acceleration frequency
response related to point 2 is less than the other points at low frequency, it has the steepest
gradient and has a higher level of acceleration at high frequency. The same situation occurs in the
relative displacement frequency response. This phenomenon comes from the high damping ratio
in system number 2. In other words, point 2 shows a lazy system, and it is apparent in Fig. 24
when comparing the time response of the relative displacement to a unit step input.
Point 4 has a lower acceleration RMS than point 1, and it seems that it has a better behavior

than the optimal point 1. To show that point 1 is optimal, we may disturb the trial points 1
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Fig. 20. Five mounts in RMSð .xÞ–RMSðxrÞ plane.

Table 1

Numerical values of dynamical parameters for five different suspensions shown in Figs. 19 and 20

R Z fn x

Point 1 5945 1.02967 10 0.38

Point 2 6252 0.6870 10 0.7

Point 3 10447 2.6225 10 0.06

Point 4 4267 1.0550 8 0.38

Point 5 7701 0.9853 12 0.38

R. Alkhatib et al. / Journal of Sound and Vibration 275 (2004) 665–691 685



through 5 by changing their position in Fig. 20, horizontally, and compare the behavior of new
trial points 10 through 50 (see Fig. 25). Point 1 is more resistant to change in mount characteristics.
The value of x and on for new trial points are indicated in Table 2.
The acceleration frequency response of the system of perturbed and unperturbed trial points

are shown in Fig. 26. Point 1 has the least sensitivity to a change of relative displacement
constrain. This perturbation is typical in the real world due to aging and changing of working
conditions.
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Fig. 21. Linear mount absolute acceleration frequency response a, comparison of five suspensions.

Fig. 22. Linear mount relative displacement frequency response l; comparison of five suspensions.
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7. Conclusions

Mathematically, the performance index and the definition of the cost function has a central role
in the result of an optimal design of a system. Although there is no universally accepted cost
function for the isolation of mechanical vibration systems even for a simple linear base excited
1-DOF vibration isolator, the main parameters included in most cost functions are known.
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Fig. 23. Linear mount absolute displacement frequency response g; comparison of five suspensions.

Fig. 24. Relative displacement time response of the linear mount to a unit step input, comparison of five suspensions.
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In this paper a novel optimization method based on the RMS of the acceleration and relative
displacement is defined. Furthermore, the GA is used to apply the optimization conditions. The
result demonstrates that there is an optimal relation between the natural frequency and damping
ratio. The optimal natural frequency and damping ratio values of the mount, and quarter car lie
on a curve connecting the minimum of the RMS absolute acceleration with respect to the RMS
relative displacement. This optimum curve demonstrates that the optimal values do not lie on the
boundaries of constraints.
In order to analyze the behavior of the optimal system, a comparison of a point on the line of

minima with four off line suspensions is analyzed. It is shown that the frequency response of the
system with optimal parameters depicted by the line of minima is better than the off optimal
values.
The analysis illustrate that at optimum conditions, an increase in natural frequency should be

followed with an increase in damping ratio. This phenomenon is relatively linear for the quarter
car, but it is completely different for a mount suspension. In this case the rate of increasing natural
frequency at low damping is much more than the rate at high frequency. Hence, adding a
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Fig. 25. Perturbed trial points for linear mount in RMSð .xÞ–RMSðxrÞ plane.

Table 2

Numerical values of dynamical parameters for five different perturbed suspensions shown in Fig. 25

R Z fn x

Point 10 5945 1.10967 10 0.34

Point 20 6252 0.7670 10.1 0.59

Point 30 10447 2.7025 9.4 0.05

Point 40 4267 1.1350 8.2 0.34

Point 50 7701 1.0653 11.7 0.33
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mechanical filter to isolate the suspended mass of a linear mount, moderate the rate of changing
natural frequency and damping ratio. It should be a good idea to add another mechanical filter
and apply the method to a 3-DOF to find the effect of increasing the number of filters.

Appendix A. Nomenclature

A;B;C coefficients of a parabola
g general function
i ¼

ffiffiffiffiffiffiffi
�1

p
imaginary unit

J cost function
t time
r ¼ o=os excitation frequency ratio
u ¼ r2a2m sprung mass absolute acceleration
U sprung mass amplitude acceleration RMS
v ¼ r2a2t unsprung mass absolute acceleration
X amplitude of displacement
y base displacement co-ordinate
Y amplitude of base displacement excitation
a ¼ .X=Y

�� �� absolute acceleration transmissibility of mount
R acceleration RMS of mount
Z absolute acceleration RMS of mount
e infinitesimal increment
a ¼ os=ou natural frequency ratio
e ¼ ms=mu mass ratio
m ¼ Xs=Y sprung mass transmissibility
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Fig. 26. Linear mount absolute acceleration frequency response a, comparison of 10 suspensions.
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Z ¼ ðXs � XuÞ=Y sprung mass relative displacement transmissibility
t ¼ Xu=Y unsprung mass transmissibility

x ¼
cs

2osms

damping ratio
F relative displacement RMS
ou ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ku=mu

p
unsprung mass natural frequency

os ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ks=ms

p
sprung mass natural frequency

Y amplitude of harmonic excitation (m)
x absolute displacement of m (m)
xr relative displacement of m (m)
x damping ratio
o excitation frequency
on natural frequency in (rad/s)
fn natural frequency in (Hz)

Subscript
m minimum
s sprung
u unsprung
i a picked point with smaller damping than point j
j random picked point
k a picked point with greater damping than point j
c critical
g given
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