
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 275 (2004) 953–971

An inverse method for the estimation of input forces acting on
non-linear structural systems

Chih-Kao Maa,*, Chih-Chergn Hob

aDepartment of Naval Architecture and Marine Engineering, Chung-Cheng Institute of Technology,

Ta-Hsi Taoyuan 33509, Taiwan, ROC
bDepartment of System Engineering, Chung-Cheng Institute of Technology, Ta-Hsi Taoyuan 33509, Taiwan, ROC

Received 24 January 2003; accepted 26 June 2003

Abstract

This study proposes an inverse method to identify input forces of non-linear structural systems. The method
is an extension of the previous work that is limited to linear structural systems. The present estimation method
is composed of the extended Kalman filter and a recursive least-squares estimator. By using the inverse method,
input forces acting on non-linear structural systems can be estimated from measured dynamic responses. In this
work, numerical simulations of input forces estimation of non-linear lumped-mass systems are performed to
verify the practicality and accuracy of the proposed algorithm. The simulation results demonstrate that the
application of the input force estimation method to non-linear structural systems is successful.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For the analysis and design of structural systems, the estimation of real input loads is a very
important and necessary task. By way of determining the dynamic loads, many problems such as
the strength, fatigue and reliability of structures can be evaluated adequately. However, for some
physical systems, direct measurements of excitation forces are difficult to be realized because of
very large magnitudes of forces or installation problems of force transducers. Therefore, it is
necessary to find alternate methods to estimate input forces. One of the methods is to identify the
input forces from measured dynamic responses by an inverse method.
The inverse estimation method is in fact a force identification, which is a process of determining

applied loads from dynamic responses of structures. Stevens [1] presented an overview of the force
identification process for the case of linear vibration systems, and classified them into
discrete systems and continuous systems. .Ory et al. [2] used the William’s method with a time
integration scheme to identify shock loadings. Doyle [3–7] used the frequency domain method to
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obtain the time histories of forces from the experimentally measured responses (strains, velocities,
etc.). Inoue et al. [8,9] adopted a least-squares method based on singular value decomposition to
improve the estimation accuracy of the deconvolution method. A method to minimize the mean
square error of the estimation was also presented by them. Wang and Kreitinger [10] employed a
direct approach, called the sum of weighted acceleration technique (SWAT), to identify the
unknown forces. The SWAT method used the product of measured accelerations and effective or
optimal weights to estimate the input forces. Recently, Huang [11] applied the conjugate gradient
method (CGM), which is an iterative regularization method, to estimate the external forces of a
lumped-mass system with time-dependent parameters.
Take a comprehensive review of the above references, the estimation algorithms are all in batch

forms and most of the applications are limited to linear structural systems. However, the non-
linearity always exists in real structural systems. For real mechanical or structural systems, the
non-linearity appears in various types and is stronger with the increasing response amplitude. In
addition, estimating the parameters on-line is necessary to obtain real-time results. Hence, the
object of this study is to develop an on-line inverse method, which is capable of identifying input
forces for non-linear structural systems. The method is an extension of the input forces estimation
method developed in the previous study [12].
This paper first briefly reviews the fundamental equations of lumped-mass structural systems.

An on-line extended inverse method of estimating the input forces is then developed. The inverse
method comprises the EKF and the RLSE. The accuracy of the proposed method is verified by
numerical simulations of input forces estimation of non-linear lumped-mass systems. The direct
dynamic responses of structural systems are obtained by Newmark’s b method. The proposed
algorithm then uses the responses to estimate the corresponding input forces. From the
comparisons between the estimated and exact input forces, we can conclude that the proposed
algorithm applied successfully in input forces estimation of non-linear structural systems.

2. Fundamental equations

2.1. Equations of motion

For an n degree-of-freedom (d.o.f.) lumped-mass structural system, as shown in Fig. 1, the
equations of motion can be written as follows:

M .YðtÞ þ C ’YðtÞ þ KðtÞY ðtÞ ¼ FðtÞ; ð1Þ

where M denotes the n� n mass matrix, C the n � n damping matrix, K the n � n stiffness matrix,
FðtÞ the n � 1 input force vector, and .Y; ’Y; Y the n � 1 vectors of acceleration, velocity and
displacement, respectively; and

M ¼

m1 0 0 ? 0

0 m2 0 ? 0

0 0 m3 ? 0

^ ^ ^ & ^

0 0 0 ? mn

2
6666664

3
7777775

n�n

;
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.Y ¼

.y1

.y2

^

.yn

2
6664

3
7775

n�1

; ’Y ¼

’y1

’y2

^

’yn

2
6664

3
7775

n�1

; Y ¼

y1

y2

^

yn

2
6664

3
7775

n�1

; F ¼

F1

F2

^

Fn

2
6664

3
7775

n�1

:

For linear systems, the viscous damping and spring forces are assumed proportional to velocity
and displacement, respectively. However, for non-linear systems, the damping or spring forces are
usually expressed as functions of displacements and velocities with higher orders. Hence, elements
of the matrices C and K will no longer be constants for non-linear systems. The relationships
between the resistive forces of spring or damper and the displacements or velocities may be
specified through the force-state mapping technique [13].
Assuming that the spring force and damping force can be approximated by analytic

functions of the relative displacement and relative velocity, respectively, we then expand the
functions in power series forms with respect to these parameters. For a relatively small motion,
the higher order terms of the power series can be neglected. In this work, we assume that
the resistive forces of the spring and damper are functions of the linear and cubic terms
of displacements and velocities, respectively. It means the spring force Fs and damping force Fd

can be written as

Fs ¼ keþ k0e3; ð2Þ

Fd ¼ c’eþ c0’e3; ð3Þ

where k; k0; c and c0 are constants, e and ’e denote the relative displacement and velocity between
two adjacent lumped masses, respectively. The stiffness matrix K and the damping matrix C of a
non-linear lumped-mass system can be presented as follows:
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Fig. 1. A non-linear MDOF spring–mass–damper system.
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2.2. Direct analysis of dynamic responses

The Newmark’s bmethod is used to predict the responses of non-linear lumped-mass structures
acting by dynamic loadings. Considering the simplicity and efficiency, we adopt the constant
average acceleration method (i.e., b ¼ 1

4
). The method is a forward integration in time domain and

unconditionally stable. In terms of the incremental equations of motion, the responses can be
computed step by step as follows [14]:

KD ¼ KðY ðtÞ; ’YðtÞÞ þ
2

Dt
CðY ðtÞ; ’YðtÞÞ þ

4

Dt2
M; ð4Þ

FD ¼ DF þ 2CðY ðtÞ; ’YðtÞÞ þ M
4

Dt
’YðtÞ þ M2 .YðtÞ; ð5Þ

DY ¼ K�1
D FD; ð6Þ

Y ðt þ DtÞ ¼ Y ðtÞ þ DY ; ð7Þ

’Yðt þ DtÞ ¼
2

Dt
DY � ’YðtÞ; ð8Þ

.Yðt þ DtÞ ¼
4

Dt2
DY �

4

Dt
’YðtÞ � .Yðt þ DtÞ; ð9Þ

where KD; FD; DF ; DY ; Dt are dynamic stiffness matrix, equivalent dynamic load matrix,
incremental force matrix, incremental displacement matrix and incremental time, respectively. In
the present study, the sum of the calculated dynamic response and a pseudo-white noise is used to
simulate the really measured response and investigate the influence of the measurement noise on
input forces estimation.

3. Inverse analysis of input forces

3.1. Application of the extended Kalman filter (EKF)

The EKF, whose essential idea was proposed by Schmidt, is a form of the Kalman filter [15]
‘‘extended’’ to non-linear dynamic systems [16]. For a non-linear model, the EKF linearizes the
model around the current state, and applies the Kalman filter to the resulting time varying linear
model. It is a robust modelling approach under the existence of noise. In fact, the EKF technique
has been widely used in many fields of science and engineering [17,18].
To estimate the states of non-linear systems through the EKF, we first transform the equations

of motion into the state equations. The transformation can be achieved by selecting the state
vector X ðtÞ ¼ ½Y ðtÞ; ’YðtÞ	T: According to Eq. (1), the continuous-time state and measurement
equations can be written as

’XðtÞ ¼ AðtÞX ðtÞ þ BF ðtÞ ¼ f ðX ;F Þ; ð10Þ

ZðtÞ ¼ HX ðtÞ ¼ hðX Þ; ð11Þ
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where

AðtÞ ¼
0n�n In�n

�M�1KðY Þ �M�1Cð ’YÞ

" #
; B ¼

0n�n

M�1

" #
;

H ¼ ½ In�n 0n�n 	;

X ðtÞ ¼ x1ðtÞ x2ðtÞ ? x2n�1ðtÞ x2nðtÞ
	 
T

;

FðtÞ ¼ ½F1ðtÞ F2ðtÞ ? Fn�1ðtÞ FnðtÞ 	T:

Here, Eqs. (10) and (11) are linearized around the nominal state X�ðtÞ and nominal input F�ðtÞ;
which are obtained in terms of the EKF predictor equation. Then, the linearized equations are
discretized over time intervals of length DT : Considering the uncertainties and disturbances in the
real physical world, the input process and measurement noises are added into the linearized state
and measurement equations, respectively. The discrete-time form of the linearized state and
measurement equations are shown as follows:

X ðk þ 1Þ ¼ FX ðkÞ þ GðF ðkÞ þ wðkÞÞ; ð12Þ

Zðk þ 1Þ ¼ HX ðk þ 1Þ þ vðk þ 1Þ; ð13Þ

F ¼ I þ
@f ðX�ðkÞ;F�ðkÞÞ

@X
DT ;

G ¼
@f ðX�ðkÞ;F�ðkÞÞ

@F
DT ;

H ¼
@hðX�ðkÞ;F�ðkÞÞ

@X
DT ;

FðkÞ ¼ ½F1ðkÞ F2ðkÞ ? Fn�1ðkÞ FnðkÞ 	;

ZðkÞ ¼ ½ z1ðkÞ z2ðkÞ ? zn�1ðkÞ znðkÞ 	;

wðkÞ ¼ ½w1ðkÞ w2ðkÞ ? wn�1ðkÞ wnðkÞ 	;

vðk þ 1Þ ¼ ½ v1ðk þ 1Þ v2ðk þ 1Þ ? vn�1ðk þ 1Þ vnðk þ 1Þ 	;

where X ðkÞ is the state vector, F ðkÞ the sequence of deterministic input, DT the sampling time
interval, ZðkÞ the observation vector. The process noise vector wðkÞ is assumed to be zero mean
and white with variance EfwðkÞwðjÞTg ¼ Qdkj : Here, dkj is the Kronecker delta. The measurement
noise vector vðkÞ is also assumed to be zero mean and white. The variance of vðkÞ is given by
EfvðkÞvðjÞTg ¼ Rdkj : Here, R ¼ s2 and s represents the standard deviation of the measurement
noise. The matrices F; G; and H are the Jacobians with respect to the state vector or the input
force vector, evaluated in the estimated values.
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3.2. The recursive input estimation approach

In the previous section, the discrete-time state equations of a non-linear MDOF lumped-mass
system excited by dynamic loads have been derived. The magnitudes of the unknown input loads
can be estimated by an inverse method from the noisy measurements of the system responses. For
non-linear structural systems, the inverse method consists of two parts; one is the EKF with no
input terms and the other is a recursive least-squares estimator.The equations of the EKF are

%Xðk=k � 1Þ ¼ %Xðk � 1=k � 1Þ þ
Z t¼kDT

t¼ðK�1ÞDT

f ð %Xðk � 1=k � 1Þ; k � 1Þ dt; ð14Þ

F ¼ I þ
@f ð %Xðk � 1=k � 1Þ; k � 1Þ

@X
DT ; ð15Þ

G ¼
@f ð %Xðk � 1=k � 1Þ; k � 1Þ

@F
DT ; ð16Þ

H ¼
@hð %Xðk=k � 1Þ; k � 1Þ

@X
DT ; ð17Þ

Pðk=k � 1Þ ¼ FPðk � 1=k � 1ÞFT þ GQGT; ð18Þ

%ZðkÞ ¼ ZðkÞ � HF %Xðk � 1=k � 1Þ; ð19Þ

SðkÞ ¼ HPðk=k � 1ÞHT þ R; ð20Þ

KaðkÞ ¼ Pðk=k � 1ÞHTS�1ðkÞ; ð21Þ

Pðk=kÞ ¼ ½I � KaðkÞH	Pðk=k � 1Þ; ð22Þ

%Xðk=kÞ ¼ F %Xðk=k � 1Þ þ KaðkÞ %ZðkÞ: ð23Þ

The equations of the recursive least-squares estimator are

BsðkÞ ¼ H½FMsðk � 1Þ þ I 	G; ð24Þ

MsðkÞ ¼ ½I � KaðkÞH	½FMsðk � 1Þ þ I 	; ð25Þ

KbðkÞ ¼ g�1ðkÞPbðkÞBT
s ðkÞ½g

�1ðkÞBsðkÞPbðk � 1ÞBT
s ðkÞ þ SðkÞ	�1; ð26Þ

PbðkÞ ¼ g�1ðkÞ½I � KbðkÞBsðkÞ	Pbðk � 1Þ; ð27Þ

#FðkÞ ¼ #Fðk � 1Þ þ KbðkÞ½ %ZðkÞ � BsðkÞ #Fðk � 1Þ	; ð28Þ
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where P is the filter’s error covariance matrix, SðkÞ the innovation covariance, KaðkÞ Kalman
gain,BsðkÞ and MsðkÞ the sensitivity matrices, %ZðkÞ the innovation, KbðkÞ the correction gain for
updating #FðkÞ; PbðkÞ the error covariance of the estimated input vector, and #FðkÞ the estimated
input vector. The fading factor gðkÞ is employed to compromise between the fast tracking
capability and the loss of estimate accuracy. In this study, the adaptive weighting method
developed in Tuan and Hou [19] is used to select a suitable gðkÞ: That is

gðkÞ ¼
1; %ZðkÞ

�� ��ps;
s
%ZðkÞ

�� ��; %ZðkÞ
�� �� > s:

8<
: ð29Þ

Thus, the computational procedure for the estimation of input forces acting on non-linear
lumped-mass systems is summarized as follows:

Step 1: Derive the system equations of motion (Eq. (1)) and obtain the simulated responses ZðkÞ
by Newmark’s b method, i.e., Eqs. (4)–(9).

Step 2: Use the EKF prediction equation (Eq. (14)) and linearization equations (Eqs. (15)–(17))
to obtain the instant system matrices F; G and H:

Step 3: Use the rest of the EKF equations, i.e., Eqs. (18)–(22), to generate the innovation
covariance SðkÞ; innovation %ZðkÞ; and Kalman gain KaðkÞ:

Step 4: Use the EKF correction equation, i.e., Eq. (23), to obtain the estimated state vector
%Xðk=kÞ which is used as the nominal state for the next time step.

Step 5: Use the recursive least-squares estimator, i.e., Eqs. (24)–(28), to compute the unknown
input forces #FðkÞ:

4. Numerical simulations and discussion

To verify the practicability and accuracy of the proposed approach, numerical simulations are
performed on non-linear lumped-mass systems. For simplicity, the spring and damping forces are
taken the forms shown in Eqs. (2) and (3), respectively. The system responses are obtained by
Newmark’s b ¼ 1

4
method with the considerations of process and measurement noises. Then, the

simulated responses are loaded into the proposed inverse algorithm to estimate the corresponding
input forces. The initial conditions of the error covariances are given as Pð�1=� 1Þ ¼ 1010 � In�n

for the EKF and Pbð�1=� 1Þ ¼ 108 � In�n for the recursive least-squares estimator.
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4.1. Numerical simulation example 1

A non-linear single d.o.f. lumped-mass system, as shown in Fig. 2, is considered. The input
force with triangular, rectangular, half-sine impulses and mixed configurations is given as

F ðtÞ ¼

0 ðNÞ; 0ptp0:015 ðsÞ;

5� 107 � ð0:02� tÞ ðNÞ; 0:015otp0:02 ðsÞ;

0 ðNÞ; 0:02otp0:025 ðsÞ;

2:5� 105 ðNÞ; 0:025otp0:03 ðsÞ;

0 ðNÞ; 0:03otp0:035 ðsÞ;

2:5� 105 � sinðp
5
ðt � 0:035ÞÞ ðNÞ; 0:035otp0:04 ðsÞ;

0 ðNÞ; 0:04otp0:045 ðsÞ;

2:5� 105 � sinðp5ðt � 0:045ÞÞ ðNÞ; 0:045otp0:0475 ðsÞ;

1:25� 105 ðNÞ; 0:0475otp0:05 ðsÞ;

0 ðNÞ; 0:05otp0:055 ðsÞ;

2:5� 105 � sinðp
5
ðt � 0:055ÞÞ ðNÞ; 0:055otp0:075 ðsÞ;

0 ðNÞ; 0:075otp0:08 ðsÞ:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

The simulation conditions and the system parameters are given as the following: null initial
conditions, m ¼ 0:5 kg, c ¼ 3N sm�1, k ¼ 12Nm�1, k0 ¼ 60Nm�1, sampling time interval DT ¼
1� 10�5 s; covariance of process noise Q ¼ Qw � I1�1; Qw ¼ 1� 10�6; covariance of measure-
ment noise R ¼ s2 � I1�1; s ¼ 1� 10�6 (see Fig. 3). Fig. 4 depicts the time history of the
displacement of the SDOF non-linear system. The noise is about 2% of the displacement. The
time histories of the estimated and exact input forces are shown in Fig. 5. The overall relative
error Ero is used to quantify the deviation between the estimated and exact input forces. The Ero is
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defined as

Ero ¼

PN
k¼1 FðkÞ � #FðkÞ

�� ��PN
k¼1 F ðkÞj j

; ð30Þ

where F ðkÞ and #FðkÞ designate the exact and estimated forces at time tk; respectively, and N is the
sampling number. In order to measure the maximum overshoot or undershoot of local maximum
amplitudes of the estimated input forces, another kind of relative error, denoted as Erm; is defined as

Erm ¼
max F ðlÞ � #FðlÞ

�� ��
FðlÞj j

; ð31Þ

where F ðlÞ and #FðlÞ represent the local maximum amplitudes of the exact and estimated input
forces, respectively. The above two kinds of relative errors are both used as the performance
evaluations in the numerical experiments. For the non-linear SDOF lumped-mass system, the Ero

of the estimated input force is within 2.53% and the Erm of the estimated maximum amplitude is
within 3.73%.
In order to investigate the influences of the process and measurement noises, we first change the

measurement noise from s ¼ 10�6 to 10�5 and keep the value of Qw invariant. The estimation result
is displayed in Fig. 6. Due to the large measurement noise covariance, the errors Ero and Erm of the
estimated input forces increase to 6.61% and 5.14%, respectively. Next, the process noise is
enlarged from Qw ¼ 10�6 to 10�4 with fixed measurement noise. The estimation result of the input
force is shown in Fig. 7. It is obvious that the fluctuation of the time history of the estimated input
force is increased. Finally, Fig. 8 depicts the estimation results with Qw ¼ 10�4 and s ¼ 10�5: The
relative errors of the estimation result with different Qw and s values are summarized in Table 1.
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4.2. Numerical simulation example 2

In the second example, the previous SDOF non-linear system is still considered. However, the
non-linear spring constant k0 is increased to 1200Nm�1. The simulation conditions, system
parameters and the input force are same as example1. Fig. 9 displays the time history of the
simulated displacement of the SDOF non-linear system. The noise is about 10% of the
displacement. Fig. 10 shows the time histories of the exact and estimated input forces. The relative
errors of the estimated input force are also listed in Table 1.

4.3. Numerical simulation example 3

In the last example, a non-linear 3-d.o.f. lumped-mass system, as shown in Fig. 3, is used to
verify the proposed inverse method. The parameter values of the 3-d.o.f. system are:

m1 ¼ 40; m2 ¼ 200; and m3 ¼ 300 ðkgÞ;

c1 ¼ 2:5; c2 ¼ 0:4; and c3 ¼ 3:6 ðN sm�1Þ;
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Table 1

Relative errors of the estimated input force of the non-linear SDOF lumped-mass system

k0 s (R ¼ s2) Qw Relative error (Erm) (%) Relative error (Ero) (%)

60Nm�1 10�6 10�6 3.73 2.53

60Nm�1 10�5 10�6 5.14 6.61

60Nm�1 10�6 10�4 11.45 7.43

60Nm�1 10�5 10�4 12.13 8.41

1200Nm�1 10�6 10�6 3.81 2.83
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Fig. 9. Time history of the simulated displacement of the non-linear SDOF lumped-mass system (k0 ¼ 1200Nm�1;

s ¼ 10�6; Q ¼ 10�6).
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c01 ¼ 250; c02 ¼ 40; and c03 ¼ 360 ðN sm�1Þ;

k1 ¼ 3� 105; k2 ¼ 8� 104; and k3 ¼ 8� 105 ðNm�1Þ;

k0
1 ¼ 6� 107; k0

2 ¼ 1:6� 107; and k0
3 ¼ 1:6� 108 ðNm�1Þ:

The simulation conditions are taken as: null initial conditions, sampling interval DT ¼ 5� 10�5 s;
covariance of process noise Q ¼ Qw � I3�3; Qw ¼ 1� 10�8; and covariance of measurement noise
R ¼ s2 � I3�3; s ¼ 1� 10�8: In this numerical experiment, three input forces, i.e. F1; F2 and F3;
are assumed to act on mass 1, mass 2 and mass 3, respectively. The three input forces are assumed
as

F1ðtÞ ¼

0 ðNÞ; 0ptp0:015 ðsÞ;

2:5� 105 ðNÞ; 0:015otp0:02 ðsÞ;

0 ðNÞ; 0:02otp0:08 ðsÞ;

8><
>:

F2ðtÞ ¼
0 ðNÞ; 0ptp0:025 ðsÞ;

2:5� 105 � sinðp
5
ðt � 0:025ÞÞ ðNÞ; 0:025otp0:08 ðsÞ;

(
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Fig. 10. Time histories of the estimated and exact input forces of the non-linear SDOF lumped-mass system

(k0 ¼ 1200Nm�1; s ¼ 10�6; Q ¼ 10�6).
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F3ðtÞ ¼

0 ðNÞ; 0ptp0:015 ðsÞ;

5� 107 � ð0:02� tÞ ðNÞ; 0:015otp0:02 ðsÞ;

0 ðNÞ; 0:02otp0:025 ðsÞ;

2:5� 105 ðNÞ; 0:025otp0:03 ðsÞ;

0 ðNÞ; 0:03otp0:035 ðsÞ;

2:5� 105 � sinðp
5
ðt � 0:035ÞÞ ðNÞ; 0:035otp0:04 ðsÞ;

0 ðNÞ; 0:04otp0:045 ðsÞ;

2:5� 105 � sinðp
5
ðt � 0:045ÞÞ ðNÞ; 0:045otp0:0475 ðsÞ;

1:25� 105 ðNÞ; 0:0475otp0:05 ðsÞ;

0 ðNÞ; 0:05otp0:055 ðsÞ;

2:5� 105 � sinðp5 ðt � 0:055ÞÞ ðNÞ; 0:055otp0:065 ðsÞ;

0 ðNÞ; 0:065otp0:08 ðsÞ:

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Fig. 11 shows the time histories of the exact and estimated input forces. Table 2 displays the
relative errors of the maximum amplitude and the overall relative errors of the three estimated
input forces. Next, we tune the values of the process noise covariance Q to improve the accuracy
of the estimation results. The diagonal elements of the matrix Q are taken as: Qð1; 1Þ ¼ 1� 10�8;
Qð2; 2Þ ¼ 20� 10�8; Qð3; 3Þ ¼ 50� 10�8: The time histories of the exact and estimated input
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Fig. 11. Time histories of the estimated and exact input forces of the non-linear 3-d.o.f. lumped-mass system (s ¼ 10�8;
Qð1; 1Þ ¼ 10�8; Qð2; 2Þ ¼ 10�8; Qð3; 3Þ ¼ 10�8).
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forces are depicted in Fig. 12. The relative errors Ero and Erm of the estimated input forces are
summarized in Table 2.

4.4. Discussion

(1) As illustrated in Figs. 5–8 and Figs. 10–12, the estimated input forces converge to their actual
values in only few time steps. This is due to the employments of rather large values of error
covariances Pð�1=� 1Þ and Pbð�1Þ such that the errors of initial estimations can be corrected
rapidly.

(2) From the results in Table 1, we can find that variations of Q and R will have large effects on the
relative errors Ero and Erm: In general, large measurement and process noises will both degrade
the estimation performance of the proposed algorithm. However, the present inverse method
still has a good tracking capability to identify input forces of non-linear lumped-mass systems.
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Fig. 12. Time histories of the estimated and exact input forces of the non-linear 3-d.o.f. lumped-mass system (s ¼ 10�8;
Qð1; 1Þ ¼ 1� 10�8; Qð2; 2Þ ¼ 20� 10�8; Qð3; 3Þ ¼ 50� 10�8).

Table 2

Relative errors of the estimated input forces of the non-linear 3d.o.f. lumped-mass system

s Q Relative error (Erm) (%) Relative error (Ero) (%)

Qð1; 1Þ Qð2; 2Þ Qð3; 3Þ F1 F2 F3 F1 F2 F3

1� 10�8 1� 10�8 1� 10�8 1� 10�8 6.31 0.11 4.76 3.26 9.93 14.14

1� 10�8 1� 10�8 20� 10�8 50� 10�8 6.29 0.33 6.42 3.25 3.35 5.27
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(3) In Figs. 6 and 7, the estimation results are different from each other because of the selections
of different Q and R values. Evidently, the estimation result of the input force in Fig. 7 is
worse than the result in Fig. 6. However, the difference between the two overall relative errors
Ero is small, as indicated in Table 1. On the other hand, the difference between the two errors
Erm is large. This demonstrates that the consideration of the two kinds of relative errors (Erm

and Ero) is more adequate for the evaluation of the estimation performance.
(4) The errors Ero and Erm in example 2 are larger than those in example 1, as indicated in Fig. 5,

Fig. 10 and Table 1. The cause is that the stronger non-linearity will induce large linearization
errors. The estimation result in example 2 shows that the present inverse method can estimate
input forces acting on structural systems with very strong non-linearity.

(5) Commonly, the measurement noise covariance R can be specified on the precision of the
sensor. The process noise covariance Q is usually tuned to obtain better estimation results.
The proper values of Q are related to the system modelling error, which is difficult to know
prior to the estimation. The optimal tune parameters Q vary due to the dynamic characteristic
of each individual system. Hence, the diagonal elements of the covariance matrix Q should
not be the same for the system with different system parameters. In simulation example 3, we
tune the values of Q with a given value of R: In terms of adjusting the values of the diagonal
elements of the process noise covariance matrix Q; the accuracy of the estimation results can
be improved, as indicated in Figs. 11 and 12 and Table 2.

(6) Figs. 11 and 12 illustrate that the applicability of the present inverse method facilitates to
estimate the input forces of non-linear systems with multiple inputs and multiple outputs.
Moreover, even though the input forces estimation algorithm developed in this paper is only
applied to non-linear lumped-mass structural systems, it can readily be extended to other
types of non-linear structural systems.

5. Conclusions

An inverse method to estimate input forces of non-linear structural systems is presented. The
approach comprises two parts: the extended Kalman filter and a recursive least-squares estimator.
The estimation performance of the proposed method is evaluated through numerical experiments
of non-linear lumped-mass systems. The simulation results demonstrate that the present on-line
inverse method has been successfully applied to identify the excitation forces. The estimated input
forces are qualitatively and quantitatively good in all test cases as long as tuning parameters Q

and R are chosen adequately. The input force estimation algorithm for two or three-dimensional
non-linear structural systems is under development. Future work on this study will also include
the application of real-time vibration control of non-linear dynamic systems.

Appendix A. Nomenclature

A constant matrix
B constant matrix
Bs sensitivity matrices
C damping matrix
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F input force vector (the unknown inputs to be estimated)
H measurement matrix
I identity matrix
k time (discretized)
K stiffness matrix
Ka Kalman gain
kb correction gain
M mass matrix
Ms sensitivity matrices
P filter’s error covariance matrix
Pb error covariance matrix
Q process noise covariance matrix
Qw scalar of process noise covariance
R measurement noise covariance matrix
Rv measurement noise covariance
S innovation covariance
t time (continuous)
v measurement noise vector
w process noise vector
X state vector
Y displacement vector
’Y velocity vector
.Y acceleration vector

Z observation vector
g fading factor
G input matrix
d Kronecker delta
DT sampling time
Dt incremental time
s standard deviation
F state transition matrix
e relative displacement
’e relative displacement rate
y displacement
’y velocity
.y acceleration
m mass
k stiffness constant of the linear term
k0 stiffness constant of the non-linear (cubic) term
c damping constant of the linear term
c0 damping constant of the non-linear (cubic) term

Superscripts
4 estimated
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– estimated by filter
T transpose of matrix
� nominal

Subscripts
i; j indices
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