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Abstract

In this paper, a new asymmetric indirect Trefftz method (AITM) has been developed to solve free-
vibration problems. The proposed method is categorized into a regular type of boundary element methods
(BEMs) such that no singular or hypersingular integration is necessary. However, like other regular BEMs
the proposed approach encounters the numerical instability as the number of elements increases. To deal
with such an ill-posed behavior, Tikhonov’s regularization method in conjunction with the generalized
singular-value decomposition (GSVD) is adopted. It is proved that the degeneracy of the proposed indirect
Trefftz method has the same mathematical structure as the direct Trefftz method. Thus, no special effort
should be paid in programming. Besides, such an equivalency indicates that the current method does not
have spurious eigensolutions. Furthermore, the proposed approach can easily treat a multiply connected
domain of genus 1 as shown in Fig. 1. Due to its indirect nature, the present approach can also represent the
mode shapes within its own mathematical formulations. Several numerical examples are given to show the
validity of the proposed approach.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

For the solution of a free-vibration problem, many well-developed numerical techniques such
as the finite element method (FEM), finite difference method (FDM) and boundary element
method (BEM) can be adopted. The BEM requires discretization on boundary only so that it
needs less mess effort than the other two. The corresponding fundamental solution for the
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Helmholtz equation, which is often used to describe the free-vibration problem for a finite
domain, is the complex-valued Hankel function. It is then not surprising that a complex-valued
computation should be considered in solving the Helmholtz equation by the BEM [1]. To avoid
complex-valued computations, an augmented matrix is sometimes used which doubles the
dimension of the influencing matrix. In order to reduce the numerical effort involving complex-
valued computations, several incomplete BEM formulations have been proposed and we will give
a brief review of those in the following, to our best knowledge.
Historically speaking, the first incomplete BEM for solving the eigenproblem was presented by

De Mey [2]. He proposed a replacement of complex-valued fundamental solution by its
corresponding real part. This BEM formulation is also referred to as the real-part BEM later by
many researchers [3,4]. Hutchinson [5] pointed out that such a real-part formulation resulted in
spurious eigensolutions. To avoid complicated computations in the domain of a complex number,
Nowak and Brebbia [6], Kamiya and Andoh [7,8] developed the multiple reciprocity boundary
element method (MR/BEM) to deal with the eigenproblem in the real number domain.
Traditionally, the MR/BEM employed the fundamental solution of the Laplace operator as the
zeroth order fundamental solution and used the reciprocity theorem to exploit a series of higher
order fundamental solutions in the approximation of homogeneous terms. Chen and Wong [9]
discovered the existence of a spurious eigensolution in MR/BEM by providing an analytical
derivation for a one-dimensional problem. Later, Kamiya and Andoh [7] discovered the
equivalence of the MR/BEM and the real-part BEM. Yeih et al. [10] further explained that the
spurious eigensolution exists owing to only using the real-part kernels. Up to date, several
techniques have been proposed and developed to filter out the spurious eigensolutoins, e.g., the
singular-value decomposition (SVD) by Yeih et al. [11], the threshold method by Liou et al. [12],
the domain partition technique by Chang et al. [3], the GSVD by Kuo et al. [13], and adding
additional points outside the domain by Chen et al. [14]. In the above-mentioned approaches,
although the BEM formulations are incomplete the kernels used are still singular.
Another trend to deal with the Helmholtz eigenproblems is to use the regular BEM. Unlike the

singular type BEM, the regular BEM adopts non-singular kernels to construct the boundary
integral equations. The first regular BEM was originated by De Mey [2] to calculate eigenvalues of
the Helmholtz equation. He pointed out that one could replace the complex-valued fundamental
solution by its imaginary part, which is a regular solution. Besides, he also proposed another
source-free formulation, in which a solution satisfying the Helmholtz equation was adopted, as
the auxiliary system. However, he could not reach the correct answer by means of this regular
approach. From the mathematical point of view, no matter which regular formulations are used,
the same situation should be encountered. It is then very puzzling why De Mey [2] claimed that
one could obtain the solution using one regular formulation but have no definite result using
another kind of the regular formulations. Kim and Kang [15] used the wave-type base functions,
which are periodical along each element and propagating into the domain of interest, to construct
the needed equations. They pointed out that some incorrect answers would appear and explained
this phenomenon as due to incompleteness of base functions. Later, Kang et al. [16] proposed
another regular formulation using the so-called non-dimensional dynamic influence functions.
Simply speaking, their method took the response at any point inside the domain of interest as a
linear combination of influences from all boundary source points. In fact, the wave-type base
functions and the non-dimensional dynamic influence functions are the non-singular part of the
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complex fundamental solution of the Helmholtz equation and more specifically, called the general
solution or the imaginary part of the fundamental solution. For the non-singular general solution
as the radial basis function (RBF) and its usage, Chen [17], Chen and Tanaka [18] proposed the
boundary particular method (BPM) and the boundary knot method (BKM), respectively. The
BKM and the BPM use the general solution in conjunction respectively with the dual reciprocity
principle and the multiple reciprocity principle. Both methods are mesh free boundary techniques
and have been applied to the Helmholtz problems. Sound and convincing demonstrated results
show that both of them, unlike the Kang and Kim’s method [15], can handle inhomogeneous
problems successfully. In addition, the BKM has a symmetric formulation for the Helmholtz
problem [19]. Thus, the non-singular general solution formulation is not necessarily asymmetric.
The symmetric BKM scheme will be useful in the efficient solution of the Helmholtz eigenvalue
problems.
Recently, an important work on the regular BEM proposed by Kuo et al. [13] revealed several

important issues for the incomplete BEMs, including both of the regular type and singular ones.
The first is that the spurious eigensolution existing in the boundary integral equation is similar to
the concept of an indefinite form of zero divided by zero. The second is that the regular BEM
encounters the numerical instability when the number of elements increases. Meanwhile, a
combined use of the Tikhonv’s regularization method and the GSVD was also proposed
to deal with the spurious eigensolutions and numerical instability at the same time. In their work,
the two kinds of the regular formulations, the imaginary-part dual BEM and the plane wave
method, were used. However, their methods encounter difficulties in dealing with a multiply
connected domain of genus 1 and they cannot represent field quantities within their own
mathematical structure.
Another candidate for the regular BEM is the Trefftz method. The Trefftz method can be

viewed as an eigenfunction approach for the solution of the partial differential equations. For a
specific problem, the so-called T-complete functions can be constructed based on its geometry and
operator. By using the reciprocity theorem or the generalized weight residual method, a boundary
type integral equation can be constructed either in the direct manner or indirect one. The Trefftz
method has been adopted to solve many problems, such as the plane elasticity problem by Jin et al.
[20], the Kirchhoff plate bending problem by Jin et al. [21], and the acoustic problem by Harari
et al. [22]. In addition, two important review articles addressing on the Trefftz method [23] and
various formulations with available boundary-type solution procedures [24] can be found. For the
Helmholtz operator, Cheung et al. [25], Huang and Shaw [26] used the Trefftz method to solve the
radiation problems. However, to our best knowledge, few attempts [27–29] addressed the use of
the Trefftz method to deal with the free-vibration problems of a finite domain. This may arise
from its numerical instability nature.
Following with our previous studies [28,29], the main goal of this paper is to construct the

AITM to solve the free-vibration problem. In particular, we wish to develop a regular BEM that
can represent field quantities and deal with a multiply connected domain of genus 1. It is found
that the AITM has the same mathematical structure as the direct one does; therefore, there exists
no spurious eigenvalue but only numerical instability in this proposed approach. A combined use
of Tikhonov’s regularization method and the GSVD is adopted to treat inherent numerical
instability. Five numerical examples including two benchmark examples originally designed for
the direct Trefftz method [28] are provided to show the validity of our proposed approach.
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2. Mathematical backgrounds

2.1. Direct Trefftz formulation

Consider a finite domain as shown in Fig. 1, the governing equation, i.e., the Helmholtz
equation, for a free-vibration problem is written as

ðr2 þ k2ÞuðxÞ ¼ 0; xAO; ð1Þ

where r2 is the Laplace operator, k is the wave number, and uðxÞ is the physical quantity at x:
The direct Trefftz formulation is constructed as follows [28]. Let W ðxÞ be a field satisfying the

Helmholtz equation

ðr2 þ k2ÞW ðxÞ ¼ 0; xAO ð2Þ

then by the reciprocity theorem one can haveZ
G

W ðxÞ
@uðxÞ
@n

dGðxÞ ¼
Z
G

uðxÞ
@W ðxÞ
@n

dGðxÞ; ð3Þ

where n is the out-normal direction at the boundary point x and G denotes the boundary. The
choice of W ðxÞ depends on the problem itself. A complete set of W ðxÞ; written as fWiðxÞg;
is chosen to give enough bases to represent physical quantities. This complete set is called the
T-complete function set, which provides the complete function bases to represent physical fields.
For example, a simply connected domain shown in Fig. 1(a) and having the origin located inside
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the interested domain, it is convenient to have the T-complete set as

fJ0ðkrÞ; JmðkrÞcosðmyÞ; JmðkrÞsinðmyÞg for m ¼ 1; 2; 3y; ð4Þ

in which Jm is the first kind Bessel function of mth order, r is the Euclidean distance from the
origin to a domain point, and y is the angle between the x-axis and the radial vector from the
origin to the domain point. For a multiply connected domain of genus 1 (i.e., with one hole) and
locating the origin inside the hole as shown in Fig. 1(b), the T-complete set is

fJ0ðkrÞ;Y0ðkrÞ; JmðkrÞcosðmyÞ; JmðkrÞsinðmyÞ;YmðkrÞcosðmyÞ;YmðkrÞsinðmyÞg

for m ¼ 1; 2; 3y; ð5Þ

where Ym is the second kind Bessel function of mth order.
For the Robin (radiation) boundary condition, a1u þ b1t ¼ 0 where tðxÞ � @uðxÞ=@n one can

assign

u ¼ b1c; t ¼ 	a1c ð6Þ

then substituting them into Eq. (3) yieldsZ
G

a1W ðxÞ þ b1
@W ðxÞ
@n

� �
cðxÞ dGðxÞ ¼ 0: ð7Þ

Changing the base functions, W ðxÞ; and adopting constant piecewise discretization for
boundary unknowns C can yield

fa1½ *U� þ b1½ *T�g½c� ¼ 0; ð8Þ

where the components of the matrices ½ *U� and ½ *T� are

*Uij �
Z
Gj

WiðxÞ dGðxÞ; ð9aÞ

*Tij �
Z
Gj

@WiðxÞ
@n

dGðxÞ; ð9bÞ

in which Gj is the jth element on the boundary and WiðxÞ is the ith base function.

2.2. No spurious eigensolution in the direct Trefftz method

It has been proven that there exists no spurious eigensolution in the direct Trefftz method [28].
For the readers’ convenience, we briefly introduce the proof strategy below. Consider the original
problem having boundary condition a1u þ b1t ¼ 0 on the boundary, and the corresponding
influencing matrix A1 is

A1 ¼ a1 *Uþ b1 *T: ð10aÞ

Let us pick another complementary problem with the boundary condition a2u þ b2t ¼ 0 on the

boundary such that det
a1 b1
a2 b2

����
����

����
����a0; the influencing matrix A2 for this complementary problem is

A2 ¼ a2 *Uþ b2 *T: ð10bÞ
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These two systems cannot have the same eigensolution. That is, at a specific wave number k; it
is impossible to have the same non-trivial boundary eigensolution CðxÞ for both systems [13].

Lemma 1. Given that the governing equation is a Helmholtz equation, ðr2 þ k2ÞuðxÞ ¼ 0; for a

domain O enclosed by the boundary G, and that the overspecified homogeneous boundary conditions
are uðxÞ ¼ 0 and tðxÞ ¼ 0 for x on a sub-boundary G1CG; there exists a unique solution, uðxÞ ¼ 0 for

xAO,G.

Definition 1. Two sets of boundary conditions, a1ðxÞuðxÞ þ b1ðxÞtðxÞ ¼ 0 and a2ðxÞuðxÞ þ
b2ðxÞtðxÞ ¼ 0; where a1ðxÞ; a2ðxÞ;b1ðxÞ and b2ðxÞ are given functions, are said to be homogeneous

linearly independent boundary conditions if and only if det
a1ðxÞ b1ðxÞ
a2ðxÞ b2ðxÞ

����
����

����
����a0 for any x on the

boundary.

Theorem 1. For the Helmholtz equation, given two systems having homogenous linear independent
boundary conditions on part of the boundary denoted as G1, it is impossible for both systems to have
the same eigensolution.

Theorem 1 supports the conclusion we mentioned above and also hints that if there exists an
‘eigensolution’ to make two systems with homogeneous linear independent boundary conditions,
degenerated at the same time, it must be a spurious eigensolution. Following this, we can have the
following theorem and its proof is given in Ref. [28].

Theorem 2. For the Helmholtz equation, with a boundary condition a1u þ b1t ¼ 0 the direct Trefftz
formulation A1ðkÞC ¼ 0 cannot have a spurious eignesolution.

The Trefftz method adopts non-singular base functions and can thus be categorized into the
regular BEM formulations. However, the regular formulation leads to the ill-posed behaviors as
the number of elements increase. Kuo et al. [13] pointed out the culprit and proposed a combined
use of Tikhonov’s regularization method and GSVD to fix it. In the following we simply introduce
their approach since we will use the same technique later on.

2.3. Techniques to treat numerical instability for a regular BEM

From Theorem 1, it can be seen that the spurious eigensolution will appear in two systems
having homogeneous linearly independent boundary conditions simultaneously. That is, we have
a system as ½A1�n�nCn�1 ¼ ½A2�n�nCn�1 ¼ 0: Since both problems can have common spurious
eigensolutions, we can intuitively decompose both matrices into the following form

PW1x ¼ PW2x ¼ 0; ð11Þ

where PW1 ¼ A1 and PW2 ¼ A2: Then the spurious eigenvalues will result in the rank
deficiency of matrix P and true eigenvalues will result in the rank deficiency of matrix W1 for
the original problem. When the spurious eigenvalues are encountered, basically we want to
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extract them out by finding matrix P: This concept is quite similar to perform a numerical
operation of L’Hospital rule on an indefinite 0/0 expression. The above-mentioned technique can
be achieved using the QR factorization, which is the first step of the generalized singular value
decomposition.
Now the serious problem we encounter for the regular BEM, is not spurious eigensolution but

numerical instability. To treat this, we need to add some small quantities into the matrices A1 and
A2 to make the numerically tiny singular values occurring in both matrices become ‘numerical
spurious eigenvalues’ such that the QR factorization can extract them. Let A1 and A2 have the
following singular value decompositions:

A1 ¼ PS1V�1 ; ð12aÞ

A2 ¼ PS2V�2 ; ð12bÞ

where Vi is the right unitary matrix of system i; superscript ‘�’ means take the transpose and
complex-conjugate of the matrix, and Si is a singular value matrix of system i with singular values
allocated in the diagonal line. When one of the singular values is numerically very small at a
specific wave number, it can be said that the system degenerates, i.e., that the wave number is an
eigenvalue. However, when a non-singular BEM is adopted, there exist many numerical tiny
values in the singular values, which are not true zeros. This phenomenon becomes very severe
when the number of elements increases and/or a direct eigenvalue search is used at a low wave
number. Now let us add two small quantities in the singular value matrices to construct new
influencing matrices as

#A1 ¼ PðS1 þ e1IÞV�1 ; ð13aÞ

#A2 ¼ PðS2 þ e2IÞV�2 ; ð13bÞ

where ei is the small value added to system i: The choice of ei is dependent on the problem itself;
however, if they are larger than the unreasonable tiny values of singular values in the original two
systems, but still small enough not to overcoat the true eigenvalue, one can then successfully
extract the contaminated tiny value. If one takes the QR factorization of #A1 and #A2; the
unreasonable ones can be extracted. Adding such a small value in the singular value cannot
change the facts of true degenerated singular value. That is, at the true eigenvalue, the singular
value of system one should approach zero but its corresponding part in system two will not be
close to zero. Using this method, we can successfully treat the ill-posed behaviors of the problem
[13,28] and the numerical examples will be given in the next section.

2.4. Asymmetric indirect Trefftz method

Since a direct type BEM cannot represent mode shapes within its own mathematical structure,
to develop an indirect Trefftz method, unlike the direct method in which the integral equation
about physical quantities is constructed directly, the indirect method represents physical
quantities by a linear superposition of sources. Following the idea of the Trefftz method, any
physical quantities should be represented by a linear superposition of the base functions in
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T-complete set; therefore, we can have

uðxÞ ¼
X

k

akWkðxÞ; ð14aÞ

tðxÞ ¼
@uðxÞ
@n

¼
X

k

ak
@WkðxÞ

@n
; ð14bÞ

where ak is the undetermined coefficient. Consider a boundary value problem, a1u þ b1t ¼ 0; one
can directly yield the following boundary integral equation:

X
k

Z
Gj

a1Wk þ b1
@Wk

@n

� �
½ak� dG ¼ 0: ð15Þ

In the above equation, the integral equation is not constructed on the whole boundary but on
an element along the boundary. The reason why we can do this is because that the homogeneous
boundary condition is always true on any boundary point. Another approach from a generalized
weight residual method can also be used to derive this equation, and the readers can refer to the
work of Mikhlin and Smoltskiy [30]. Eq. (15) can be rewritten in a matrix form as

fa1½ *U�T þ b1½ *T�
Tg½a� ¼ 0: ð16Þ

Now let us take a look at Eqs. (16) and (8), it can be found that the influence matrices of the
direct Trefftz method and the proposed AITM are mutually transposed. From the knowledge of
linear algebra, it can be said that the degeneracy of these two influencing matrices occurs at the
same wave number. Following this, one can conclude that no spurious eigensolution exists in the
AITM but numerical instability still occurs in the AITM. In order to treat the numerical
instability, the method mentioned in the previous subsection is adopted.
To obtain the non-trivial vector ½a�; we can pick up the corresponding singular vector in the

SVD method as mentioned in Chen’s work [14] (remember that a GSVD contains two steps: QR
factorization and the SVD). After obtaining non-trivial vector ½a�; one can use Eq. (14a) to
construct the corresponding mode shape easily. The multiple roots can also be detected using the
SVD as mentioned in Huang’s work [31].
The matrices in the AITM are asymmetric. A symmetric indirect Trefftz method is possible and

has been worked out by the authors and others [29]. Although this AITM requires larger memory
to store matrices, it has some merits that a symmetric indirect method cannot compete with. The
first one is that the AITM can directly use the computer program of the direct Trefftz method.
The second is that when a multiply connected domain is treated, the AITM is less sensitive to the
numerical errors. Besides, when the geometry of the multiply connected domain becomes more
complicate, it is expected that higher order Bessel functions are required. Nevertheless, these
higher order Bessel functions tend to zero or infinity at a low kr value. The order of the Bessel
basis functions in the symmetric indirect Trefftz method [29] is two times that of the current
method. A higher order of Bessel basis functions definitely makes the influence matrix more
inaccurate.
To deal with the problem of a multiply connected domain of genus 1, a domain partitioning

technique, in which an artificial boundary should be introduced, has been suggested by Kang and
Lee [32]. Although such an artificial boundary can overcome the difficulty in treating a multiply
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connected domain, the choice of this artificial boundary is arbitrary and thus it loses robusticity
and is not easy to implement for inexperienced users. In addition, their method unavoidably
enlarges the dimensions of matrices due to introducing this artificial boundary. However, our
method can overcome the difficulty in treating a multiply connected domain of genus 1 without
introducing any artificial boundary. The only thing we should do is simply to place the origin
inside the hole and pick the T-complete function set as shown in Eq. (5).
To develop a regular method that can represent mode shape within its own mathematical

structure, let us first explain why the direct-type regular BEM cannot represent physical quantities
within its own structure. For the direct type, the physical quantities on the boundary are used
directly in the formulation. If the BEM is a direct regular formulation, it leads to the following
expression symbolically:

½U�½t� 	 ½T�½u� ¼ 0: ð17Þ

From Eq. (17), one can obtain the boundary unknown data. However, Eq. (17) does not tell us
any information about inner points. The influencing matrices, ½U� and ½T�; are built by placing
observation point and source point on the boundary. Even we change the observation point to an
inner point; Eq. (17) becomes a trivial equation. It means that the direct-type regular formulation
cannot construct the physical quantities inside the domain within its own formulation and thus
requires help from other formulations.
On the other hand, the indirect type BEM represents physical quantities inside the domain by a

superposition of some sources. The unknowns in the resulting equation are strengths of these
sources. After obtaining the strengths of sources, the solution can then be constructed easily. This
merit also keeps for the indirect regular BEM. In our opinion, the indirect type regular BEM is
more practical than a direct one because it can represent mode shapes easily. As for the computing
cost of the AITM, apart from mesh efforts, we have to recognize that it will take more
computation time as compared with the traditional BEM for eigenvaluse searching, since the user
usually combines the latter with the LU decomposition to implement and the former the GSVD.
However, the latter can be used to treat the well-posed problem only. In contrast, the former can
be adopted to deal with the well-posed and ill-posed problems simultaneously. Moreover, unlike
the LU decomposition only available for eigenvalue searching but not eigenmodes, the GSVD can
also be used to obtain the eigenvalue and the mode shape within its own numerical schemes
simultaneously.

3. Numerical examples

Example 1. A semi circular domain with the radius R0 ¼ 1:4 and the Dirichlet boundary
condition, u ¼ 0; are given.

Forty-one constant elements are used, and the Neumann condition problem, t ¼ 0; is chosen as
the auxiliary problem. By using Tikhonov’s regularization method and the GSVD, eigenvalues are
found successfully as shown in Fig. 2. In this figure, the value in the bracket is the analytical
solution by using the dual complex BEM. The first three modes are obtained and illustrated in
Figs. 3(a)–(c).
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Example 2. A circular domain with the radius R0 ¼ 1:0 and the Neumman boundary condition,
t ¼ 0; are given.

In this example, we can see that the AITM is valid for all kinds of boundary conditions. Fifty-
one constant elements are used and the Dirichlet condition problem, u ¼ 0; is used as the auxiliary
problem. By using the proposed method, eigenvalues are successfully found as in the direct Trefftz
method [28] and are very close to the analytical values, as shown in Fig. 4.

Example 3. A rectangular membrane with two edges of lengths La ¼ 1:5 and Lb ¼ 1:0 is given,
respectively and the Neumann boundary condition, t ¼ 0; is prescribed.

In this example, a domain without radial symmetry is illustrated. Forty-one constant elements
are used and the Dirichlet boundary problem, u ¼ 0; is chosen as the auxiliary problem. It can be
found in Fig. 5 that the numerical results match the analytical solutions very well. The first three
modes can be found easily by the current method as shown in Fig. 6(a)–(c).
We have claimed that any problem having a linearly independent boundary condition to the

original problem can be used as an auxiliary problem. In this example, we use another auxiliary
problem 2u þ 3t ¼ 0 to support our argument. The results are shown in Fig. 7, and our approach
works very well as expected.

Example 4. An annular region of the outer radius R0 ¼ 1:0 and inner radius Ri ¼ 0:2; is given,
respectively and a Dirichlet boundary condition, u ¼ 0; is prescribed on the boundary.
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Fig. 2. Eigenvalue searching for a semi circular domain subjected to the Dirichlet boundary condition.
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The domain is a multiply connected domain. This example shows the superiority of the current
approach over Kuo’s method [13]. His method fails to handle the multiply connected problems. In
contrast, the proposed AITM can deal with this problem easily by putting the origin inside the
hole. In this example, twenty-nine elements are used for the outer and inner boundaries. The
auxiliary problem is the Neumann problem, t ¼ 0: As sown in Fig. 8, by using the proposed
method, eiegnvalues can be calculated as accurate as the direct Trefftz method does [28]. The
analytical solutions are obtained using the eigenequation [33]

½JmðkR0ÞYmðkRiÞ 	 YmðkR0ÞJmðkRiÞ� ¼ 0: ð18Þ

The first three modes are shown in Figs. 9(a)–(c) and the numbers inside the domain of those
figures represent the contour lines of displacements, u:
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Example 5. For a multiply connected domain, the outer boundary is a rectangle with the edge
lengths La ¼ 2:0 and Lb ¼ 1:0; respectively, and the inner boundary is a circle with a radius
Ri ¼ 0:2: The origin of the circular hole is the geometric center of the whole domain. The
boundary condition is the Dirichlet condition, u ¼ 0:
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0 1 2 3 4 5 6
k

1x10-5

1x10-4

1x10-3

1x10-2

1x10-1

1x100

M
in

im
um

 G
en

er
al

iz
ed

 S
in

gu
la

r 
V

al
ue

La

La
Lb

=1.5 , Lb=1.0 (Nelm=41)
Neumann B.C. : t=0
(   ) : Analytical eigenvalue

 2.09
(2.10)  3.14

(3.14)

 3.78
(3.78)

 4.19
(4.19)

 5.24
(5.24)

Fig. 5. Eigenvalue searching for a rectangular domain subjected to the Neumann boundary condition using an

auxiliary system, u ¼ 0:

J.R. Chang, R.F. Liu / Journal of Sound and Vibration 275 (2004) 991–10081002



In this example, no analytical solution is available. We compare our results with those obtained
from the complex-valued dual BEM. The auxiliary system is the Neumann problem, t ¼ 0: As
shown in Fig. 10, numerical results obtained from the proposed indirect asymmetric Trefftz
method are close to those obtained from the complex-valued dual BEM. The reason why a
complex-dual BEM is required has been explained in Chang’s dissertation [33] and Ref. [34].
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Chang explained that solving an eigenvalue problem of a multiply connected domain by the
complex-valued singular integral equation or the complex-valued hypersingular integral equation
will result in an unreasonable numerical resonance. He named this kind of degeneracy of the
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direct BEM as the pseudo-fictitious eigenvalue. To treat this unreasonable degeneracy, a
combined use of singular and hypersingular integral equations was suggested.

4. Conclusions

In this paper, the AITM has been developed to deal with free-vibration problems. It is proved
that the proposed method is equivalent to the direct Trefftz method mathematically.
Consequently, no special effort on programming is needed and some known results from the
direct Trefftz method can be adopted directly. It then can be said that the proposed method does
not have spurious eigensolution but encounters numerical instability when the number of
elements increases. In order to deal with the numerical instability, a combined use of Tikhonov’s
regularization and the GSVD is suggested. The proposed method can easily treat a multiply
connected domain of genus 1 without introducing the artificial boundary, and it can also represent
mode shapes within its own formulations. Several numerical examples have shown the validity of
the proposed approach.
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