
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 276 (2004) 1–11

A comparative study on time–frequency feature of cracked
rotor by Wigner–Ville distribution and wavelet transform

J. Zou*, J. Chen

The State Key Laboratory of Vibration, Shock & Noise, Shanghai Jiao Tong University,

1954 Huashan Road, Shanghai 200030, People’s Republic of China

Received 23 July 2002; accepted 14 July 2003

Abstract

Based on the simple hinge crack model, the dynamic equation of transient response in a cracked rotor
system is modelled; the numerical simulation solutions of the cracked rotor and the uncracked rotor are
obtained from the model. The time–frequency features of the cracked and the uncracked rotors obtained by
using the Wigner–Ville distribution are compared with those obtained by using the wavelet transform, the
difference is presented. By simulation research, the sensitivity of the Wigner–Ville distribution and the
wavelet transform to the stiffness variation is investigated; and the influence of the unbalance and
the unbalance angle on the Wigner–Ville distribution and the wavelet transform is discussed. The
time–frequency features are unique, which can be used as the criteria for identification of cracked rotor.
r 2003 Published by Elsevier Ltd.

1. Introduction

Dynamic behaviors of the cracked rotor have been observed since the 1970s, and the
corresponding dynamic analysis has been investigated for the last three decades [1–3].
In 1976, Gasch [3,4] proposed a simple hinge crack model that was very good for the

representation of the cyclic stiffness variables and the stability limits. Dimarogonas and his
colleagues [5–7] derived a rough analytical estimation of the crack compliance based on the energy
principle of Paris. The research of Gasch and Dimarogonas is adopted by many of the following
papers; however, most of the following research is involved in the cracked rotor rotating at a
constant speed, and the research on transient response of the cracked rotor has been limited.
Ratan [8,9] studied the transient response characteristics using SMAC techniques. Plaut [10]
discussed the behavior of a cracked rotating shaft by using Galerkin’s method and numerical
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integration. Sekhar and Prabhu [11,12] made transient analysis of a cracked rotor passage
through critical speed; based on the research of Sekhar, Prabhakar [13] investigated the detection
and monitoring of cracks in a rotor–bearing system using wavelet transforms. Zou [14] presented
the time–frequency features of the cracked and the uncracked rotors by wavelet transform. Now,
there is extensive research on the vibrational behavior of cracked shaft and the use of response
characteristics to detect crack. But from the viewpoint of engineering practices, the identification
of the cracked rotor is still at the stage of theoretical research for the deficiency of the traditional
signal processing methods in non-stationary signal.
The Wigner–Ville distribution and wavelet transform are widely used in the field of time–

frequency feature extraction, which are very powerful and appealing tools for the analysis of non-
stationary, non-linear and transient signals [15–21]. However, to the best of the authors’
knowledge, there is no work reported on the application of the Wigner–Ville distribution to
identification of cracked rotor, and the research on the wavelet time–frequency feature of the
cracked rotor is few.
In the present study, the dynamic equation of transient response in a cracked system is

modelled. The time–frequency features of the cracked rotor and the uncracked rotor obtained by
using the Wigner–Ville distribution are compared with those obtained by using the wavelet
transform. By simulation research, the sensitivity of the Wigner–Ville distribution and the wavelet
transform to the stiffness variation is investigated; and the influence of the unbalance and the
unbalance angle on the Wigner–Ville distribution and the wavelet transform is discussed.

2. Dynamic model and numerical solutions

Consider a de Laval rotor with a disc mass m supported by a massless elastic shaft of length L:
Suppose that the crack is located near the disc and the weight is dominant, the dynamic equation
of the cracked rotor (shown in Fig. 1) can be written as
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where c is the damping coefficient.

ARTICLE IN PRESS

x

o
y

η 

ξ 
ψ

β

em,

Fig. 1. The cross-section of the cracked rotor.
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The stiffness matrix in the inertial frame can be obtained from the stiffness matrix in the
rotational frame by transformation matrix. The stiffness matrix in the rotational frame is as
follows:

kx

kZ

" #
¼

k

k

" #
�Y

Dkx

0

" #
; ð2Þ

where kx is the stiffness in the x-axis direction, kZ is the stiffness in the Z-axis direction, k is the
stiffness of the uncracked rotor, Dkx is the stiffness variation in the x-axis direction.
As the weight is dominant, the modified function Y of the opening and closing of the crack can

be written as

Y ¼

1 2kppyoð2k þ 1
2
Þp the crack is open;

0 ð2k þ 1
2
Þppyoð2k þ 3

2
Þp the crack is closed;

1 ð2k þ 3
2Þppyoð2k þ 2Þp the crack is open;

8><
>: ð3Þ

where k ¼ 0; 1; 2;y; y ¼ 1
2

a1t
2 þ o0t þ b; a1 is the angular acceleration, o0 is the initial angular

speed, b is the angle of the unbalance with respect to the x-axis.
By Fourier transform, the modified function is changed into
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1
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From Fig. 1, the transformation matrix is

T ¼
cosc sin c

�sin c cosc

" #
;

where c ¼ 1
2
a1t

2 þ o0t:
The stiffness matrix in the inertial frame can be written as
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The excitation forces Fx;Fy are given as

Fx

Fy

 !
¼ me

.y sin yþ ’y2 cos y

�.y cos yþ ’y2 sin y

 !
; ð6Þ

where e is the eccentricity of the disc.
Introducing the dimensionless variables

t ¼ on � t; O0 ¼
o0

on

:
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Eq. (1) is transformed into the dimensionless form
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where the subscript t and the double subscript tt mean the first and the second derivative with
respect to t; on ¼

ffiffiffiffiffiffiffiffiffi
k=m

p
is the natural frequency, z ¼ c=2mon is the damping ratio, xst ¼ mg=k is

the static deflection, e ¼ e=xst is the relative eccentricity, Dkx ¼ Dkx=k is the relative stiffness
variation, ar ¼ a1=o2

n is the relative angular acceleration. In Eq. (7), the second term on the
right-hand side denotes the crack excitation.
If weight dominance is assumed, the equation is satisfied as follows [3,4]:
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Eq. (7) is rewritten as
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Applying state space notation, Eq. (8) is rewritten as

’X ¼ AXþ F; ð9Þ

where X denotes the four-dimensional state vector

X ¼

xt=xst

yt=xst

x=xst

y=xst

0
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1
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A is the 4� 4 system matrix

A ¼

�2z 0 �1 0

0 �2z 0 �1

1 0 0 0

0 1 0 0

0
BBB@

1
CCCA;

F is the four-dimensional vector of excitation functions.
By using classical Runge–Kutta method, the dynamic response is obtained on the condition

that the weight is neglected in order to erase the influence of the static component of the response
due to the weight on the time–frequency features of the rotors. Let ar ¼ 0:0013;O0 ¼ 0;
e ¼ 0:1;Dkx ¼ 0:1; b ¼ 0; z ¼ 0:05; the numerical solutions of the cracked rotor and the uncracked
rotor are shown in Fig. 2. From Fig. 2, the sub-harmonic resonance of the transient response
passage through 1

3
or 1

2
sub-critical speed in the cracked rotor system is obvious; and there is no

sub-harmonic resonance in the unbalanced rotor.

3. Time–frequency feature investigation

3.1. Basic theory

The wavelet time–frequency transform is multi-resolution analysis algorithm, which is the inner
product of the signal and a family of the wavelet. For the mother wavelet or the wavelet prototype
cðtÞ; there is the corresponding family of the wavelet, which is called the son wavelet. The series of
the son wavelets are generated by the dilation and translation from the mother wavelet cðtÞ as
follows:

ca;bðtÞ ¼
1ffiffiffiffiffi
jaj

p c
t � b

a

	 

; ð10Þ

where a is scale factor, b is time shift, the factor jaj�1=2 is used to ensure energy preservation.
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Fig. 2. Time waveform of the uncracked rotor (a) and the cracked rotor (b).
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The mother wavelet cðtÞ is considered to be the square integrable complex function, it must
satisfy the admissibility condition

cc ¼
Z þN

�N

jcðoÞj2

joj
dooN;

where cðoÞ is the Fourier transform of cðtÞ:
The continuous wavelet time–frequency transform of the initial signal sðtÞ can be written as

Wsða; bÞ ¼
Z

sðtÞ � c�a;bðtÞ dt; ð11Þ

where c�a;bðtÞ is the complex conjugate function of ca;bðtÞ:
With the variation of scale factor a and time shift b; the wavelet time–frequency transform

coefficients Wsða; bÞ are obtained. Due to the variation of scale factor a and time shift b; the
wavelet time–frequency transform coefficients Wsða; bÞ can offer the representation of the signal
sðtÞ at different levels of resolution and time shift, thus the wavelet time–frequency transform can
be used to extract the features of the signal sðtÞ:
The continuous Wigner–Ville distribution of the initial signal sðtÞ can be written as

Wzðt; f Þ ¼
Z þN

�N

z t þ
t
2

� �
z� t �

t
2

� �
e�j2ptf dt; ð12Þ

where � denotes complex conjugation, zðtÞ is the analytical signal of the initial signal sðtÞ:
The Wigner–Ville distribution is a two-dimensional function that maps a one-dimensional time

function sðtÞ into a time and frequency plane, so the Wigner–Ville distribution can be used to
represent the time–frequency features of the cracked and the uncracked rotors.

3.2. Comparison Wigner–Ville distribution with wavelet transform

Let ar ¼ 0:0013; O0 ¼ 0; e ¼ 0:1; b ¼ 0; z ¼ 0:05; Dkx ¼ 0; 0:1; the numerical simulation
solutions of the cracked rotor and the uncracked rotor passage through 1

3
subcritical speed are

obtained. The data between the rotational angle c ¼ 44:08 and 50:35 rad are sampled, and the
sampling interval ts is 0:14 rad: The sampled data are processed by Wigner–Ville distribution and
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Fig. 3. Wigner–Ville time–frequency features of the uncracked rotor (a) and the cracked rotor (b).
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Daubechies 10 wavelet, and the Wigner–Ville time–frequency features and the wavelet
time–frequency features of the cracked and the uncracked rotors are shown in Figs. 3 and 4.
From Fig. 3, the Wigner–Ville time–frequency features of the cracked and the uncracked rotors

are different. The Wigner–Ville time–frequency feature of the uncracked rotor takes on the form
of regular ellipses under the influence of the unbalance, and the frequency components are in the
range of [0.3–0.35] corresponding to the frequency components of the unbalance. For the cracked
rotor, the crack excitation results in oscillation in the Wigner–Ville time–frequency feature, which
corresponds to the sub-harmonic resonance of the cracked rotor; and the frequency components
become complex, which are about in the range of [1.0–1.2] corresponding to the third harmonic of
the crack excitation. So the Wigner–Ville time–frequency features can be used to identify the
cracked rotor and the uncracked rotor.
In Fig. 4, the wavelet time–frequency features of the cracked and the uncracked rotors are in

different form. The two-dimensional wavelet spectrum of the uncracked rotor is characteristic of
two group circles due to the unbalance, the variation of time shift and scale factor, however, the
two-dimensional wavelet spectrum of the cracked rotor is characteristic of six group circles that
result from the third harmonic of the crack excitation, the variation of time shift and scale factor
besides two group circles due to the unbalance. The wavelet time–frequency features of the
cracked and the uncracked rotors are distinct, which can be used to identify the cracked rotor.
Comparing Fig. 3 with Fig. 4, the conclusion is that the wavelet transform and the Wigner–Ville

distribution can identify the cracked rotor effectively. But the difference of the time–frequency
features between the cracked and the uncracked rotors obtained by wavelet transform is more
obvious than that obtained by Wigner–Ville distribution, so to some extent, the wavelet transform
is superior to the Wigner–Ville distribution.

4. Comparision of sensitivity to the stiffness variation

The presence of a crack tends to decrease the stiffness, and the dynamic response varies with the
stiffness variation. Let ar ¼ 0:0013; O0 ¼ 0; e ¼ 0:1; b ¼ 0; z ¼ 0:05; Dkx ¼ 0:01 and Dkx ¼ 0:02 to
investigate the sensitivity of the Wigner–Ville distribution and the wavelet transform to the
stiffness variation, the results are shown in Figs. 5 and 6. It can be seen from Figs. 5 and 6 that the
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Fig. 4. Wavelet time–frequency features of the uncracked rotor (a) and the cracked rotor (b).
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wavelet transform is more sensitive to the stiffness variation than the Wigner–Ville distribution;
even if the stiffness variation is only 1%, the wavelet transform still can identify the cracked rotor.

5. Comparison of the influence of system parameters

5.1. The influence of the unbalance

Let ar ¼ 0:0013; O0 ¼ 0; Dkx ¼ 0:1; b ¼ 0; z ¼ 0:05; e ¼ 0:2 and e ¼ 0:3 to investigate the
influence of the unbalance on the Wigner–Ville time–frequency feature and the wavelet time–
frequency feature. As it is shown in Figs. 7 and 8, even if the unbalance increases significantly, the
Wigner–Ville distribution and the wavelet transform still can identify the cracked rotor effectively.

5.2. The influence of the unbalance angle

Let ar ¼ 0:0013; O0 ¼ 0; Dkx ¼ 0:1; e ¼ 0:1; z ¼ 0:05; b ¼ p=2 and b ¼ p to investigate the
influence of the unbalance angle on the Wigner–Ville time–frequency feature and the wavelet
time–frequency feature (Figs. 9 and 10). By comparison of Fig. 9 with Fig. 3, the conclusion is
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Fig. 5. Sensitivity of Wigner–Ville distribution to the stiffness variation: (a) Dkx ¼ 0:01; (b) Dkx ¼ 0:02:
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drawn that the influence of the unbalance angle on the Wigner–Ville time–frequency feature is
great, when b ¼ p=2 or p; the oscillation of the Wigner–Ville time–frequency feature becomes
weak so that the cracked rotor cannot be identified effectively. Compared with Fig. 4, Fig. 10
shows that the influence of the unbalance angle on the wavelet time–frequency feature is small,
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Fig. 7. The influence of the unbalance on Wigner–Ville time–frequency feature: (a) e ¼ 0:2; (b) e ¼ 0:3:
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and the wavelet time–frequency feature still takes on the form of six group circles. To identify the
cracked rotor effectively, the unbalance angle should be changed to b ¼ 0 by balancing technique
when the Wigner–Ville distribution is adopted.

6. Conclusions

(1) Based on the simple hinge crack model, the dynamic equation of transient response in a
cracked rotor is modelled; the numerical simulation solutions of the cracked and the uncracked
rotors are obtained.
(2) The time–frequency features of the cracked and the uncracked rotors obtained by using the

Wigner–Ville distribution are compared with those obtained by using the wavelet transform. The
Wigner–Ville time–frequency feature of the uncracked rotor takes on the form of regular ellipses,
and there exists oscillation in the Wigner–Ville time–frequency feature of the cracked rotor. The
wavelet time–frequency feature of the uncracked rotor is characteristic of two group circles due to
the unbalance, and the wavelet time–frequency feature of the cracked rotor is characteristic of six
group circles due to the crack excitation besides two group circles due to the unbalance. The
wavelet transform and the Wigner–Ville distribution can identify the cracked rotor effectively, but
to some extent, the wavelet transform is superior to the Wigner–Ville distribution.
(3) The sensitivity of the Wigner–Ville distribution and the wavelet transform to the stiffness

variation is investigated, and the wavelet transform is more sensitive to the stiffness variation than
the Wigner–Ville distribution.
(4) The influence of the unbalance and the unbalance angle on the Wigner–Ville distribution

and the wavelet transform is discussed. Even if the unbalance increases significantly, the Wigner–
Ville distribution and the wavelet transform still can identify the cracked rotor. The influence of
the unbalance angle on the Wigner–Ville time–frequency feature is great, and the influence on the
wavelet time–frequency feature is small.
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