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Abstract

In this paper, a complex filter for Hilbert transform is proposed to apply in the real-time vibration signal
demodulation. The filter could provide a complex signal directly, as a function of both frequency and time,
and the envelope could be derived from the absolute value of the complex signal. Three parameters, the
scaling factor, center frequency and passband width, are designated to achieve the satisfactory properties of
fast waveform convergence, constant passband gain and little phase distortion. Thus, a finite waveform
interval of the proposed filter could be possibly applied in the vibration signal demodulation. From
theoretical analysis and experimental studies, it is shown that the proposed filter could be effectively applied
in the real-time vibration signal demodulation for a roller bearing system.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

In bearing defect diagnosis, the high-frequency resonance technique is always applied to the
vibration signal demodulation [1–4]. In the range of a high-frequency system resonance, this
technique takes advantage of the absence of low-frequency mechanical noise to demodulate a
vibration signal and, therefore, provides a low-frequency demodulated signal with a high signal-
to-noise ratio. In order to implement the high-frequency resonance technique, the Hilbert
transform is often applied in vibration signal demodulation to provide a complex signal.
Accordingly, the demodulated signal could be obtained from the absolute value of the complex
signal.

ARTICLE IN PRESS

*Tel.: +886-625-331-31, ext. 3522; fax: +886-624-250-92.

E-mail address: syt@mail.stut.edu.tw (Y.-T. Sheen).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.08.007



A recent method for detecting vibration envelope is based on the Morelet wavelet that
constructs a Hilbert transform pair that calls for two wavelet transforms, where one wavelet is the
Hilbert transform of the other. However, the Morelet wavelet could only be an orthogonal
narrow filter [5]. Huang [6] proposes an algorithm for the linear combination of Morlet wavelets
to apply in detecting vibration signal envelope. However, it is inconvenient to apply in practice for
the transformation function expressed in the combination function form. In addition, the
normalized coefficient for the linear combination of analysis wavelets also needs to be determined,
as the case may be. Nikolaou and Antoniadis [7] base on the use of a complex shifted Morlet
wavelet family to construct a matrix from the absolute value of wavelet transform for a vibration
signal. By sorting the maximum values of each column in the matrix, an envelope of the vibration
signal could be derived and be capable of detecting the appearance of each impulse in the
frequency band. But there are very serious distortions in the amplitude and phase.
The modern signal analysis for defect detection is applied to determine the instantaneous

frequency of vibration signal [8–11]. The wavelet transform is most often used because of a feature
of time-frequency localization that is capable of exhibiting the instantaneous frequencies of
vibration signal and gives a description of how energy distribution over the changes of frequencies
from one instance to another. To detect localized defects of bearing, the magnitude variation of
wavelet transform at different dilations varies periodically at a rate of the characteristic frequency
of a certain defect. However, it is inconvenient to figure out the characteristic frequency and
location of a defect, especially for the case of multiple-type defects.
In this paper, a complex filter for Hilbert transform is proposed to apply in the real-time

vibration signal demodulation and capable of presenting the instantaneous frequency of its
envelope. There are three parameters for designating the proposed filter. By tuning up these
parameters, the passband properties, such as the filtering bandwidth, slope attenuation and cut-
off frequencies, could be adjusted and designated. Because the envelope is expressed as a function
of both frequency and time, the envelope function could present the instantaneous frequency to
depict how energy distribution over the changes of passband from one instance to another. In
addition, the envelope spectrum could describe how energy distribution over the changes of
passband from one instantaneous frequency to another.

2. A complex filter for Hilbert transform

2.1. Basic concept

In the diagnosis of a bearing system, there is the amplitude modulation occurred in measured
signals, and thus the frequency-translation property would be presented in the vibration spectra.
The phenomenon of amplitude modulation is because a high-frequency carrier signal is varied by
a low-frequency modulating signal. Thus, the modulated signal could be the product of the
modulating signal with the carrier signal. The modulating signal is the impacts caused by defects
of a bearing and could be represented by bursts of exponentially decaying vibration. Thus, its
spectrum would be expanded in a frequency band. The carrier signal is a combination of the
resonance frequencies of the bearing or even of the mechanical system. The frequency of
modulating signal would be always much smaller than that of carrier signal. Accordingly, the
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modulated signal would also be expanded in frequency band whose center frequency would be at
the frequencies of carrier signal. To deal with this phenomenon of amplitude modulation, the
high-frequency resonance technique is introduced, which is tried to derive the low-frequency
modulating signal from the modulated signal by means of filtering out the high-frequency carrier
signal.
In the high-frequency resonance technique, a complex filter for Hilbert transform with the

properties of both a constant passband gain and perfect orthogonality is required for bandpass-
filtering around resonance frequency. If a complex signal is derived from the convolution of a
vibration signal and the complex filter, an envelope signal could be the absolute value of the
complex signal. Thus, the complex filter could be taken to be the form

hðtÞ ¼ hrðtÞ þ jhiðtÞ; ð1Þ

where hiðtÞ is the Hilbert transform for hrðtÞ: In order to realize such a complex filter for Hilbert
transform, some properties are discussed as follows:

(1) If hrðtÞ is an even function, hiðtÞ would be odd.
(2) Function hiðtÞ should be orthogonal to hrðtÞ:
(3) Both hrðtÞ and hiðtÞ should be bandpass filters.

In the following, such a complex filter for Hilbert transform is first proposed and some
properties of the complex filter are then discussed.

2.2. Theoretical study

In this paper, a complex filter for Hilbert transform is proposed and defined as

ha;fC ;fW
ðtÞ ¼

1

jpt
e�ðt=aÞ2ðe�j2pðfC�fW=2Þt � e�j2pðfCþfW =2ÞtÞ; ð2Þ

where a; fC and fW are the scaling factor, the center frequency and the passband width,
respectively. It is noted that the complex filter ha;fC ;fW

ðtÞ in Eq. (2) comprises three parameters for
adjustment and designation of the filtering passband.
The Fourier transform of this filter function could then be expressed as

Hðf Þ ¼ erf a f � fC �
fW

2

� �
p

� �
� erf a f � fC þ

fW

2

� �
p

� �
; ð3Þ

where erf ðzÞ ¼ 2=
ffiffiffi
p

p R z

0 e
�f 2 df is the error function. It is found that Hðf Þ has a passband with a

constant gain and two cut-off frequencies at fC � fW=2 and fC þ fW=2: In addition, an increase in
scaling factor a is associated with a sharper cut-off. Thus, with a proper selection of scaling factor
a; the filter function could be an excellent bandpass filter.
On the other hand, the real part and the imaginary part of the complex filter ha;fC ;fW

ðtÞ are hrðtÞ
and hiðtÞ; respectively, and could be written as

hrðtÞ ¼
1

pt
e�ðt=aÞ2 sin 2p fC þ

fW

2

� �
t

� �
� sin 2p fC �

fW

2

� �
t

� �� �
; ð4aÞ
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and

hiðtÞ ¼
1

pt
e�ðt=aÞ2 cos 2p fC þ

fW

2

� �
t

� �
� cos 2p fC �

fW

2

� �
t

� �� �
: ð4bÞ

It is easy to verify that the imaginary part hiðtÞ is orthogonal to its own real part hrðtÞ: Therefore,
the imaginary part hiðtÞ would be the Hilbert transform for its own real part hrðtÞ:
From the above, it is found that the complex filter in Eq. (2) possesses the properties of

bandpass filtering and orthogonality. So that function ha;fC ;fW
ðtÞ could be used to form a Hilbert

transform pair that is capable of applying in the high-frequency resonance technique.
The filtering operation of Hilbert transform for a vibration signal xðtÞ could then be described

by the convolution integral of xðtÞ and ha;fC ;fW
ðtÞ

ya;fC ;fW
ðtÞ ¼

Z
N

�N

xðtÞha;fC ;fW
ðt � tÞ dt: ð5Þ

The above operation is linear and the filtered signal ya;fC ;fW
ðtÞ is complex. In addition, the

imaginary part of ya;fC ;fW
ðtÞ also is the Hilbert transform of its own real part. Therefore, an

envelope could be derived from the absolute value of ya;fC ;fW
ðtÞ and an envelope transformation is

defined as

ea;fC ;fW
ðtÞ ¼

Z
N

�N

xðtÞha;fC ;fW
ðt � tÞ dt

				
				: ð6Þ

From the above envelope transformation, an envelope of the vibration signal xðtÞ could be
derived. When properly selecting the scaling factor a and the passband width fW ; the envelope
function ea;fC ;fW

ðtÞ could be used to depict how energy distribution over the changes of passband
from one instance to another. In addition, location and width of the filtering passband could be
determined by the center frequency fC and the passband width fW ; respectively. Thus, the
envelope function ea;fC ;fW

ðtÞ possesses the feature of time-frequency localization. The instanta-
neous frequencies, which correspond to the selection of center frequency of the filtering passband,
of the envelope could be derived and capable of sweeping the filtering passband from a low-
frequency band to a high-frequency band.
Furthermore, the frequency information of ea;fC ;fW

ðtÞ can be derived from its Fourier transform

Ea;fC ;fW
ðf Þ ¼ Ifea;fC ;fW

ðtÞg; ð7Þ

where I denotes the Fourier transform. It should be noted that the above equation could be used
to describe how energy distribution over the changes of filtering passband from one instantaneous
frequency to another. In comparison with the envelope function ea;fC ;fW

ðtÞ; the envelope spectrum
Ea;fC ;fW

ðf Þ would be capable of giving a clearer view of characteristic frequencies for vibration
signals. Such a view would be helpful to point out the location of defects in system diagnosis.

2.3. Parameter characteristics

For the purpose of practically applying the complex filter ha;fC ;fW
ðtÞ; as shown in Eq. (2), in the

high-frequency resonance technique, the characteristics of function parameters would be
investigated in the following.
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From Eq. (3), the passband designation of complex filter ha;fC ;fW
ðtÞ could be a function of a; fC

and fW : For selected values of fC and fW ; a decrease of scaling factor a of ha;fC ;fW
ðtÞ would increase

waveform convergent speed but decrease slope attenuation. As shown in Fig. 1, the waveform
convergent speed in the case of scaling factor a ¼ 0:002 is faster than that in the case of scaling
factor a ¼ 0:02: However, as shown in Fig. 2, the slope attenuation in the case of a ¼ 0:02 is
sharper than that in the case of scaling factor a ¼ 0:002: Therefore, it is shown that an increase of
slope attenuation can be traded off for an increase of waveform convergent speed, and vice versa.
An increase in scaling factor a is associated with both sharp cut-off and slow convergent speed.
Finally, it should be noted that both passband quality and waveform convergent speed of the
complex filter ha;fC ;fW

ðtÞ are no relation with fC and fW ; but vary little under the constraint of
scaling factor aX0:007:
On the other hand, the selection of passband width fW is, in general, dependent on the

bandwidth of impulse response of defects, and the selection of center frequency fC decides the
location of filtering passband. An increase of fC would be capable of sweeping a filtering passband
from a low-frequency band to a high-frequency band. For most cases in a mechanical system, the
passband width could be fW ¼ 3 kHz and the center frequency could be in the range of
3 kHzpfCp11 kHz: It is noted that the center frequency should be smaller than the Nyquist
frequency. Accordingly, when applying in the high-frequency resonance technique, the envelope
transformation as shown in Eq. (6), would not trouble to decide the filtering passband and could
be convenient for the end user.
In practice, the waveform interval of ha;fC ;fW

ðtÞ taken to apply in signal processing must be
limited. However, both a sharp cut-off and a better waveform convergence are necessary for a
better passband quality. Besides, the waveform interval would be increased with scaling factor a
to achieve both a sharp cut-off and a better waveform convergence. Accordingly, the waveform
interval should be as long as possible for a better passband quality. But the computing burden
would be increased with the waveform interval. Nevertheless, under proper selections of both
scaling factor a and waveform interval of ha;fC ;fW

ðtÞ; the passband quality could be still guaranteed.
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It is suggested that the waveform interval of ha;fC ;fW
ðtÞ is chosen to be more than 0:01 s and then

the scaling factor a could be constrained in the range 0:007pap0:015:

3. Computer algorithm

For the purpose of implementation in computer, an algorithm for the above theoretical study is
divided into the following steps.

(1) Based on the system characteristics, specify the parameters of sampling rate T ; scaling factor
a; passband width fW and a range of center frequency fC : The complex filter ha;fC ;fW

ðtÞ with a
finite waveform interval 2KT could be expressed in the discrete form as

ha;fC ;fW
ðkÞ ¼

1

jpkT
e�ðkT=aÞ2ðe�j2pðfC�fW=2ÞkT � e�j2pðfCþfW=2ÞkT Þ; ð8Þ

where kð�KpkpKÞ is a number to be located in the waveform.
(2) For a given signal sequence xðmÞ; 0pmpM; the filtering operation of Hilbert transform

could be derived from the convolution of xðkÞ and ha;fC ;fW
ðkÞ;

ya;fC ;fW
ðnÞ ¼

XM

m¼0

xðn � mÞha;fC ;fW
ðmÞT ; ð9Þ

where ya;fC ;fW
ðnÞ is complex and 0pnpM þ 2K :

(3) The envelope of signal sequence xðmÞ can be derived from the absolute value of ya;fC ;fW
ðnÞ;

ea;fC ;fW
ðnÞ ¼ jya;fC ;fW

ðnÞj: ð10Þ

(4) For a finite envelope sequence ea;fC ;fW
ðnÞ; the operation of multiplying an envelope ea;fC ;fW

ðtÞ by
the Hanning windows wðtÞ is used in the estimation of envelope spectrum Ea;fC ;fW

ðf Þ: The
Hanning window of length M þ 2K is given by [12]

wðnÞ ¼
1

2
1� cos

2pn

M þ 2K

� �
: ð11Þ

(5) Taking FFT for the windowed envelope sequence, the finite-interval envelope spectrum
#Ea;fC ;fW

ðf Þ could be obtained. It follows that #Ea;fC ;fW
ðf Þ is the convolution of the Fourier

ARTICLE IN PRESS

Fig. 2. The spectrum of ha;fC ;fW
ðtÞ: (a) a ¼ 0:002 and (b) a ¼ 0:02:

Y.-T. Sheen / Journal of Sound and Vibration 276 (2004) 105–119110



transform of ea;fC ;fW
ðtÞ and wðtÞ [12],

#Ea;fC ;fW
ðf Þ ¼

XN
�N

Ea;fC ;fW
ðf � gÞW ðgÞ dg; ð12Þ

where the spectral window W ðf Þ is the Fourier transform of the Hanning window wðtÞ: Thus,
#Ea;fC ;fW

ðf Þ is an estimation of envelope spectrum Ea;fC ;fW
ðf Þ:

4. Evaluation and results

In this section, the above algorithm for computer implementation is tested on a simulated pulse
train. Each pulse is modulated by two signal harmonic frequencies with an exponential decay.
This signal could be used to model an impulse response signal modulated with two simplified
system resonance frequencies and is expressed as

xðkÞ ¼ e�akt0 ðsin 2pf1kT þ sin 2pf2kTÞ; ð13Þ

with

t0 ¼ mod kT ;
1

f0

� �
; ð14Þ

where a ¼ 800; f0 ¼ 100 Hz; f1 ¼ 3 kHz and f2 ¼ 8 kHz are the exponential frequency, the
modulating frequency and two carrier frequencies, respectively. Let the sampling interval be
T ¼ 1=25; 000 s and Fig. 3 shows the waveform and spectrum of simulated signal. In the
spectrum, peaks at 3 and 8 kHz are corresponding to two resonance frequencies. Fig. 4 is the
signal after adding a significant level of Gaussian noise. Its signal-to-noise ratio, i.e., the variance
ratio of signal to noise, is 0.257. The impulse train is almost buried in the noise.
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In order to analyze the effect of envelope transformation with the complex filter composed of a
finite waveform interval, an error ratio for measuring the error between the modulating signal and
the envelope is defined as

error ratio ¼
standard deviation of error

standard deviation of modulating signal
: ð15Þ

When applying the complex filter ha;fC ;fW
ðkÞ in Eq. (8) to demodulate the modulated signal xðtÞ; the

envelope ea;fC ;fW
ðnÞ could be obtained according to Eq. (10). Based on the spectrum in Fig. 3(b),

the parameter values are taken to be scaling factor a ¼ 0:007; center frequency fC ¼ 3 kHz and
passband width fW ¼ 3 kHz: The selected passband would cover from the low cut-off frequency
at 1:5 kHz to the high cut-off frequency at 4:5 kHz: Under different waveform interval, the
envelope for the modulated signal xðkÞ in Eq. (13) is derived and the error ratio is shown in Fig. 5.
It is found that the error ratios are almost saturated when a waveform interval of complex filter is
greater than 0:01 s (about 250 points). With a waveform interval being 0:01 s; Fig. 6 shows
waveforms of both modulating signal and the demodulated signal and they are very close. The
same result for their spectra in both amplitude and phase is shown in Fig. 7. Under the condition
of the same parameter selection, the result of envelope transformation of the signal in Fig. 4 is
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Fig. 6. The waveform (the modulating signal: ——, the envelope: ).

Fig. 7. The spectra of the waveform in Fig. 6 (the modulating signal: ——, the envelope: ).

Fig. 8. The envelope of the signal in Fig. 4.
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shown in Fig. 8 and the impulses can be found in the figure. However, the period of the
demodulated signal is not very clear because of the influence of the significant noise. Fig. 9 shows
the spectrum of the waveform in Fig. 8. In comparison with Fig. 8, Fig. 9 shows a clear view of
frequency information for the demodulated signal despite a significant level of Gaussian noise.
Thus, the spectrum of the demodulated signal is more useful in finding the modulating signal. The
influence of the noise on the demodulated signal is the spectral amplitude significantly decayed. It
is noted that the phase around the frequency of modulating signal is also accurate in spite of a
significant level of Gaussian noise added to the simulated signal. In addition, there are the same
results for the envelope transformation in a passband containing the other resonance frequency at
8 kHz: Thus, the envelope transformation in Eq. (10) is excellent in vibration signal
demodulation, especially in the phase response.
Furthermore, when sweeping the center frequency in the range 3 kHzpfCp11 kHz for the

envelope transformation of the signal in Fig. 4, the 3D envelope illustration, as shown in Fig. 10,
could describe the envelope changes over the passband sweeping from one instance to another.
Fig. 11 shows the 3D envelope spectrum which gives a clear view of the modulating signal
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Fig. 9. The spectra (the modulating signal: ——, the envelope of the signal in Fig. 4: ).

Fig. 10. 3D envelope illustration for the signal in Fig. 4.
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frequency and their harmonic frequencies. In comparison with Fig. 10, Fig. 11 would present
more useful information of characteristic frequency for diagnosis in spite of a significant level of
Gaussian noise added to the simulated signal. In addition, the amplitude in Fig. 11 is decayed
rapidly in the range of passband between fC ¼ 4:5 and 6:5 kHz; because this range is
corresponding with the passbands uncovering any resonance frequencies. It is noted that the
cross-section along the center-frequency axis is similar to the spectrum in Fig. 3(b). Accordingly,
the range of center frequency would determine the number of resonance frequencies contained.

5. Experimental study

In this section, the complex filter ha;fC ;fW
ðkÞ in Eq. (8) is applied to demodulate vibration signals

of tapered roller bearings (SKF type 32208) at running speed 800 r:p:m: There are initial defects,
as described in Ref. [3], occurring on roller, outer race and inner race, respectively. The parameter
values are taken to be a ¼ 0:007; fW ¼ 3 kHz; and 3 kHzpfCp11 kHz: All computations are
carried out on an IBM compatible computer with a TMS320C32 DSP interface card. The
envelope transformation is coded in C and implemented on TMS320C32 DSP interface card with
a sampling rate 25 kHz: In order to process the vibration signals in real-time, the finite number of
function waveform is taken to be 250 points (or 0:01 s). For the purpose of demonstration, 8192
points of envelope with a sampling rate 3:125 kHz are calculated to construct the 3D envelope
spectrum between instantaneous frequency and center frequency of filtering passband. The
envelope spectra of vibration signals can be derived from DSP card and is shown by using Builder
C language for user-friendly programming under Microsoft Windows.
The characteristic frequencies of tested bearings for roller, outer- and inner-race are 77.3, 94.6

and 131:9 Hz; respectively. In Fig. 12, the 3D envelope illustration between time and center
frequency for vibration signals of roller bearing with single roller defect is shown. Its 3D envelope
spectrum is shown in Fig. 13. Along the frequency axis of co-ordinate, Fig. 13 clearly shows the
characteristic frequency and its harmonic frequencies. On the other hand, the 3D diagrams, as
shown in Figs. 14 and 15, are shown for a normal bearing to correspond to the vibration envelope
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Fig. 13. 3D envelope spectrum of the 3D envelope in Fig. 12.

Fig. 12. 3D envelope illustration for roller bearing with a roller defect at running speed 800 r:p:m:

Fig. 14. 3D envelope illustration for normal bearing at running speed 800 r:p:m:
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Fig. 15. 3D envelope spectrum of the 3D envelope in Fig. 14.

Fig. 16. 3D envelope spectrum for roller bearing with an outer-race defect at running speed 800 r:p:m:

Fig. 17. 3D envelope spectrum for roller bearing with an inner-race defect at running speed 800 r:p:m:
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and its spectrum. In comparison with Figs. 12 and 13 for a roller defect bearing, Figs. 14 and 15
for normal bearing show obviously a different kind of pattern in which there is no periodic slices
appeared. Furthermore, the 3D envelope spectrum would present more useful information about
the characteristic frequency for bearing defect diagnosis.
The 3D envelope spectra, as shown in Figs. 16 and 17, show for roller bearings with an outer-

race defect and an inner-race defect, respectively. The characteristic frequencies and its harmonic
frequencies for defects are clearly found. Similar result for a roller bearing with multiple-type
defects, both roller and outer-race defects, is shown in Fig. 18. Accordingly, the 3D envelope
spectrum would be also useful for bearing defect diagnosis in location of multiple-type defects.

6. Discussion

Theoretically, there are no ripples in filtering passband for the complex filter. However, a finite
waveform interval of the complex filter should, in practice, be taken. In addition, the arithmetic
round-off errors would be occurred in computation. These shortcomings would cause the filtering
passband distorted and the Gibbs phenomenon occurring in the filtering passband. Accordingly,
the orthogonality between the real part and the imaginary part would be distorted; thereby the
characteristic of Hilbert transform is twisted. Nevertheless, these problems could be minimized
under the condition of properly selecting both the scaling factor and the waveform interval for the
complex filter. According to the suggestion in Section 2.3, it is found that the suggested values for
the parameters of complex filter could obtain both a fast convergent waveform and a sharp cut-
off. It would be helpful to solve the above shortcomings.
When using Eq. (10) for envelope transformation, there is an advantage of reducing the

computing burden. It is because that the vibration frequency of the envelope, in comparison with
that of modulated signal, would become much lower, and thereby the sampling rate for the
envelope could also be reduced. Thus, most items in computing the envelope sequence could be
neglected. Accordingly, the computing speed for finding the envelope sequence could be much
increased. It would, in practice, be helpful to take a longer waveform interval of the complex filter
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into account to achieve a better waveform convergence. Accordingly, the complex filter could be
possibly applied in real-time signal processing, and the envelope transformation would be capable
of using in practice to demodulate vibration signals of a mechanical system.
Besides, real part of the filtering operation, as shown in Eq. (4a), could be a bandpass filter for a

vibration signal and possesses the same satisfactory properties as those of the envelope
transformation. At the same time, the imaginary part could also be a bandpass filter and be the
Hilbert transform of the real part. Thus, the complex filter could also be used in design of a bandpass
filter, and provides an easy way in both passband selection and slope attenuation designation.

7. Conclusion

This paper proposes a complex filter for Hilbert transform to apply in vibration signal
demodulation. There are three parameters for designating the complex filter to achieve
satisfactory properties, which are the scaling factor, the center frequency of passband, and the
passband width. Both the scaling factor and the waveform interval are suggested in the paper to
designate the complex filter. Thus, the passband quality for the complex filter can be guaranteed
with the suggested values. In addition, the complex filter provides an easy way to sweep filtering
passband from a low-frequency band to a high-frequency band. It is convenient for the envelope
transformation to apply in practice and there is an advantage of minimizing the interventions by
the end user.
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