
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 276 (2004) 13–26

Sound speed criterion for two-phase critical flow
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Abstract

Critical flow simulation for non-homogeneous, non-equilibrium two-phase flows is improved by applying
a new sound speed model which is derived from the characteristic analysis of hyperbolic two-fluid model.
The hyperbolicity of two-fluid model was based on the concept of surface tension for the interfacial
pressure jump terms in the momentum equations. Real eigenvalues obtained as the closed-form solution of
characteristic polynomial represent the sound speeds in the bubbly flow regime that agree well with the
existing experimental data. The analytic sound speed is consistent with that obtained by the earlier study of
Nguyen et al. though there is a difference between them especially in the limiting condition. The present
sound speed shows more reasonable result in that condition than Nguyen et al.’s does. The present critical
flow criterion derived by the present sound speed is employed in the MARS code and is assessed by treating
several nozzle flow tests. The assessment results, without any adjustment made by some discharge
coefficients, demonstrate more accurate predictions of critical flow rate than those of the earlier critical flow
calculations in the bubbly flow regime.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Although the homogeneous equilibrium model is not a bad way of predicting the critical mass
flow in long pipes, the non-homogeneous non-equilibrium critical flow model is a matter of great
importance in the break of short pipes and the leakage of pressurized vessel where there is not
sufficient time for equilibrium to be achieved and when the relative motion is not repressed by
interfacial force.
The amount of two-phase fluid transportation rate through the pipe depends largely on the

critical condition of two-phase mixture that is represented by mixture sound speed near the
minimum cross-section because it provides system boundary conditions during flow transients.
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Engineering significance of the critical flow model led to a development of various empirical and
mechanistic models, such as Moody [1], Henry–Fauske [2], Trapp–Ransom [3] models, and so on.
However, accuracy of these models is still in question especially during thermal non-equilibrium
conditions.
Critical flow condition is defined as the condition where mass discharge from a system becomes

independent of conditions downstream, i.e., the condition where acoustic signals can no longer
propagate upstream. This occurs when the fluid velocity equals or exceeds the propagation speed.
Thus, it can be said that critical flow condition strongly relates with the mechanistic property of a
fluid flow governed by the sound wave propagation characteristics, i.e., eigenvalues of the
equation system.
The critical flow model of MARS [4] is based on Trapp–Ransom model [3]. The Trapp–

Ransom model incorporated an analytic choking criterion for non-homogeneous, equilibrium
two-phase flow. The two-fluid model for the conditions of thermal equilibrium is employed in the
Trapp–Ransom model, which consists of overall mass conservation, two phasic momentum
equations and the mixture entropy equation.
The momentum equations include the interface force terms called virtual mass terms

representing relative acceleration: see Refs. [5,6]. Trapp and Ransom derived an analytic choking
criterion that includes relative phasic acceleration terms and derivative-dependent mass transfer
based on the characteristic analysis of this two-fluid model [3]. However, it should be noted that
this criterion is derived based on the thermal equilibrium assumption, thus, may not be applicable
when the thermal non-equilibrium effect dominates.
Characteristics of a two-fluid equation system can be represented by system eigenvalues.

The real part of the system eigenvalues results the velocities of signal propagation along the
corresponding characteristic path in the space–time plane and the imaginary part represents the
rate of amplitude growth of the signal propagating along the respective path. In the Trapp–
Ransom model, the analytic form of sound speed was obtained by the characteristic analysis of
non-homogeneous, equilibrium conditions and it under-predicted the sound speed in comparison
with the experimental data in the bubbly flow regime [3]. Furthermore, the existence of the non-
zero imaginary part of the system eigenvalues may result in the non-physical, short wavelength
instability [7–9].
A new promising approach to removing the complex eigenvalues was proposed by Lee et al. [8]

and Chung et al. [9–11]. We introduced new terms, i.e., interfacial pressure jump terms based on
the surface tension terms into the momentum equations. Although quantitative amount of these
terms is relatively very small, they contribute to hyperbolicity of the equation system, even
without the conventional virtual mass or artificial viscosity terms. And the eigenvalues obtained
analytically represent comparable sound speed with the existing measured data as well as the
analytic result produced by Nguyen et al. [12] for bubbly flow.
In this study, we propose a new critical flow criterion for the two-phase bubbly flow regime

based on the hyperbolic two-fluid model. Then, new critical flow criterion is implemented in the
MARS code and assessed using Marviken nozzle flow tests [13].
We introduce the interfacial pressure jump terms in Section 2. Following the characteristic

analysis of the system matrix in Section 3, we discuss how the new sound speed criterion is
implemented in Section 4. Finally, in Section 5, we discuss the assessment results of new criterion
through several nozzle tests.
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2. Hyperbolic two-fluid model

Trapp and Ransom [3] investigated the impact of the virtual mass coefficient on the sound
speed. Even with the ‘zero’ virtual mass coefficient, Trapp–Ransom model under-predicted the
sound speed for the bubbly flow at low void fraction range, ago0:5: To preclude problems
associated with the selection of a virtual mass coefficient, we exclude the virtual mass terms in the
characteristic analysis and we only include the interfacial pressure jump term as follows.
The conservation laws provide one-dimensional two-fluid mass, momentum, and energy

equations based on the area-averaged phasic properties.
Continuity:

@ðakrkÞ
@t

þ
@ðakrknkÞ

@x
¼ fc;k: ð1Þ

Momentum:

@ðakrknkÞ
@t

þ
@ðakrkn

2
kÞ

@x
þ ak

@pk

@x
þ ðpk � piÞ

@ak

@x
¼ fm;k: ð2Þ

Internal energy:

@ðakrkukÞ
@t

þ
@ðakrkvkukÞ

@x
þ pk

@ak

@t
þ pk

@ðakvkÞ
@x

¼ fe;k: ð3Þ

The notation ak; rk; pk; vk; and uk denote volume fraction, density, pressure, velocity, and internal
energy, respectively, where phasic component k ¼ g is for the gas and k ¼ l is for the liquid. We
use an additive equation, ag þ al ¼ 1: The source terms like fc;k; fm;k; and fe;k depend on
algebraic forms, therefore, they do not alter mathematical property of the above differential
equation system.
The interfacial pressure jump term on the left hand side of momentum equation (2),

ðpk � piÞ@ak=@x; is related with the surface tension as introduced in Refs. [8–11]. Its salient feature is
not that the pressure has a jump at the interface but that its gradient is continuous across the
interface for bubbles in equilibrium. Consequently, we obtain the interfacial pressure jump terms as

ðpg � piÞ
@ag

@x
¼ Lm 1�

Rg

2

@ai

@ag

� �
@ag

@x
¼ CiLm

@ag

@x
; ð4Þ

ðpi � plÞ
@al

@x
¼ �Lm 1þ

Rl

2

@ai

@al

� �
@al

@x
¼ �CiLm

@al

@x
: ð5Þ

We use the interfacial area density relation for the bubbly flow, ai ¼ 3:6ag=D; suggested by Ishii
and Mishima [14]. The averaged bubble diameter D is generally obtained by using the Weber
number definition, We � 2Drlðvg � vlÞ

2=s:However, if we simply assume that two radii Rg and Rl

are equal to half of the averaged bubble diameter D; then the coefficient of interfacial pressure
jump Ci becomes constant having an order of magnitude Oð10�1Þ: see Ref. [10]. Since the fluid
bulk modulus is Lk � rkC2

k and it holds that Lg5Ll ; the mixture bulk modulus yields LmELg=ag

as shown by Chung et al. [9,11]. We assume here that the order of magnitude of the mixture
bulk modulus with constant is almost equal to that of the gas by taking agEOð10�1Þ for bubbly
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flow, which gives then

CiLm ¼ rgC2
g : ð6Þ

3. Sound speed for bubbly flow

The eigenvalues of the equation system represent the wave speed of small-amplitude short
wavelength perturbations as Whitham [15] indicated. For long wavelength disturbances,
dispersion and source terms play a more important role while, for large amplitude disturbances,
the non-linear wave interaction is dominant. If the eigenvalues are all real, the initial value
problem is well posed and stable against small disturbances.
In a matrix form, the mass, momentum, and internal energy equations become

@U

@t
þ G

@U

@x
¼ E: ð7Þ

The eigenvalues of matrix G in Eq. (7) are determined by a sixth order polynomial equation:

P6ðlÞ ¼ ðl� vgÞðl� vlÞ l
4 þ K1l

3 þ K2l
2 þ K3lþ K4

� �
¼ 0; ð8Þ

where the coefficients are expressed as functions of phasic properties:

K1 ¼ �2ðvg þ vlÞ;

K2 ¼ ðvg þ vlÞ
2 þ 2vgvl � ðC2

g þ C2
l Þ;

K3 ¼ 2fvgðC2
l � v2l Þ þ vlðC2

g � v2gÞg;

K4 ¼ ðC2
l � v2l ÞðC

2
g � v2gÞ:

The closed-form solution to the characteristic Eq. (8) gives a set of six real eigenvalues as listed in
Table 1. The first two simple eigenvalues, l1 and l2; yield phasic convection velocities. Two
eigenvalues, l3 and l5 with zero phasic velocities, i.e., vg ¼ vl ¼ 0; represent the sound speeds of
the gas and the liquid phase, respectively. The total sound speed of bubbly flow can be expressed
in the following form weighted by void fraction as

Ct ¼
l3l5

all3 þ agl5
: ð9Þ

By applying the closed-form solution of Eq. (8), we can get

Ct ¼

CgCl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgC2

g

alrgC2
g þ agrlC

2
l

s

alCg þ agCl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgC2

g

alrgC2
g þ agrlC

2
l

s : ð10Þ

For bubbly flow, the total sound speed agrees well with the experiment [16] in the void
fraction range, 0oago0:3; as shown in Fig. 1. As a limiting case, the sound speed becomes that of
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a single-phase fluid when there is no bubble, i.e., ag-0: That is limag-0 Ct ¼ Cl ; thus the result of
two-phase flow is clearly reduced to that of single-phase in that condition.
Nguyen [12] also derived the sound speed from the equations of continuity and momentum,

considering a stationary wave front in a moving single-phase medium as

Ct ¼

CgCl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgrl

alrgC2
g þ agrlC

2
l

s

ag
ffiffiffiffiffi
rg

p
þ al

ffiffiffiffi
rl

p : ð11Þ
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Fig. 1. Sound speed for vapor/water bubbly flow at p ¼ 283 kPa:

Table 1

Eigenvalues of the two-fluid model

Six eigenvalues

Bubbly flow regime l1 ¼ vg

l2 ¼ vl

l3 ¼ vg þ Cg

l4 ¼ vg � Cg

l5 ¼ vl þ Cl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgC2

g

alrgC2
g þ agrlC

2
l

s

l6 ¼ vl � Cl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rgC2

g

alrgC2
g þ agrlC

2
l

s
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He assumed that no phase change occurs during the propagation of sound wave and that the two-
phase flow is confined by rigid wall. He also assumed that influence of the surface tension upon
the pressure disturbance does not exist. Treating the interface of one phase as the elastic boundary
of the other, a single-phase fluid surrounded by another fluid shows a dependency upon the bulk
modulus of the other fluid, i.e. the sound speed decreases with an increasing elasticity of the other
fluid.
However, Nguyen’s model shows non-physical results that the sound speed of gas dispersed in

liquid is much greater than that of single-phase gas at the limiting case ag-0; as shown in Table 2.
For this reason, discrepancy between the present model and Nguyen’s model in the range of
extremely small void fraction, ago0:02; arises as shown in Fig. 1. An increasing deviation with
experimental data shown in the void fraction range ag > 0:3 is possibly due to the flow regime
transition effect.
We can find other useful experimental data at the condition of p ¼ 100 kPa which are measured

by Karplus [17] and Nakoryakov [18] and at the condition of p ¼ 117 kPa measured by Hall [19]
as shown in Figs. 2 and 3, respectively. At p ¼ 100 kPa; the predicted sound speed for vapor/water
bubbly flow well agrees with Ruggles’ model [20]. Comparing with the experimental data [17,18],
the predicted sound speed of the present, or the Ruggles’ model [20] is under-predicted in the void
fraction range, 0:05oag: Further, the difference of sound speeds between the Ruggles’ prediction
and the experimental data become larger than that between the present model and the
experimental data in the case of 0:1oag: Fortunately, the calculated sound speeds are not far from
the scatter of the experimental data [17,18]. However, at p ¼ 117 kPa; the present sound speed of
air/water bubbly flow shows excellent agreement with the Hall’s data [19] as shown in Fig. 3.

4. Implementation of sound speed criterion

One subroutine contains the two-phase choking criterion used as a boundary condition for
obtaining flow solutions in the MARS code. The MARS code is a multi-dimensional thermal
hydraulic system code developed by KAERI. It is based on a two-fluid model calculated using the
semi-implicit method [4] for transient analysis of integral systems. The implemented choking
criterion imposes on the junctions determined to be in a choked state. If the choking is predicted,
Eq. (12) is then written in terms of new-time phasic velocities and solved in conjunction with a
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Table 2

Comparison of the effective sound speed in each phase

Sound speed Present model Nguyen’s model

Liquid phase
Cl
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rgC2

g
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g þ agrlC

2
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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g
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g þ agrlC

2
l

s

Gas phase Cg

Cg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rlC

2
l

alrgC2
g þ agrlC

2
l

s
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difference momentum equation derived from the liquid and vapor momentum equations

agrgvg þ alrlvl

agrg þ alrl

¼ Ct: ð12Þ

ARTICLE IN PRESS

0.00 0.05 0.10 0.15 0.20 0.25
0

50

100

150

200

250

S
ou

nd
 s

pe
ed

 (
m

/s
)

Void fraction

 Present model (p=100kPa)
 Ruggles' model
 Karplus' data
 Nakoryakov's data

Fig. 2. Sound speed for vapor/water bubbly flow at p ¼ 100 kPa:
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It should be noted that the main difference between the Trapp and Ransom’s choking criterion [3]
and the present one is the definition of total sound speed Ct: We do not use Ct as the sound speed
assuming homogeneous equilibrium condition anymore.
It has been known that the Trapp–Ransom’s model under the homogeneous equilibrium

condition under-predicts the critical flow rates in the bubbly flow regime, ago0:5: Because the
Trapp–Ransom’s model under-predicts the mixture sound speed as shown in Fig. 4, the flow is
choked earlier with small discharge rate than that shown in the experimental data.
Because a feature of the equilibrium model is the discontinuity in fluid properties that occurs at

the saturation line, there is a discontinuous variation of the sound speed at the transition point
from the single-phase water to two-phase mixture using the Trapp–Ransom’s model. However,
the earlier experimental data for various conditions do not show such a non-physical discontinuity
as evidently shown in Figs. 1–3.
On the other hand, the Trapp–Ransom’s model derived from the frozen flow assumption

excluding phase change over-predicts the sound speed in the bubbly flow regime so that the
critical flow rate can be over-estimated. The sound speed criteria under the equilibrium and the
frozen flow assumptions show good thermodynamic boundaries of the lower and the upper
limitation in the two-phase flow, respectively. Therefore, it is reasonable that the sound speed of
non-equilibrium two-phase flow be evaluated between these boundaries as shown in Fig. 4.
In the critical flow model of the MARS code, choking is assumed to occur at the smallest

section of the flow fields called throat. The choking criterion can be written in the following form
derived by Eq. (10), which is similar to the single phase choking flow criterion and choking
corresponding to a total Mach number of unity:

Mt � vt=Ct ¼ 71; ð13Þ
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where vt � ðagrgvg þ alrlvlÞ=ðagrg þ alrlÞ is the total mixture velocity. In the choking test, the
fluid velocity is compared with the local sound speed, which is based on the hydrodynamic
conditions at the throat. It is noted that we only apply Eq. (13) with (10) for the calculation of
Marviken tests in the initial bubbly flow regime.
If the choking occurs, Eq. (13) is solved semi-implicitly with the upstream vapor and liquid

momentum equations for vg; vl ; and pg at the point of flow choking [4]. Because the virtual mass
terms have a significant effect on the wave propagation [10], we only include such time derivative
terms as momentum sources.

5. Marviken tests

In order to validate the present choking criterion, ten Marviken tests [13] are assessed using the
MARS code. Among them, three representative results of Marviken test 24 (nozzle length-to-
diameter ratio l=d ¼ 0:3), test 6 (l=d ¼ 1:0), and test 15 (l=d ¼ 3:6) with a fixed 30K subcooling
are shown in Figs. 5–7. And the results are compared with the experimental data as well as the
earlier calculations by Trapp–Ransom model [3,4]. It should be noted here that we set a discharge
coefficient of 1.0 for all discharge periods for assessment and comparison of models though many
researchers have generally adopted the discharge coefficients empirically ranged.
The Marviken tests [13] represent large-scale critical flow tests. The pressurized vertical vessel

with the total volume of 420m3 inserted downward nozzles of various length-to-diameter ratio l/d,
was initially filled with subcooled water and it was used to provide data for the choked discharge
flow rate of subcooled water, low quality two-phase mixtures, and steam. The vessel inner-
diameter and height are 5.22 and 24.55m, respectively.
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Tests were initiated by failing rupture disks attached to the downstream end of the nozzles and
then the subcooled water discharges from the nozzles. The water level in the pressurized vessel was
initially at 19.88, 17.81, and 19.93m for tests 24, 6, and 15, respectively, above the bottom of

ARTICLE IN PRESS

0 20 40 60 80
0

1

2

3

4

5

6

M
as

s 
flo

w
 ra

te
 (1

00
0k

g/
s)

Time (sec)

 Marviken Test 6
 Present model
 Trapp-Ransom model

Fig. 6. Comparison between model predictions and measured data for Marviken test 6 (l/d=1.0).

0 20 40 60 80
0

2

4

6

8

10

12

14

M
as

s 
flo

w
 ra

te
 (1

00
0k

g/
s)

Time (sec)

Marviken Test 15
 Present model
 Trapp-Ransom model

Fig. 7. Comparison between model predictions and measured data for Marviken test 15 (l/d=3.6).

M.-S. Chung et al. / Journal of Sound and Vibration 276 (2004) 13–2622



vessel, and the steam dome above water levels was saturated at 4.96MPa for tests 24, 6 and
5.04MPa for test 15.
During the tests, the subcooling at the nozzle inlet decreased from 60 to 35K in the first 0.5 s

and then decreased gradually until saturated conditions were established at 25 s in tests 25 and 15,
and at 50 s in test 6. Two-phase flow period persisted between 25 and 55 s in tests 24 and 15, and
after 50 s in test 6. Test data were determined from both pitot-static measurements at the
discharge pipe. The transitions from subcooled to saturated bubbly flow are clearly shown in
Figs. 5–7. Following discharges of subcooled water, two-phase bubbly flow period is characterized
by a steadily decreasing flow rate and pressure.
Figs. 5–7 show the numerical results of the present model at the discharge pipe above the test

nozzles in comparison with the experimental data and those of Trapp–Ransom model [3]. In the
numerical calculations during the subcooled water discharge using the present model and the
Trapp–Ransom model, one single-phase critical flow model is equally used. For this reason, both
of the numerical results have the same discharge flow rates until the flow transition from the
subcooled water to two-phase bubbly flow.
Although the numerical results do not agree exactly with the experimental data during the

subcooled water flow rate, the two-phase critical flow rates calculated using the present model
show relatively good agreements with the experimental data as shown in Figs. 5 and 7, whereas
those using the Trapp–Ransom model predict critical flow rates much smaller than the
experimental data.
On the other hand, the numerical results agree well with the experimental data during the

subcooled water discharge, but not during the two-phase bubbly flow discharge in Fig. 6. In spite
of discrepancies, the two-phase critical flow rates calculated using the present model still show
relatively good results compared with those using the Trapp–Ransom model as shown in Fig. 6.
Consequently, the under-prediction of the Trapp–Ransom model is evident for smaller l/d ratio

in which thermal non-equilibrium effect dominates. The present model also reproduces the onset
of transition to single-phase vapor discharge in good agreement with experimental data, whereas
the transition is prolonged a lot by the Trapp–Ransom model. Although many researchers have
generally used the discharge coefficients empirically ranged about 0.8–1.3 to adjust their
numerical result to the experimental data, we do not use such adjustments in treating these
Marviken test problems.
As shown in Fig. 8, the bubbly flow and the annular flow are dominant flow regimes until the

end of the Marviken test procedures at the nozzle outlets. Flow regimes are indicated by the flow
regime number, namely, # 4, # 6, and # 7: Number 4, 6, and 7 on the vertical axis represent
bubbly, annular, and dispersed flows, respectively. The flow regime transitions from bubbly to
annular flow occur abruptly at time 55 and 60 s in the typical test 15 and 24, respectively. Because
of the time limits in the real tests, the other transition of flow regimes, from annular flow to
dispersed flow, does not exist as shown in Figs. 5 and 7. It should be noticed that these transitions
of flow regimes are occurred near the critical point: the critical flow generally occurs at the outlet
of the test nozzles below the discharge pipe.
From the assessment results, it is concluded that the present model improves not only the

accuracy of the two-phase flow rate but also the transition point from two-phase mixture to
single-phase vapor discharge even without the adjustment of discharge coefficient. Thus, MARS
code uncertainty related with the critical flow is reduced, which will enhance the code
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predictability for transient analysis of a thermal hydraulic system. Such improvement mainly owes
to the new choking criterion for non-homogeneous and non-equilibrium flow.
As compared in Fig. 9, the present model gives better results than the Trapp–Ransom model does

during the two-phase bubbly flow discharges of 10 tests in the various conditions as shown in Table 3.
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The mass flow rate obtained by the Trapp–Ransom model is under-predicted with discrepancies of
maximum 41% for tests. The relative errors given by the results calculated by the present model
during the bubbly flow regime are much smaller than those by the Trapp–Ransom model.

6. Concluding remarks

A new choking criterion for two-phase bubbly flow has been developed based on the hyperbolic
two-fluid model for non-equilibrium and non-homogeneous flow. The hyperbolic two-fluid model
employs the interfacial pressure jump terms in momentum equations derived from the concept of
surface tension. Total sound speed of two-phase mixture is analytically derived from the system
eigenvalues obtained using the characteristic analysis of the hyperbolic two-fluid model. It is
found that this analytic sound speed agrees well with the earlier experimental data and shows
better prediction in some cases compared with the previous models of Nguyen and Trapp–
Ransom. This new choking criterion has been implemented in the MARS code and assessed by
Marviken critical flow tests. From the assessments, it is validated that the new choking criterion
improves not only the accuracy of two-phase critical flow rate but also the transition point even
without any adjustment using discharge coefficients. In conclusion, this choking criterion
improves the accuracy of two-phase critical flow, thus, enhances the MARS code capability for
the realistic simulation of thermal hydraulic system transients.
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