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Abstract

The design of inertial actuators with local force feedback control and their use in active vibration
isolation systems is considered. Unlike reactive actuators, inertial actuators do not need to react off a base
structure and can therefore be directly installed on a vibrating structure. In order to guarantee good
stability margins in the active isolation controller, however, the actuator resonance must have a low natural
frequency and it must be well damped.
The behaviour of an inertial actuator with different local force feedback control schemes is first analysed,

and it is shown that a phase-lag controller has a good stability margin and can effectively damp the
actuator resonance using relatively low gains, compared with a direct force feedback or integrated force
feedback controller.
A frequency-domain formulation is then used to analyse the stability and performance of an active

isolation system using an inertial actuator with local force feedback control and an outer velocity feedback
control loop. The plant response, from force actuator input to sensor output, is derived in terms of the
mechanical mobilities of the equipment structure being isolated and the vibrating base structure, and the
mechanical impedance of the intervening mount.
An experimental study of active vibration isolation using an inertial actuator with local feedback control

was then carried out. Theory and experiments agree well, demonstrating the effectiveness of the phase-lag
controller. However, the need to have an inertial actuator with a low resonance frequency leads to problems
with static deflections.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A problem that arises in several application areas is the isolation of sensitive equipment from
vibration of the base structure to which it is attached. The isolation of any vibration-sensitive
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equipment from base vibration is usually achieved using resilient mounts. However, with such
passive mounts there is a trade-off between low- and high-frequency isolation performances
depending on the damping of the mount. A major challenge is to make the mount as stiff as
possible, statically, to better support the equipment, and dynamically as soft as possible, to better
isolate the equipment. This is difficult to accomplish with passive elastometric mounts, as
described by Crede [1] and Ungar [2].
To provide a more favourable static and dynamic stiffness compromise, active isolation

solutions such as skyhook damping [3] must be used, which are usually based on mounts and
actuators. This paper is specifically concerned with the use of inertial actuators in active vibration
isolation systems. Inertial actuators do not need to react off a base structure, so they can be used
as modules that can be directly installed on a vibrating structure. It has previously been shown,
however, that in order to implement stable skyhook damping with an inertial actuator, the natural
frequency of the actuator must be below the first resonance frequency of the structure under
control and the actuator resonance should be well damped [4].
In Section 2 the dynamic model of a typical inertial actuator is described and its blocked

response and mechanical impedance are derived.
In Section 3 a theoretical analysis of an inertial actuator with local force feedback control is

presented. In particular, direct force feedback control, integrated force feedback control and an
intermediate solution based on a phase-lag compensator are discussed. It is found that this latter
solution gives the closed-loop system a good stability margin and good performance.
In Section 4 the active vibration isolation problem is investigated using the locally controlled

inertial actuator. The Nyquist plot and frequency response are discussed for a particular case in
which a rigid equipment structure is resiliently mounted on a vibrating flexible base.
In Section 5 experiments are described that support the theoretical findings and finally in

Section 6 some overall conclusions are drawn.

2. Inertial actuator response

An inertial actuator is a mass supported on a spring and driven by an external force. The force
in small actuators is normally generated electromagnetically. The suspended mass can either be
the magnets with a supporting structure or in some cases the coil itself. The transduction
mechanism which would supply the force to the system is not modelled in detail because its
internal dynamics are typically well beyond the bandwidth of the structural response. Unlike
reactive actuators, inertial actuators do not need to react off the base structure, so they can be
used as modules that can be directly installed on a vibrating structure. This feature makes them
very useful.
A mechanical model of an inertial actuator is shown in Fig. 1. A mass is suspended on a spring

and a damper, and in parallel with them, an actuator force fa drives the mass. va and ve are,
respectively, the moving mass velocity and the base velocity. The equation describing the
dynamics of the system in Fig. 1 is given by

jomava þ caðva � veÞ þ kaðva � veÞ=jo ¼ �fa; ð1Þ
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where va and ve are complex velocities. Important parameters in characterizing the behaviour of
an inertial actuator are its resonance frequency, which is given by

oa ¼

ffiffiffiffiffiffi
ka

ma

s
ð2Þ

and the actuator damping ratio, defined as

za ¼
1

2

caffiffiffiffiffiffiffiffiffiffiffi
kama

p : ð3Þ

The transmitted force ft is a linear function of the actuator force fa and the equipment velocity ve;
and may be written as

ft ¼ Ta fa � Zave; ð4Þ

where

Ta ¼
�o2ma

ka � o2ma þ joca

ð5Þ

is the blocked response of the actuator and

Za ¼
jomaka � o2maca

ka � o2ma þ joca

ð6Þ

is its mechanical impedance. The blocked response of a typical actuator with za ¼ 4:7% is
illustrated in Fig. 2, showing the resonance at its natural frequency. At high frequency this
response tends to unity, with no phase shift, indicating that the transmitted force ft follows the
actuator force fa since the mass provides a stable inertial platform to react the force. The
mechanical input impedance of the actuator, as plotted in Fig. 3, is mass-controlled at low
frequency, stiffness controlled at higher frequency and at the resonance frequency is dominated by
the actuator’s damping.
Depending on the actuation orientation with respect to gravity, or other static accelerations, the

effective stroke of the actuator can be reduced as the suspended mass is forced closer to one end
stop. The worst case is when the actuator output axis is aligned with the local static acceleration
field, which is the case for the problem analysed in this work. The magnitude of the gravity-
induced sag is proportional to the inverse of the square of the actuator’s resonance frequency [2].
Consequently the lower the resonance frequency, the greater the sag.
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Fig. 1. Mechanical model and sign convention of an inertial actuator.
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3. Inertial actuator with local force feedback

The inertial actuator with local force feedback control is shown schematically in Fig. 4. The
transmitted force ft is measured and fed back to the inertial actuator through a feedback
controller with frequency response HðjoÞ: The command signal fc can be considered, in control
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Fig. 2. Blocked response, transmitted force per unit actuator force, of the inertial actuator as a function of normalized

frequency.
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Fig. 3. Mechanical input impedance, reaction force per unit imposed velocity, of the inertial actuator as a function of

normalized frequency.
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terms, as the reference point [5]. In this section the stability and performance of the actuator with
various types of local force feedback will be discussed.

3.1. Direct force feedback control

If HðjoÞ ¼ hf ; where hf is a positive constant, direct force feedback is implemented. The
Nyquist plot of the open-loop response of the blocked actuator is shown in Fig. 5, which allows
the relative stability of the system to be assessed [5]. Direct force feedback control is seen to be
unconditionally stable in this ideal case since for no feedback gain would the Nyquist plot enclose
the ð�1; 0Þ point. At low frequency, the Nyquist plot does lie very close to the real axis, however,
and therefore instability is likely to occur at high gains in real systems where an additional low-
frequency phase shift may be present due to the electronic components [6,7]. It can also be noted
that at high frequency the Nyquist plot does not go to the origin and this is due to the fact that the
magnitude in the corresponding Bode plot (Fig. 2) tends to a constant.
An important assumption that underlies the result shown in Fig. 5 is that the supporting

structure which the inertial actuator is attached to is assumed to be perfectly rigid. For a more
general analysis equation (4) can be expanded with the base velocity ve written in terms of the
input mobility of the structure Ye as

ve ¼ Ye ft: ð7Þ

Substituting Eq. (7) into Eq. (4) the plant transfer function in this case, between actuator force fa

and transmitted force ft; is given by

Gf ¼
ft

fa

¼
Ta

1þ ZaYe

: ð8Þ

The difference between the blocked plant response, Ta; and that when it is loaded by the structure,
is the factor ð1þ ZaYeÞ

�1: If the structure is vibrating with velocity vep before the actuator is
attached, its velocity after the actuator has been attached is given by

ve ¼ vep þ Ye ft: ð9Þ

Assuming that the actuator is undriven, fa ¼ 0; then ft from Eq. (4) will be equal to �Zave:
Substituting this into Eq. (9), the fractional change in the structure’s velocity due to the
attachment of the undriven actuator (i.e., its passive effect on the structure’s vibration) is given by

ve

vep

¼
1

1� YeZa

; ð10Þ
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Fig. 4. Schematic of an inertial actuator with local force feedback control.
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which provides some physical interpretation of the effect of the mobility of the structure on the
inertial actuator’s plant response with local force feedback. The reciprocal frequency response of
the plant in the case of direct force feedback control, from Eq. (8), can be written as

G�1
f ¼ T�1

a ½1þ ZaYe�: ð11Þ

The reciprocal of the blocked actuator response Ta (Fig. 2) has a phase shift between 0
� and

þ180�: Both Za and Ye are passive terms and thus their individual phase shift is between 790�:
Consequently, ZaYe and thus ½1þ ZaYe� could vary between 7180�: The overall phase shift of
Eq. (8) can therefore, in general, range between �180� and þ360�; and so in the most general case
a constant gain feedback loop is only conditionally stable. In the case of the ideal inertial actuator,
however, the phase of Za is restricted to being between 0

� and þ90� below its natural frequency
and between �90� and 0� above its natural frequency. One of the applications of the device
described in this section, as will be discussed in Section 4, is the vibration isolation of a sensitive
piece of equipment using an outer velocity feedback loop to provide skyhook damping. In order
to implement a stable outer closed-loop system with an inertial actuator, the actuator resonance
must be below the first resonance frequency of the structure under control [4]. The modification of
the plant response due to loading by the structure is not as severe in this case as in the most
general case described above. For example the Nyquist plot of a system composed of an inertial
actuator with direct force feedback control mounted on a rigid piece of equipment, which is
connected to a vibrating base through a resilient mount, is shown in Fig. 6, in which the natural
frequency of the equipment on its resilient mount is about twice the actuator’s natural frequency
and the specific values of the parameters used in the simulations have been taken from Table 1.
The phase shift of the plant is again restricted to between 0� and þ180�; with the first loop, at low
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Fig. 5. Nyquist plot of the open-loop response for the inertial actuator with direct force feedback ðhf ¼ 1Þ; attached to
a rigid structure.

L. Benassi et al. / Journal of Sound and Vibration 276 (2004) 157–179162



frequency, determined by the behaviour of the inertial actuator, while the smaller loop, at higher
frequency, describes the dynamic loading effect of the equipment on its resilient mount on the
actuator.
The secondary force fa for the direct force feedback system shown in Fig. 4 is given by

fa ¼ hf ð fc � ftÞ; ð12Þ

which when substituted into Eq. (4) and expanded, provides the closed-loop transmitted force as a
function of the control command, fc; and the equipment velocity, ve: This is given by

ft ¼
�o2mahf

ka þ joca � o2mað1þ hf Þ
fc �

jomaka � o2maca

ka þ joca � o2mað1þ hf Þ
ve: ð13Þ

The closed-loop response of the actuator with direct force feedback is given by the transmitted
force ft per unit control command fc; as plotted in Fig. 7. The assumed parameters of the system
are given in Table 1. When the local feedback gain hf increases, the transmitted force tends to the
control command fc: This means that the transmitted force can be regulated using the command
signal fc: A second important aspect is that when the feedback gain hf increases, the actuator
resonance is shifted to lower frequencies, while its magnitude increases. The transmitted force ft is
proportional to the acceleration of the moving mass ma and consequently direct force feedback is
equivalent to feeding back the acceleration of the moving mass. Direct force feedback control can
thus be interpreted physically as adding an ‘‘apparent’’ mass to the inertial actuator moving mass
[8]. Although this lowering of the actuator’s natural frequency is desirable when used for active
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Fig. 6. Nyquist plot of the open-loop response for the inertial actuator with direct force feedback ðhf ¼ 1Þ; attached to
a flexible structure.
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isolation, it makes the stability of the inner feedback loop even more sensitive to low-frequency
phase shifts.
Fig. 8 shows the transmitted force ft per unit equipment velocity, ve; which is equal to the

impedance of the actuator with direct force feedback. The lowering of the resonance frequency
can again be observed. It can also be seen that as the feedback gain hf is increased, the actuator’s
impedance becomes smaller, particularly at high frequencies, as predicted by Eq. (13).

3.2. Integrated force feedback control

If the local feedback controller in Fig. 4 is given by HðjoÞ ¼ hif =jo; then integrated force
feedback control is implemented. The effect of an integrator in the feedback loop is to rotate the
Nyquist plot of the plant response by 90� clockwise. The Nyquist plot of the open-loop response
for the actuator with integral force feedback on a rigid base, for example, is shown in Fig. 9, which
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Table 1

Values used in the simulations

Inertial actuator moving mass ma ¼ 0:91 kg
Inertial actuator damping factor ca ¼ 5:8 N=m s�1

Inertial actuator spring stiffness ka ¼ 3900 N=m
Equipment mass me ¼ 1:08 kg
Passive mount damping factor cm ¼ 18 N=m s�1

Passive mount spring stiffness km ¼20,000 N=m
Vibrating plate See Ref. [8]
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Fig. 7. Transmitted force per unit control command for the inertial actuator with local force feedback when different

feedback gains hf are used: hf ¼ 1 (solid), hf ¼ 20 (faint), and hf ¼ 100 (dashed).
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is a rotated version of Fig. 5. The Nyquist plot now lies entirely on the right-hand side of the
complex plane, so that this control system is inherently more robust than direct force feedback. In
particular low-frequency phase shifts, due to conditioning electronics, of up to þ90� will not
destabilize the system. Also high-frequency perturbations of the plant response due to the finite
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Fig. 9. Nyquist plot of the open-loop response of the inertial actuator with local integral force feedback HðjoÞ ¼
hif =jo; with hif ¼ 1; on a rigid structure.
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mobility of the structure under control, as discussed above, will not destabilize the system since
for the isolation example, whose effect on force feedback was shown in Fig. 6, the Nyquist plot
will still be on the right-hand side of the complex plane with integral force feedback. The actuator
force in this case is given by

fa ¼
hif

jo
o1ð fc � ftÞ; ð14Þ

where o1 is introduced to ensure that hif is dimensionless, and is assumed to have the value
138:2 rad=s for reasons that will be evident below. When Eq. (14) is substituted into Eq. (4), the
transmitted force becomes

ft ¼
jomahif

ka þ joca � o2ma þ jomahif

fc �
jomaka � o2maca

ka þ joca � o2ma þ jomahif

ve: ð15Þ

The blocked response of the actuator, the transmitted force ft per unit control command fc; with
integral force feedback is plotted in Fig. 10. Unlike the previous case, the resonance frequency
does not change significantly when the feedback gain increases, although ft does tend to fc when
very high gains are implemented. For relatively low values of the feedback gain, however, the
magnitude falls off above the resonance frequency and a phase shift occurs. Compared to the
force feedback control, as shown in Fig. 7, in which the closed-loop response tends to unity with
no phase shift at higher frequencies even for moderate feedback gains, higher integral feedback
gains are needed with this control strategy in order to obtain the same levels of transmitted force.
Fig. 11 shows the frequency response of the actuator’s mechanical impedance, ft=ve; for

different feedback gains hif :When the feedback gain hif is increased, the impedance is reduced at
the resonance frequency and for very high values of feedback gain the magnitude is reduced over
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Fig. 10. Transmitted force per unit control command for the inertial actuator with local integral force feedback when

different feedback gains hif in HðjoÞ ¼ hif o1=jo are used: hif ¼ 1 (solid), hif ¼ 20 (faint), and hif ¼ 100 (dashed).
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the whole frequency range shown in Fig. 11. The physical interpretation of this behaviour is that
the integral of the transmitted force is proportional to the velocity of the actuator’s mass, and
integral force feedback thus adds damping to the system.
The direct force feedback control of the actuator thus does not guarantee a good stability

margin at low frequency whereas with integral force feedback large feedback gains are required
for good performance at high frequencies. It would therefore be a good idea to alter the local
feedback loop in such a way that it behaves like a force feedback controller at frequencies higher
than a certain appropriate value and it behaves like an integrated force feedback controller at low
frequencies, as will be discussed in the next section.

3.3. Phase-lag compensator

The frequency response of a phase-lag compensator, HðjoÞ ¼ hplððjoþ o1Þ=joÞ; is plotted in
Fig. 12 for the case where o1 ¼ 138:2 rad=s: If this is used as the local controller in Fig. 4, the
Nyquist plot of the open-loop system is shown in Fig. 13. The stability of the closed-loop system is
between the behaviour of the previous two cases. In particular, at low frequency the stability
margin of the closed-loop system is almost as good as the integrated force feedback case and this
is due to the �90� phase shift that the phase-lag controller adds to the plant response at low
frequency. At higher frequencies the controller does not add any additional phase shifts and the
behaviour of the plant is preserved. The stability of the control system also preserves its
robustness when the controller is attached to a flexible structure, since it will affect the Nyquist
plot in a similar way to that shown in Fig. 6.
The value of o1 is chosen in order to provide a reasonable trade-off between stability of the

overall system (especially at low frequency) and its performance. Since the inertial actuator
resonance frequency is responsible for the conditional stability of the system, by adding an
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Fig. 11. Frequency response of the actuator’s mechanical impedance when hif ¼ 0 (solid), hif ¼ 20 (faint), and

hif ¼ 100 (dashed).
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integrator to the feedback loop, the corresponding portion in the Nyquist plot is rotated by 90�

clockwise, leading the closed-loop system away from a potential instability. In order to guarantee
this feature, o1 must be greater than the inertial actuator resonance frequency. On the other hand,
in order to guarantee good performance, o1 should be small, such that the closed loop system can
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Fig. 12. Frequency response of the phase-lag compensator HðjoÞ ¼ hplðjoþ o1Þ=jo; with hpl ¼ 1 and o1 ¼
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benefit from the local force feedback controller. In this study, o1 was chosen to be 2p 	 22 ¼
138:16 rad=s; where 22 Hz corresponds to the equipment-dominated resonance frequency of the
vibration isolation problem discussed in Section 4. A detailed discussion on the appropriate choice
of o1 is given in Ref. [8].
The actuator force in this case is given by

fa ¼ hpl
joþ o1
jo

ð fc � ftÞ: ð16Þ

Substituting this into Eq. (4), the transmitted force becomes

ft ¼
�o2mahpl þ jomahplo1

ka þ joca � o2mað1þ hplÞ þ jomahplo1
fc

�
jomaka � o2maca

ka þ joca � o2mað1þ hplÞ þ jomahplo1
ve; ð17Þ

which can be written in the compact form

ft ¼ T 0
a fc � Z0

ave ð18Þ

where T 0
a and Z0

a are the blocked response and mechanical impedance of the actuator, as modified
by the local force feedback. Fig. 14 shows the transmitted force per unit control command. As the
feedback gain hpl increases, ft tends to fc at all frequencies. Compared to the previous control
scheme (Fig. 10), at frequencies higher than the resonance frequency, the magnitude is more level,
indicating a better performance at high frequency since ft is closer to fc than in the previous case.
Also, unlike the previous case, there is a smaller phase-lag at frequencies higher than the
resonance frequency.
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Fig. 15 shows the frequency response of the actuator’s mechanical impedance for different
feedback control gains hpl : When the feedback gain hpl increases, the impedance ft=ve tends to
zero, but this is only achieved for large values of the gain. Otherwise, the behaviour is similar to
the previous case. Compared to the uncontrolled case (solid line), when the controller is activated
the first resonance is no longer present in the impedance equation. This can be physically
explained considering the fact that when the feedback gain hpl in the phase-lag compensator
increases, the closed-loop system tends to an equivalent system in which the inertial actuator has
been removed.

4. Active isolation with the modified inertial actuator

In this section the use of an inertial actuator with local feedback for the active isolation of a
rigid equipment structure supported on a flexible base by a resilient mount is considered. The
arrangement is illustrated in Fig. 16, and is described fully by Benassi et al. [8]. It consists of a
flexible steel base plate 700 mm� 500 mm� 2 mm thick, clamped on the two longer sides, which
supports a rigid equipment structure modelled as a point mass on which is mounted an inertial
actuator. The equipment structure is supported by a mount, which has a stiffness, km; and
damping, cm: The values of the parameters used in the simulations have been taken from Table 1.
The model assumes that the system is divided into four elements: a vibrating plate acting as the
base structure, a passive mount, the equipment, and the inertial actuator. The actuator has a
resonance frequency of about 10 Hz and has a damping ratio of about z ¼ 4:5%; the mounted
equipment has a resonance frequency of about 21:5 Hz and a damping ratio of about z ¼ 5:2%;
and the vibrating base has a first resonance frequency of about 44:8 Hz and a damping ratio of
about z ¼ 4:8%: An inner force feedback loop is used to modify the response of the inertial
actuator and an outer velocity feedback system is used to provide active skyhook damping for the
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Fig. 15. Frequency response of the impedance when hpl ¼ 0 (solid), hpl ¼ 20 (faint), and hpl ¼ 100 (dashed).
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equipment, also illustrated in Fig. 16. In this study it has been assumed that the actuator
resonance frequency is smaller than the equipment natural frequency. When the inertial actuator
resonance frequency is greater than the equipment natural frequency, the overall system is more
difficult to control and the control strategies presented here do not give good results [8,9].
The expression for the equipment velocity as a function of the primary force fp and the

transmitted force ft; when a local force feedback control and an outer velocity feedback loop is
implemented, is given by

ve ¼
YeZmYb

1þ ZmðYe þ YbÞ
fp þ

Yeð1þ YbZmÞ
1þ ZmðYe þ YbÞ

ft; ð19Þ

where Ye is the mobility of the equipment structure, Yb is the mobility of the base structure and
Zm is the mechanical impedance of the mount. Since the equipment structure is assumed to behave
entirely like a rigid body of mass, me; its input mobility is equal to Ye ¼ 1=ðjomeÞ: The mount is
assumed to have a negligible mass, and so without loss of generality its impedance can be written
as

Zm ¼
km

jo
þ cm; ð20Þ

where km is the mount’s stiffness and cm its damping factor, both of which may be frequency
dependent. It can be shown [8] that inner force and outer velocity feedback control does not
guarantee a good stability margin, but it performs very well. On the other hand, integrated inner
force and outer velocity control is more stable, but it requires higher gains in order to achieve
comparable performance. The implementation of a phase-lag controller within the local feedback
loop and an outer velocity feedback control loop seems to be an effective compromise between
these two approaches. Substituting Eq. (18) into Eq. (19), the expression for the equipment
velocity is given by

ve ¼
YeZmYb

1þ ZmðYe þ Yb þ YeZ0
aYbÞ þ YeZ0

a

fp þ
YeT

0
að1þ YbZmÞ

1þ ZmðYe þ Yb þ YeZ0
aYbÞ þ YeZ0

a

fc: ð21Þ

If the control law of the outer feedback loop is assumed to take the form fc ¼ �ZDve; where ZD

can be interpreted as the desired impedance of the outer feedback system, then Eq. (21) can be
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used to derive the equipment velocity per primary force with both feedback loops as given by

ve ¼
YeZmYb

1þ ZmðYe þ Yb þ YeZ0
aYbÞ þ YeZ0

a þ YeT 0
að1þ YbZmÞZD

fp: ð22Þ

The stability of the outer loop can be assessed from Fig. 17, which shows the Nyquist plot of the
open-loop response of the outer feedback loop, for an inner feedback gain of hpl ¼ 100; with the
phase-lag controller and an outer feedback gain of ZD ¼ 1: Fig. 18 shows the equipment velocity
per unit primary excitation for different gains in the outer feedback loop. The ‘‘passive’’ effect of
the inertial actuator with local feedback on the equipment dynamics can be seen from the response
with ZD ¼ 0; which shows almost no resonance near the actuator’s natural frequency. Good
vibration isolation conditions can be achieved at the mounted natural frequency of the equipment.
This is due to the fact that at higher frequencies the inertial actuator behaves as an almost perfect
force source. The system with both inner and outer feedback loops thus has a good stability
margin and it performs well. The mechanical impedance of the actuator when both inner force
and outer velocity feedback loops are implemented is given by

Z ¼
jomaðka þ hplo1ZDÞ � o2maðca þ hplZDÞ
ka þ joca � o2mað1þ hplÞ þ jomahplo1

; ð23Þ

which is plotted in Fig. 19 for an inner phase-lag controller gain of hpl ¼ 100 and an outer velocity
gain of ZD ¼ 100: It can be noted that the actuator impedance Z ¼ ft=ve tends to the desired
impedance, ZD; past the first resonance frequency, which indicates that the overall system of the
inertial actuator with both feedback loops tends to a skyhook damper, as required.
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5. Experiments with local feedback

Fig. 20 shows the active isolation system used in the experimental work. It consists of an
aluminium mass acting as the equipment structure, two mounts placed symmetrically underneath
the aluminium mass and one LDS Ling Dynamic Systems V101 electromagnetic shaker to
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produce the control force. The case and permanent magnet of the shaker are used as the proof-
mass and the shaker is attached to the equipment structure by the coil. The shaker is placed on top
of the mass and its weight is held by an external suspension system. This is clearly not a very
desirable arrangement in practice, but it does allow a low actuator natural frequency to be
achieved with standard laboratory equipment.
The aluminium mass had been previously shown [10] to behave as a rigid body up to 1000 Hz;

which is well above the maximum frequency of interest in this experimental study. This system is
attached to a flexible plate made of steel. Further details on the passive mount system are given by
Gardonio et al. [11] and a complete discussion on the active system is given by Benassi et al. [12].
Accelerometers and force gauges are used as sensors in the positions shown in Fig. 20. When a
passive phase-lag compensator is employed as a controller in the local feedback loop, the
measured open loop plant response, from command signal to force output as shown in Fig. 21, is
in reasonable agreement with Fig. 17. Additional low-frequency phase shifts due to the transducer
conditioning electronics cause the experimental Nyquist plot to be rotated anti-clockwise at low
frequencies compared with the theoretical predictions, which makes the outer loop only
conditionally stable. The spectrum of the measured equipment velocity, normalized by the
primary force, is shown in Fig. 22 with no control and with three values of outer velocity feedback
gain. The corresponding simulations are shown in Fig. 18.
The experimental measurements are again in reasonable agreement with the theoretical

predictions. Below the second cut-off frequency of the phase-lag compensator ð22 HzÞ; the
systems behave as if inner integrated force feedback and outer velocity feedback control were
implemented, whereas at frequencies higher than 22 Hz; the system behaves as if inner force
feedback and outer velocity feedback control were implemented. The maximum attenuation that
was obtained in the equipment velocity was about 13 dB; but it should be noted that this was not
constrained by stability issues, but was due to gain limitations in the amplifiers that were used. At
frequencies below 2 Hz; the data is not meaningful because of low coherence in the measurements.
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6. Discussions and conclusions

A review of different local feedback loop strategies for active vibration control using an inertial
actuator has been presented. Feedback stability margins and performance were considered. The
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main finding was that the use of a phase-lag compensator within a local force feedback loop in the
inertial actuator is stable and gives an improved actuator response.
A theoretical and experimental investigation of the active vibration isolation of a rigid piece of

equipment from a vibrating base structure using the modified inertial actuator was then carried
out. The simulation results obtained using a phase-lag compensator within the local feedback loop
and a velocity feedback outer loop seem to be very attractive. In order to establish how well this
dual-loop control strategy performs compared with an optimal feedback control strategy, some
simulations of full state feedback, optimized using LQG control theory, are presented in
Appendix A. If the control effort in these simulations is adjusted to be similar to those used by the
dual-loop controller, very similar overall attenuations in the equipment velocity are obtained.
The experiments confirmed that large reductions of the equipment velocity, more than 13 dB;

can be achieved at its fundamental resonance, together with a very good stability margin. The
most important constraints in the use of inertial actuators in active vibration isolation systems are
the actuator resonance frequency must be lower than the equipment-dominated resonance
frequency and that the actuator resonance must be well damped. An inner force feedback loop
can both lower the natural frequency and add considerable damping to the actuator. When the
natural frequency of the actuator is low, however, the gravity-induced sag on the actuator’s
inertial mass will limit the stroke of the actuator.

Appendix A. Equipment isolation of a SDOF system with an inertial actuator using an LQG

regulator

In this appendix the performance of a full state feedback controller designed using optimal
control theory will be investigated to compare with the performance obtained from the inertial
actuator with inner force and outer velocity feedback. The response of the base plate is
approximated by that of a single mass spring damper system, as shown in Fig. 23, in order to keep
the state-space model simple. The parameters of this model of the base structure were chosen to
best approximate the first mode of the base plate. The internal states of the system are given by the
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displacements of the base mass, equipment mass and actuator mass, g1; g2; g3 and their velocities
’g1; ’g2; ’g3 and the system is driven by the forces f1; f2 and f3: The model of the plant in generalized
co-ordinates in Fig. 23 is given by

m1 .g1 ¼ f1 þ k2ðg2 � g1Þ � k1g1 þ d2ð’g2 � ’g1Þ � d1’g1;

m2 .g2 ¼ f2 þ k3ðg3 � g2Þ � k2ðg2 � g1Þ þ d3ð’g2 � ’g1Þ � d2ð’g2 � ’g1Þ;

m3 .g3 ¼ f3 � k3ðg3 � g2Þ � d3ð’g3 � ’g2Þ; ðA:1Þ

which can be written as

M.cðtÞ þD’cðtÞ þ KcðtÞ ¼ fðtÞ; ðA:2Þ

where

M ¼ diagfm1 m2 m3g; ðA:3Þ

K ¼

ðk1 þ k2Þ �k2 0

�k2 ðk2 þ k3Þ �k3

0 �k3 k3

2
64

3
75; D ¼

ðd1 þ d2Þ �d2 0

�d2 ðd2 þ d3Þ �d3

0 �d3 d3

2
64

3
75 ðA:4;A:5Þ

and cðtÞ ¼ ½g1ðtÞ g2ðtÞ g3ðtÞ�
T; fðtÞ ¼ ½ f1ðtÞ f2ðtÞ f3ðtÞ�T: Multiplying both sides of Eq. (A.2) by

M�1; the following equation is obtained:

.cðtÞ þM�1D’cðtÞ þM�1KcðtÞ ¼ M�1fðtÞ: ðA:6Þ

The state-space model [13], assuming that the system is driven by a disturbance f1 ¼ fp; controlled
by an input u; where f2 ¼ u and f3 ¼ �u; and the output of the system is given by the equipment
velocity ’g2 ¼ ve; can be written as

’xðtÞ ¼ AxðtÞ þ BuðtÞ þ RfpðtÞ;

yðtÞ ¼ CxðtÞ; ðA:7Þ

where

xðtÞ ¼

g1ðtÞ

g2ðtÞ

g3ðtÞ

’g1ðtÞ

’g2ðtÞ

’g3ðtÞ

2
6666666664

3
7777777775
; A ¼

0ng
Ing

�M�1K �M�1D

" #
;

B ¼ 0 0 0 0
�1
m2

1

m3

� 
T
; ðA:8;A:9;A:10Þ

C ¼ ½0 0 0 0 1 0�; R ¼ ½0 0 0 1=m1 0 0�T: ðA:11;A:12Þ

When the disturbance input is assumed to be white noise and final time of the
simulation is assumed to be infinity, the LQG regulator can be obtained by minimizing the
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cost function

J ¼ min

Z
N

t0

½yTðtÞayðtÞ þ uTðtÞuðtÞ� dt; ðA:13Þ

where changing a provides a family of results depending on the relative importance of reducing
the equipment velocity and reducing the control effort. The solution of the LQG problem [13] is
given by

uðtÞ ¼ KxðtÞ; ðA:14Þ

where K ¼ �R�1BTS and S is the unique positive definite solution of the Algebraic Riccati
Equation (ARE)

SAþ ATS� SBR�1BTSþ CTQC ¼ 0: ðA:15Þ

If the instabilities are in the controllable part of ðA;BÞ and the non-observable modes of ðA;CÞ
are stable, then uðtÞ ¼ KxðtÞ ensures that the system is stable and minimizes the cost function J: In
the cases presented below, the non-controllable or non-observable parts of the system are related
to the behaviour of the base, which is stable because it is ‘‘passive’’.
It can be noted that K in Eq. (A.14) is a 1� 6 matrix, which assumes that the state vector xðtÞ is

known at all times. Full state feedback would either require the use of many more than two
sensors, or the implementation of a Kalman filter, or state observer, with a very detailed model of
the system under control, which makes the stability of the overall feedback system very sensitive
to changes in the response of the system [14].
Fig. 24 shows the spectrum of the equipment velocity before any control and with full state

feedback calculated to minimize equation (40) with a ¼ 100: This can be compared to the
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Fig. 24. Bode plot of the equipment velocity per unit primary force when no control is implemented (solid) and when

the full state feedback is implemented (faint), optimized using LQG control theory, with a control effort similar to that

used to obtain the dual-loop controller shown in Fig. 18 with ZD ¼ 50:
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performance in Fig. 18, where a local phase-lag compensator and an outer velocity feedback loop
were implemented. This value of a for the optimal controller was chosen so that the control effort
was similar to that required for ZD ¼ 100 in Fig. 18. In the optimal control case with a ¼ 100;
K ¼ ½�604:3 � 2567:1 1694:8 13:03 � 73:79 � 4:62�: Although the LQ regulator may poten-
tially perform better if a is increased, thanks to the fact that the control force is based on more
information, a more complex controller and higher gains are needed to implement such a solution.
In conclusion, classical methods based on a local and an outer loop are not only robust, but they
also perform well compared to an optimal LQ regulator, requiring a similar control effort.

References

[1] C.E. Crede, Theory of vibration isolation, in: C.M. Harris (Ed.), Shock and Vibration Handbook, McGraw-Hill,

New York, 1995 (Chapter 30).

[2] E.E. Ungar, Vibration isolation, in: L. Beranek, I.L. Ver (Eds.), Noise and Vibration Control Engineering, Wiley,

Chichester, 1992 (Chapter 11).

[3] D. Karnopp, Active and semi-active vibration isolation, American Society of Mechanical Engineers, Journal of

Mechanical Designs 117 (1995) 177–185.

[4] S.J. Elliott, M. Serrand, P. Gardonio, Feedback stability limits for active isolation systems with reactive and

inertial actuators, American Society of Mechanical Engineers, Journal of Vibration and Acoustics 123 (2001)

250–261.

[5] G.F. Franklin, Feedback Control of Dynamic Systems, 3rd Edition, Addison-Wesley, Reading, MA, 1994.

[6] K.A. Ananthaganeshan, M.J. Brennan, S.J. Elliott, High and Low frequency instabilities in feedback control of a

single-degree-of-freedom system, Proceedings of the ACTIVE 2002 Conference, Southampton, UK, 15–17 July

2002.

[7] L. Benassi, P. Gardonio, S.J. Elliott, Equipment isolation of a SDOF system with an inertial actuator using

feedback control strategies, Proceedings of the ACTIVE2002 Conference, Southampton, UK, 15–17 July 2002.

[8] L. Benassi, P. Gardonio, S.J. Elliott, Equipment isolation of a SDOF system with an inertial actuator using double

feedback control strategies, ISVR Technical Memorandum No. 893, 2002.

[9] D.C. Zimmerman, G.C. Hornar, D.J. Inman, Microprocessor controlled force actuator, Journal Guidance,

Control, and Dynamics 11 (3) (1988) 230–236.

[10] M. Serrand, Direct Velocity Feedback Control of Equipment Velocity, MPhil Thesis, University of Southampton,

2000.

[11] P. Gardonio, S.J. Elliott, R.J. Pinnington, User manual for the ISVR isolation system with two active mounts for

the ASPEN final project experiment, ISVR Technical Memorandum No. 801, 1996.

[12] L. Benassi, S.J. Elliott, P. Gardonio, Equipment isolation of a SDOF system with an inertial actuator using

feedback control strategies—Part II: experiment, ISVR Technical Memorandum No. 896, 2002.

[13] K. Zhou, K. Glover, J. Doyle, Robust and Optimal Control, McGraw-Hill, New York, 1998.

[14] J.C. Doyle, G. Stein, Robustness with observers, IEEE Transactions on Automatic Control AC-24 (1979) 607–611.

ARTICLE IN PRESS

L. Benassi et al. / Journal of Sound and Vibration 276 (2004) 157–179 179


	Active vibration isolation using an inertial actuator with local force feedback control
	Introduction
	Inertial actuator response
	Inertial actuator with local force feedback
	Direct force feedback control
	Integrated force feedback control
	Phase-lag compensator

	Active isolation with the modified inertial actuator
	Experiments with local feedback
	Discussions and conclusions
	Equipment isolation of a SDOF system with an inertial actuator using an LQG regulator
	References


