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Abstract

An annular sector solid hierarchical finite element is presented and applied to three-dimensional free
vibration analysis of annular sector plates. The element’s displacements are expressed in terms of a fixed
number of linear polynomial shape functions plus a variable number of shape functions which are forms of
the shifted Legendre orthogonal polynomial. The linear polynomial shape functions are used to describe the
element’s nodal displacements and the higher order shape functions are used to provide additional freedom
to the edges, faces, and interior of the element. Results of frequency calculations are found for annular
sector plates with two straight edges simply supported like a diaphragm condition and comparisons are
made with those obtained by the finite prism method. The manner of convergence of the solution as a
function of the numbers of hierarchical modes is also investigated. Furthermore, contributions to original
three-dimensional frequencies are made for annular sector plates with other boundary conditions along the
two straight edges.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Approximate plate theories neglect some or all of complicating effects such as shear
deformation, rotary inertia, extension of the normal to the middle surface, and other kinematic
effects. To take into account all these effects, a three-dimensional formulation is required.
Mizusawa [1] presented a finite prism method (FPM) for three-dimensional free vibration analysis
of annular sector plates. A major drawback of this method is that its use is limited to annular
sector plates with two opposite straight edges simply supported like a diaphragm condition.

The aim of this paper is three-fold: to introduce and assess the applicability of a three-
dimensional hierarchical finite element method; to compare the results with those obtained by the
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FPM for a number of annular sector plates with two opposite straight edges simply supported like
a diaphragm condition; and to contribute to original three-dimensional frequencies for a number
of annular sector plates with other boundary conditions along the two opposite straight edges.

The displacements in the annular sector solid hierarchical finite element of this paper are
described by a fixed number of linear polynomial shape functions plus a variable number of shape
functions which are forms of the shifted Legendre orthogonal polynomial. The linear polynomial
shape functions are used to describe the element’s nodal displacements and the higher order
polynomial shape functions are used to provide additional freedom to the twelve edges, six faces,
and interior of the element. The principle of virtual displacements is used to develop the equations
of motion. The resulting equations form a generalized eigenvalue problem which is solved to yield
the frequencies. The results can be obtained to any desired degree of accuracy simply by increasing
the numbers of hierarchical modes.

2. Formulation
2.1. The shape functions

The shape functions will be derived on the basis of a one-dimensional hierarchical finite
element. The origin of the non-dimensional co-ordinate ¢ (= x/a) is the left end of the element
(Fig. 1). For C° continuous problems the first two linear shape functions used in the conventional
finite element method are retained. The higher order C’shape functions vanish at each end of the
element. Thus, these shape functions are used to describe the displacement function in the interior
of the element.

The higher order shape functions can be selected from a variety of polynomials provided the set
is complete. The set of hierarchical shape functions of this paper is generated by using the
following recursive formula for the shifted Legendre orthogonal polynomial P} (&) [2]:

1
PA©) = s (220 = 1+ (414 DOPT(O) — PO i=1,2,. (1)
with
P& =1, 2
Pi(O)=2¢~1. 3
The C° shape functions are expressed as

gi(Q) =1-4¢, 4)
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Fig. 1. Hierarchical finite element co-ordinates.
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The first 12 hierarchical C° shape functions gi(¢) (i=1,2,..,12) are quoted explicitly in
Table 1.

2.2. The annular sector plate equations of motion

An annular sector solid hierarchical finite element is shown in Fig. 2 (a list of nomenclature is
given in Appendix B). The circular cylindrical and the non-dimensional co-ordinates are
related by

e=1—2 ™
0
g -, 8
=5 ®)
2z
(=5 ©)
The displacement vector is
u
u=< v ,. (10)
w

Table 1
The first 12 hierarchical C° shape functions
i gi(¢)
1 1-¢
2
3 2
4 2833824 ¢
5 5841083 + 62 —¢
6 148 =358 + 308 —10&% + ¢
7 4285-1268° + 1404 —708% + 1582 —¢
8 13287 —462E% + 6308° —420E* + 14083 —218% + ¢
9 42988 —1716&7 + 27725 -23108° + 105064 —25283 + 282 —¢
10 14308° —6435E8 + 120127 —12012E° + 69307 —2310&* + 42083 —36£% + ¢
11 4862E"0-24310&° + 51480E8 —60060&7 + 420420 —18018¢E° + 4620E% —6608> + 4582 —¢

12 16796 —92378¢10 + 2187907 —291720&8 + 24024087 — 1261268 + 4204285 —8580&* + 99083 —55£2 + ¢
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Fig. 2. Annular sector solid hierarchical finite element.

The strain vector is

( &
€00
e — €z ' (11)
Vro
Vrz
Yoz )
The strain—displacement relation is
€ =du, (12)
where
_ 1 @ -
G- a ’ ’
1 1 0 0
(b—a)S+a/(b—a) (b —a)&+a/(b—a)on
0 0 20
1— ho¢
1 i 1 E B 1 0
pb—a)(é+a/b—a)on (b-a)o¢ (b—a)l+a/(b—a)
20 0 I 2
h o (b —a)oé
' 20 ! 2
L h o ¢b—a)é+a/(b—a))onl

(13)
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The displacement vector can be written

ll:Nq:[N]Nz...Na...NLMN]q, (14)
where
9i(8)g;(mgr(©) 0 0
N, = 0 91(&g;(mgi($) 0 : (15)
0 0 91(&)g;(mgr(©)
The strain—displacement relation can be written
¢ =dNq = Bq = [B1B;...B,...B, u~]q, (16)
where
B, = dN,. (17)
Let
91()gm(mgn() 0 0
Ng = 0 91(&)gm(mgn(0) 0 : (18)
0 0 91 gm(1m)gn(0)
Then
Bg = dNg. (19)
The indices are defined as
=12 ..,L, (20)
jom=1,2,.... M, (21)
k,n=12,...,N, (22)
a=k+G—1DN+(G—1)MN, (23)
p=n+m—1)N+({—1)MN. (24)

The principle of virtual displacements can be applied to yield the following equations of motion
for free vibration:
LMN

Z(KM — 0’M,p)q; =0, B=12,..,LMN. (25)

a=1

The element stiffness matrix can be evaluated as

Ky =S 0—aron [ [ [ miom(c 1,0 ) acanar
2 o Jo Jo b—a
Ky 2352 Kip23p-1 Kiu23p
= | K3s—13-2 Ksu—13p-1 Kza—13p | (26)
K3,35-2 K3, 351 K335
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where
(1 —v y \ 0 0 0
% 1 —v y 0 0
\ y 1—v 0 0 0
E 1 —2v
D=—— | 0 0 0 0 0 . 27
14+ v)(1—=2v) 2 (27)
1 —2v
0 0 0 5 0
1 —2v
I 0 0 0 0 7

The element mass matrix can be evaluated as

M, :%p(b—a)ngh/o]/ol/OININ/;<£+b%‘a> dé dy d

Msy 2352 My 2351 M3z, 23p
= | M3y_138-2 Mszy_138-1 Msz,13p |- (28)
M3, 35> M3, 351 M3, 35

The coefficients of the element stiffness and mass matrices are given in Appendix A. They are
expressed in terms of the following integrals:

LdPg; dlg
4P — i & Gm b

Rl T 29)

! dpgk dqgn
i,i’ll = , d dy dg, (30)

1 dpg-dqg;
B — a 1894 31
i /O(éer—a)dép e G
! 1 d’g; d%g,

P — / 1291 g, 32
4T Eralb—ay a2 e (32)

where p and ¢ denote the order of the derivatives (p, ¢ =0, 1).

The above integrals can be calculated exactly by using symbolic computing which is available
through a number of commercial packages.

Particular displacement boundary conditions can be assigned to the element’s eight nodes,
twelve edges, and six faces and it is possible to accommodate various combinations of nodal, edge,
and face boundary conditions in the analysis. The resultant equations can be solved as a
generalized eigenvalue problem to yield the frequencies.

3. Results

Natural frequencies of annular sector plates are calculated to illustrate the convergence and
accuracy of the hierarchical finite element method (HFEM). The straight and circumferential
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edges may have arbitrary boundary conditions. Symbolism is used to define the boundary
conditions along the four edges. For example, the symbolism F-C-S-S indicates that the edges
r=a, r=>b, 0=0, and 0 = ¢ are free, clamped, simply supported, and simply supported,
respectively. A non-dimensional frequency Q is used in the calculations. A value of v of 0.3 will be
used in all examples. Results were first obtained for an annular sector S-S-S-S plate (a/b = 0.5,
¢ = 60°) with /b = 0.2 (thick) and 0.4 (very thick).

To see the manner of convergence of the hierarchical finite element method, half of the annular
sector plate above the middle surface is idealized as one annular sector solid hierarchical finite
element and the numbers of hierarchical modes L, M, and N are varied. An equal number of
hierarchical modes is utilized in the » and 6 directions and half as many hierarchical modes are
used in the z direction. For flexural vibration, the displacement boundary conditions on the
middle surface must be u(r,0,0) = v(r,0,0) = 0. Results for the 5 lowest modes are shown in
Table 2. It is clearly shown that the frequencies are rapidly convergent from above as the numbers
of hierarchical modes are increased. The higher order hierarchical finite element
(N =M =2L = 12) will be used in the next examples.

To demonstrate the accuracy of the hierarchical finite element method, non-dimensional
frequencies 2 for the 5 lowest modes of annular sector S-S-S-S, C-C-S-S, and F-F-S-S plates
(a/b = 0.5) are compared with those calculated by the FPM [1] in Tables 3-5. Values of ¢ of 30°
and 60° and those of //b of 0.005, 0.1, 0.3, and 0.5 are used. The values of //b were chosen to
encompass extremes from very thin to very thick plates. It is clearly shown that most of the
hierarchical finite element results are the lower-bounds of the finite prism ones and are therefore
more accurate. The discrepancies between the two solutions increase with increasing mode
number or thickness ratio.

Additional applications are to annular sector S-S-C-C, C-C-C-C, and F-F-C-C plates. It
appears that no three-dimensional frequencies are reported in the literature for these examples.
Thus, new three-dimensional frequency values are provided which may be of interest to other
investigators. Non-dimensional frequencies @ for the 6 lowest modes are shown in Tables 6-8.

Table 2
Convergence of the non-dimensional frequencies Q for the 5 lowest modes of annular sector S-S-S-S plates (a/b = 0.5,
¢ =60°, v=0.3)

hib LMN Mode no.
1 2 3 4 5
0.2 4,4,2 2.718 4.685 6.977 8.211 11.018
6,6,3 2.576 4.153 6.051 6.627 7.226
8,8,4 2.572 4.137 6.015 6.115 7.174
10,10,5 2.571 4.137 6.014 6.101 7.173
12,12,6 2.571 4.137 6.014 6.101 7.173
0.4 4,4,2 3.725 5.742 5.908 6.686 7.240
6,6,3 3.538 5.269 5.457 6.295 6.542
8,8,4 3.520 5.224 5.440 6.281 6.522
10,10,5 3.519 5.222 5.440 6.281 6.522

12,12,6 3.519 5.222 5.440 6.281 6.522
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Table 3
Comparison of the non-dimensional frequencies Q for the 5 lowest modes of annular sector S-S-S-S plates (a/b = 0.5,
v=20.3)

h/b ¢ (deg) Method Mode no.
1 2 3 4 5
0.005 30 HFEM 0.156 0.346 0.421 0.645 0.663
FPM 0.156 0.346 0.420 0.646 0.662
60 HFEM 0.085 0.156 0.266 0.271 0.346
FPM 0.085 0.156 0.267 0.271 0.346
0.1 30 HFEM 2.696 5.243 6.128 8.464 8.639
FPM 2.724 5.316 6.520 8.660 8.846
60 HFEM 1.549 2.696 4.236 4.301 5.243
FPM 1.557 2.724 4.278 4.368 5.318
0.3 30 HFEM 4.845 7.609 7.803 7.927 8.905
FPM 4.922 7.666 8.228 9.130 9.378
60 HFEM 3.166 4.845 6.756 6.853 6.929
FPM 3.162 4.922 6.476 7.016 7.358
0.5 30 HFEM 5.438 5.559 5.834 8.213 8.452
FPM 5.400 5.846 6.184 8.176 8.340
60 HFEM 3.735 4.595 5.438 5.559 5.834
FPM 3.638 4.566 5.356 5.400 5.846

Values of ¢ of 30°, 60°, and 90° and those of /1/b of 0.005, 0.1, 0.3, and 0.5 are used. In all cases a
value of a/b of 0.5 is used. The non-dimensional frequencies in Tables 6-8 can serve to validate
other methods and finite element models.

4. Conclusion

A annular sector solid hierarchical finite element has been presented and applied to three-
dimensional free vibration analysis of annular sector plates. The element’s displacements are
expressed in terms of a fixed number of linear polynomial shape functions plus a variable number
of shape functions which are forms of the shifted Legendre orthogonal polynomial. To
demonstrate the method, non-dimensional frequencies of annular sector plates with two straight
edges simply supported like a diaphragm condition have been reported. Rapid convergence from
above was found to occur as the numbers of hierarchical modes increased and excellent
convergent results were obtained with the use of very few hierarchical modes. One main
advantage of the HFEM over the finite prism method is that its use is not limited to annular sector
plates with two straight edges simply supported. By using reasonable numbers of hierarchical
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Table 4
Comparison of the non-dimensional frequencies Q for the 5 lowest modes of annular sector C-C-S-S plates (a/b = 0.5,
v=20.3)

h/b ¢ (deg) Method Mode no.
1 2 3 4 5
0.005 30 HFEM 0.206 0.456 0.463 0.737 0.821
FPM 0.206 0.458 0.463 0.739 0.828
60 HFEM 0.150 0.206 0.312 0.393 0.456
FPM 0.151 0.206 0.312 0.396 0.458
0.1 30 HFEM 3.180 5911 6.372 8.903 9.085
FPM 3.248 6.092 6.538 9.180 9.404
60 HFEM 2.363 3.180 4.614 5.168 5911
FPM 2.420 3.250 4.720 5.336 6.092
0.3 30 HFEM 5.044 7.609 8.020 8.968 9.769
FPM 5.240 8.318 9.370 10.310 11.288
60 HFEM 3.687 5.044 6.876 6.947 7.609
FPM 3.846 5.240 7.110 7.360 8.320
0.5 30 HFEM 5.541 5.559 8.069 8.654 8.746
FPM 5.768 8.290 9.090 9.752 9.786
60 HFEM 4.026 5.541 5.559 6.646 7.273
FPM 4.184 5.768 6.952 7.500 7.814

modes, the HFEM was found to yield a much higher accuracy than that of the finite prism
method. Finally, contributions to original three-dimensional frequencies were made for a number
of annular sector plates with other boundary conditions along the two straight edges. The
tabulated non-dimensional frequencies can serve as a basis of comparison for other methods and
finite element models.

Appendix A. Coefficients of K, 3 and M, »

E¢h 11400 400  (1=2v) 00 11 400
Kso23p-2 201+ v)(1 —2v) (=B A icn + 247 Cor AjimAica
2(1 — 2v)(b — a)?
10 400 (0.0 | 401 400 40.0
(A Aj Ay, + Ay A Ay,) + B
x B AT Ay, + (1= CP Al AP |, (A.1)
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Table 5
Comparison of the non-dimensional frequencies @ for the 5 lowest modes of annular sector F-F-S-S plates (a/b = 0.5,
v=20.3)
hlb ¢ (deg) Method Mode no.
1 2 3 4 5
0.005 30 HFEM 0.071 0.175 0.266 0.305 0.496
FPM 0.071 0.175 0.266 0.305 0.496
60 HFEM 0.017 0.071 0.072 0.154 0.175
FPM 0.017 0.071 0.072 0.154 0.175
0.1 30 HFEM 1.304 2.929 4.180 4.617 6.883
FPM 1.313 2.968 3.870 4.256 5.888
60 HFEM 0.335 1.286 1.304 2.626 2.929
FPM 0.336 1.298 1.314 1.393 2.662
0.3 30 HFEM 2.750 5.024 6.494 6.656 6.868
FPM 2.824 3.868 6.104 6.944 7.188
60 HFEM 0.863 2.565 2.750 4.715 5.024
FPM 0.742 1.394 2.826 3.280 3.556
0.5 30 HFEM 3.309 3.897 5.142 5.748 6.333
FPM 3.432 3.870 5.360 6.010 6.278
60 HFEM 1.175 2.792 3.309 3.897 4.933
FPM 1.202 1.398 3.432 3.532 3.872
K B Eh 10 400 400 4 (1 5y 401 410 400
30—-2,3—1 = 2(1 T V)(] — 2V) v il “Yjm“ ik + ( - V) il “Tjm T kn
0,0 41,0 40,0 0,0 40,1 40,0
-1 - 2V)Ci,/ Aj,mAk,n + - V)Ci,/ Aj,mAk,n (A.2)
E(ls 1,0 40,0 40,1
Kseos = T =2 [v(b — @B AR AL 4 (1 - 20)(b — @)
0,1 40,0 1,0 0,0 40,0 40,1
X B AN AL 4 v(b — AW A AL, (A3)
K _ Eh AO,IAI,OAO,O 1 2 Al,OAO,lAO,O
3u—1,3-2 = 2(1 + V)(l — 2V) v il “tjmkn + ( - V) il “Yjm*Tkn
0,0 40,1 40,0 0,0 41,0 40,0
~(1 = 20 CR AR A, + (L= CP A ] (A4)

Jm
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Table 6
Non-dimensional frequencies Q for the 6 lowest modes of annular sector S-S-C-C plates (a/b = 0.5, v = 0.3)
h/b ¢ (deg) Mode no.
1 2 3 4 5 6
0.005 30 0.251 0.429 0.584 0.705 0.851 1.040
60 0.102 0.199 0.276 0.333 0.381 0.500
90 0.077 0.120 0.184 0.254 0.265 0.298
0.1 30 3.615 5.727 6.985 8.666 9.277 10.655
60 1.779 3.137 4314 4.791 5.467 6.582
90 1.396 2.067 2.988 4.059 4.066 4.588
0.3 30 5.218 8.045 8.250 8.944 10.044 10.735
60 3.311 5.007 6.782 6.917 7.128 7.766
90 2.843 3.770 4.956 6.252 6.531 6.835
0.5 30 5.567 6.429 8.493 8.542 9.193 9.512
60 3.785 4.834 5.495 5.782 7.138 7.247
90 3.349 4282 4.459 5.034 5.482 5.861
Table 7
Non-dimensional frequencies Q for the 6 lowest modes of annular sector C-C-C-C plates (a/b = 0.5, v = 0.3)
h/b ¢ (deg) Mode no.
1 2 3 4 5 6
0.005 30 0.292 0.519 0.633 0.866 0.916 1.104
60 0.161 0.242 0.374 0.401 0.482 0.546
90 0.145 0.175 0.229 0.306 0.384 0.406
0.1 30 4.055 6.367 7.273 9.312 9.550 10.877
60 2.526 3.589 5.110 5.240 6.122 6.847
90 2.289 2.714 3.448 4412 5.059 5.429
0.3 30 5.610 8.135 8.982 10.592 11.189 11.490
60 3911 5.267 6.898 7.093 8.075 8.555
90 3.551 4.205 5.204 6.397 6.656 7.211
0.5 30 5.897 8.404 9.173 9.263 10.006 10.937
60 4.210 5.598 6.914 7.159 7.532 8.199
90 3.830 4.540 5.608 6.165 6.889 6.903
E¢h 1-v 11 ( 2V) 0.0
K C 04 A I A A
R TE RNER TS 1) S s 2
(I =2v) 10 400 400 | 401 400 400, , U 2V) 0.0 40.0 400
- B (Ai,l Aj,mAk,n + Ai,l Aj,mAk,n) +t— C A] m* ken
20— 20)(b )

h2 AOOAk n:| > (AS)



192 A. Houmat | Journal of Sound and Vibration 276 (2004) 181-193

Table 8
Non-dimensional frequencies Q for the 6 lowest modes of annular sector F-F-C-C plates (a/b = 0.5, v =0.3)
h/b ¢ (deg) Mode no.
1 2 3 4 5 6
0.005 30 0.154 0.294 0.405 0.438 0.623 0.672
60 0.042 0.105 0.109 0.206 0.208 0.232
90 0.019 0.051 0.060 0.096 0.127 0.155
0.1 30 2.402 4.024 5.228 5.419 7.402 7.637
60 0.770 1.716 1.845 3.203 3.215 3.487
90 0.367 0.925 1.033 1.670 2.108 2.545
0.3 30 3.695 5.354 6.796 7.133 8.135 9.366
60 1.592 2.748 3.161 4.955 5.159 5.345
90 0.880 1.861 1.881 3.053 3.505 4.260
0.5 30 3.997 5.345 7.007 7.007 7.617 8.329
60 1.889 2.854 3.450 5.227 5.367 5.438
90 1.138 2.009 2.173 3.459 3.662 4.515
E(b—a) 00 410 00 , (T=29) 00 01 410
Ky 135 = v -2 "Ai,} Aj,’mAk”n + — Al.,’l Aj:mAk”n , (A.6)
E¢ 0.1 40,0 41,0
Kspap 2 = m[v(b — a)BY AP0 A+ (1 - 20)(b — a)
1,0 40,0 40,1 0,0 40,0 41,0
X Bi,/ Aj,mAk,n + v(b - a)Ai,l Aj,mAk,n > (A7)
E(b — a) 00 401 410 , 1 =2V) 00 10 01
Rapr = (I +v)(1—2v) VA Ao Ain 2 Air AjmAicn | (A-8)

2
0,0 40,0 40,1
B A AV

E¢h {2(1 —v)(b — a)

Kayap =
21+ v)(1 = 2v) E Jam
(I=2v) L1 400 4,00, 1 =2V) 00 11 400
T B A, A+ 20 Ciy A A | (A9)
Mz, 2352 = M3y 1351 = M3,3p
=1p(b — ay’phB} AT A (A.10)

Mz, 231 = M3y 238 = M3,_138 = M3y_135-2
= M3,3p-2 = M3,35-2 = 0. (A.11)
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Appendix B. Nomenclature

a inner radius

b outer radius

h thickness

¢ sector angle

r,0,z cylindrical co-ordinates

& n non-dimensional co-ordinates

u,v, w displacements in the r, 0, z directions
L, M,N numbers of hierarchical modes in the r, 0, z directions
0 mass density

E modulus of elasticity

v the Poisson ratio

K.z stiffness matrix

M,z mass matrix

w natural frequency

Q = wb+/p/E non-dimensional frequency
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