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Abstract

This paper deals with the identification of a single open crack in a vibrating beam, either under axial or
bending vibration, based on measurements of damage-induced shifts in natural frequencies and
antiresonant frequencies. It is found that an appropriate use of frequencies and antiresonances may avoid
the non-uniqueness of the damage location problem, which occurs in symmetrical beams when only
frequency data are employed. The theoretical results are confirmed by a comparison with dynamic
measurements on cracked steel beams under free–free boundary conditions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with the identification of a single crack in a vibrating beam, either
under axial or bending vibration, from the knowledge of damage-induced shifts in a suitable set of
natural frequencies and antiresonant frequencies.
Within the class of diagnostic problems in structural mechanics, the crack detection problem in

vibrating beams has received great attention in the scientific community in the last two decades.
There are good reasons for this interest: firstly, the mechanical system consisting of a single beam
describes the behaviour of many structures, which is important both for the civil and mechanical
engineering field. Secondly, the problem of identifying a crack in a beam gives rise to the basic
diagnostic problem and, therefore, it represents an important benchmark to test the accuracy of
identification techniques.
In most studies of dynamic methods for damage detection, researchers have used changes in

natural frequencies as the diagnostic tool, see, for example, Ref. [1]. Frequencies can be measured
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more easily than can mode shapes, and are usually less affected by experimental errors. Most of
the diagnostic techniques for vibrating beams are formulated as an optimality criterion, where the
stiffness distribution of a chosen reference configuration of the beam is updated so that the first
few natural frequencies closely match the measured ones at a certain level of deterioration, see, for
example, Ref. [2]. On the one hand, these optimization techniques have the advantage of allowing
for investigation of quite general classes of systems. On the other hand, the lack of satisfactory
framework of general properties gives rise to several indeterminacy problems, which, in some
cases, may obstruct applications to practical problems.
Recently, the crack detection problem in elastic beams has been investigated from a different

point of view, namely the attention has been focussed on finding conditions which allow for a
rigorous identification of the damage from minimal frequency measurements. Despite very
extensive literature on damage detection in beams, few results of this kind are available. In order
to recall known results when frequency data are used, the damage detection problem in axially
vibrating beams will now be briefly summarized. If the undamaged beam is completely known and
the damage is simulated by a linear spring located at the damaged cross-section, then only two
parameters need to be determined, namely the stiffness KA of the spring and the abscissa s of the
cracked cross-section. In a relatively recent paper [3], Narkis has shown that if the undamaged rod
is a perturbation of the virgin one, namely whenever the crack is small, the only information
required for accurate crack localization is the ratio between the variations of the first two natural
frequencies caused by the crack. The results were shown in Ref. [3] for uniform free–free rods, and
a closed-form solution for the crack location was derived. The above results were subsequently
extended in different directions in Refs. [4–6]. The identification procedures presented in these
papers are not able to eliminate symmetrical solutions in the damage location problem, namely
cracks at any one of a set of symmetrically placed points of a symmetrical rod produce identical
changes to natural frequencies. The difficulty to distinguish between real and spurious
symmetrical solutions is confirmed also in more recent damage detection studies, see, for
example, Refs. [7–10].
Therefore, an important question is left open: what kind of spectral data might be used in order to

avoid the non-uniqueness of the damage location problem due to structural symmetry?
In this paper it is shown that an appropriate use of resonances and antiresonances may be

useful for crack identification in symmetrical beams. In order to illustrate the present results, for
the sake of simplicity reference is made again to a free–free uniform beam under axial vibration. It
was found that knowledge of the ratio between the variations of the first resonance and the first
antiresonance of the point frequency function corresponding to one end of the rod, uniquely
determines the position s of the cracked cross-section. Furthermore, the variations of the first
resonance and the first antiresonance allow the stiffness KA of the damage-simulating elastic
spring to be uniquely determined. In both cases, simple closed-form expressions are deduced for s

and for KA: It is worth noticing that the required data can be extracted from a single measurement
of frequency response function, without further experimental and numerical burden. The
proposed identification technique is essentially based on the explicit expression for the
damage sensitivity of eigenvalues given in Ref. [11]. Similar results hold true also for initially
non-uniform symmetrical rods with a single crack. Part of the results above are also valid for
initially uniform cracked beams in bending under various sets of symmetrical boundary
conditions.
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The predictions of the theory and reliability of the diagnostic technique were checked on the
basis of results of several dynamic tests performed on free–free cracked steel beams. Interpretation
of experimental results shows that if the frequencies and resonances used as data in identification
are affected by (modelling and measurements) relatively small errors with respect to the changes
induced by the crack, then damage identification gives satisfactory results. Moreover, in the
inverse problem solution, the noise and the modelling errors on antiresonances usually amplified
strongly with respect to cases in which frequency data are used.
One of the main motivations on the use of antiresonances in structural identification is that,

unlike mode shapes, antiresonances are easily and accurately measurable. However, in spite of
this advantage and although experimental modal analysis can nowadays be considered a mature
technology, the use of antiresonances for the interpretation of dynamic tests is relatively recent.
Wahl et al. [12] discussed the resonance-antiresonance behaviour of frequency response functions
for linear lightly damped structures and focussed on the significance of antiresonances in
experimental structural analysis. An updating technique that includes antiresonances in the
definition of the output residual was presented by D’Ambrogio and Fregolent in Refs. [13,14]. It
was observed by the authors that the distribution of antiresonances may be significantly altered by
small changes in the structural model and demonstrated that the use of antiresonances extracted
from point frequency response functions allows for very robust model updating procedures. Jones
and Turcotte [15] considered antiresonances in finite model updating of an experimental full-scale
truss and analyzed the physical correctness of the updated model by using it to detect damage. An
update using both natural frequencies and antiresonances was shown to produce a better
correlation to experimental data than an update that uses only natural frequencies. Bamnios et al.
[16] studied the influence of a transverse open crack on the mechanical impedance of cracked
beams under various boundary conditions. Monitoring the change of the first antiresonance as a
function of the measuring location along the beam, the authors proposed a prediction scheme for
crack localization in beams under bending vibrations.
The plan of the present paper is as follows. Theoretical results concerning axial and flexural

vibration are presented in Section 2. Numerical and experimental applications of the diagnostic
technique are discussed in Section 3.

2. Theoretical results

2.1. Axially vibrating beams

The spatial variation of the infinitesimal free vibrations of an undamaged straight uniform rod
is assumed to be governed by the differential equation

au00 þ lru ¼ 0 in ð0;LÞ; ð1Þ

where u ¼ uðxÞ is the mode shape and
ffiffiffi
l

p
is the associated natural frequency. Throughout this

section, the rod is assumed to have no material damping. The quantities a � EA and r denote the
axial stiffness and the linear-mass density of the rod. E is Young’s modulus of the material and A
the cross-section area of the rod. The rod length is denoted by L: The following three sets of
boundary conditions will be considered.
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Free ðFÞ: u0ð0Þ ¼ 0 ¼ u0ðLÞ; ð2Þ

Supported ðSÞ: uð0Þ ¼ 0 ¼ uðLÞ; ð3Þ

Cantilever ðCÞ: uð0Þ ¼ 0 ¼ u0ðLÞ: ð4Þ

Modes and frequencies are the eigensolutions of the boundary value problem formed by Eq. (1)
and one of the three boundary conditions (2)–(4). The mth eigenpair of the undamaged rod, mX0;
is denoted by fum; lmg; where 0pl0ol1o? and limm-N lm ¼ N:
Suppose that a crack appears at the cross-section of abscissa s; with sAð0;LÞ: Assuming that the

crack remains always open during the longitudinal vibration, by modelling it as a massless
translational spring, at x ¼ s; see Refs. [17,18], the eigenvalue problem for the damaged rod is the
following:

au00d þ ldrud ¼ 0 in ð0; sÞ,ðs;LÞ; ð5Þ

where, in addition to the boundary conditions at x ¼ 0 and L; the jump conditions

½u0dðsÞ
 ¼ 0; KA½udðsÞ
 ¼ au0dðsÞ ð6Þ

have to be considered at the cross-section where the crack occurs. In Eqs. (6), the jump ðfðsþÞ �
fðs�ÞÞ of the function fðxÞ at x ¼ s is denoted by ½fðsÞ
: The expression KA is the stiffness of the
spring simulating the damage, and it can be related to the crack geometry as suggested, for
example, in Refs. [17,19]. The undamaged system corresponds to KA-N or e � 1=KA-0:
The variational formulation of the eigenvalue problem shows that eigenvalues of the rod are

increasing functions of KA; and thus decreasing functions of e; so that

ldmplm; m ¼ 0; 1; 2;y : ð7Þ

Moreover, as for any constrained system, the following interlacing result holds:

lm�1pldmplm; m ¼ 1; 2;y : ð8Þ

If the crack is small, namely e is small enough, the first order variation of the natural frequencies
with respect to e may be found as in Ref. [11]. Putting

ld ¼ lþ e*l; ð9Þ

it can be shown that

dlm � e*lm ¼ �
ðNmðsÞÞ

2

KA

; m ¼ 0; 1; 2;y; ð10Þ

where

NmðsÞ � au0mðsÞ ð11Þ

is the axial force in the mth normalized mode shape of the undamaged rod, evaluated at the
cracked cross-section.
The effect of the crack on antiresonances of point frequency response functions of the rod will

now be investigated. Generally speaking, antiresonances correspond to zeros of frequency
response functions (frf) Hð

ffiffiffi
l

p
; xi; xoÞ; where xi; xo are the abscissas of the excitation point and

measurement point, respectively. When xi ¼ xo; the zeros of the frf Hð
ffiffiffi
l

p
;xi;xiÞ are the

ARTICLE IN PRESS

M. Dilena, A. Morassi / Journal of Sound and Vibration 276 (2004) 195–214198



frequencies of a rod in which the longitudinal displacement at the cross-section of abscissa xi is
hindered. Therefore, under the assumption of small crack, on proceeding as above and with the
same notation, the first order variation of the (square of the) mth antiresonance of the point frf
Hð

ffiffiffi
l

p
;xi;xiÞ with respect to 1=KA may be evaluated by Eq. (10).

At this stage it can be shown how a combined use of resonance and antiresonance
measurements may be useful for crack identification.
To begin the analysis, a free uniform rod (F) with a small open crack at the cross-section of

abscissa s will be considered. The eigenpairs of the (F) rod are given by

lFm ¼
a

r
mp
L

� �2
; uFmðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
cos

mpx

L
; ð12Þ

m ¼ 0; 1; 2;y . The rigid mode uF0 ðxÞ obviously is always insensitive to damage. Denote by CFm the
quantity

CFm � �
dlFm
Bm2

; ð13Þ

where m is a positive integer, mX1; and let B be the constant

B ¼ a

ffiffiffiffiffiffi
2

rL

s
p
L

 !2
: ð14Þ

Putting the expressions of lFm and uFmðxÞ for mX1 into Eq. (10) gives

CFm ¼
1

KA

sin2
mps

L
: ð15Þ

Consider now the point frf Hð
ffiffiffi
l

p
; 0; 0Þ for xi ¼ xo ¼ 0: The antiresonances of Hð

ffiffiffi
l

p
; 0; 0Þ are the

(square root of the) eigenvalues of the rod with left end, at x ¼ 0; fixed, namely the eigenvalues lCm
of the cantilever rod (C) in the above notation. It follows that their first order variation with
respect to the damage coincides with the first order variation dlCm of the eigenvalues l

C
m of the

cantilever (C) rod. The eigenpairs of the (C) rod are given by

lCm ¼
a

r
ð1þ 2mÞp
2L

� 	2
; uCmðxÞ ¼

ffiffiffiffiffiffi
2

rL

s
sin

ð1þ 2mÞpx

2L
; ð16Þ

m ¼ 0; 1; 2;y . Denoting CCm � �dlCm=Bðð1þ 2mÞ=2Þ2; by proceeding as above, it follows that

CCm ¼
1

KA

cos2
ð1þ 2mÞps

2L
; ð17Þ

m ¼ 0; 1; 2;y . In this case, it turns out that from the knowledge of the ð1þ 2mÞth frequency
under boundary conditions (F) and of the mth antiresonance of the point frf Hð

ffiffiffi
l

p
; 0; 0Þ it is

possible to uniquely determine the stiffness KA and the position variable S ¼ cosð1þ 2mÞps=L;
m ¼ 0; 1; 2;y . In fact, using standard trigonometric identities on Eqs. (15) and (17) gives

KA ¼
1� CF1þ2m=4C

C
m

CCm
; S ¼ 1�

CF1þ2m
2CCm

; ð18Þ

m ¼ 0; 1; 2;y . Considering m ¼ 0; it turns out that the damage is uniquely determined by the
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measurement of the first resonance of the free–free rod and the first antiresonance of the point frf
Hð

ffiffiffi
l

p
; 0; 0Þ:

It is worth noticing that knowledge of the first two natural frequencies of the free–free rod
cannot eliminate the (mathematical) symmetrical solution in the damage location problem, see
Refs. [3,4]. The analysis above shows how an appropriate use of natural frequencies and
antiresonant frequencies can avoid the non-uniqueness of the damage location problem due to
structural symmetry. Moreover, the required data for damage identification can be extracted from
the frf measurement of Hð

ffiffiffi
l

p
; 0; 0Þ only, without further experimental or numerical cost.

The present technique can be adapted to analyze also the case of an initially uniform cantilever
rod (C) with a small open crack at the cross-section of abscissa s: In this case, the antiresonances
of the point frf Hð

ffiffiffi
l

p
;L;LÞ are the (square of the) eigenvalues lSm of the supported rod (S) defined

by Eqs. (1) and (3). Denoting CSm � �dlSm=Bm2; with B ¼ ap
ffiffiffiffiffiffiffiffiffiffiffi
2=rL

p
=L


 �2
one has

CSm ¼
1

KA

cos2
ð1þ mÞps

L
; ð19Þ

m ¼ 0; 1; 2;y . By using standard trigonometric identities, Eqs. (17) and (19) give a closed-form
expressions of the stiffness KA and of the position variable S ¼ cosð1þ 2mÞps=L

KA ¼
1

2CCm � CS1þ2m
; S ¼

1

1� CS1þ2m=2C
C
m

� 1; ð20Þ

m ¼ 0; 1; 2;y . In particular, for m ¼ 0; the damage is uniquely determined from the first

resonance of the cantilever rod and the first antiresonance of the point frf Hð
ffiffiffi
l

p
;L;LÞ:

Up till now only the simple, but very common case of uniform rods has been considered.
However, it can be shown that the above results might be extended to also include initially
symmetrical non-uniform rods. In order to illustrate the damage identification procedure within
this more general setting, the case of the free rod (F) will be investigated in detail in the following.
To simplify the analysis it will be assumed that rðxÞ ¼ gAðxÞ; where g is the (uniform) volume
mass density and AðxÞ; AðxÞ ¼ AðL � xÞ in ½0;L
; is strictly positive and continuous differentiable
function of x:
From Eq. (10) and from the interpretation of the antiresonances, the ratio of the change in first

frequency of the free rod (F) and in first antiresonance of the point frf Hð
ffiffiffi
l

p
; 0; 0Þ depends only

on the damage location, not on its severity. That is

dlF1
dlC1

¼
NF
1 ðsÞ

NC
1 ðsÞ

� 	2
� f ðsÞ; ð21Þ

where sAð0;LÞ and NF
1 ; NC

1 are the axial force in the first (normalized) mode shape of the
undamaged rod under free–free (F) and cantilever (C) boundary conditions. Note that, if sAð0;LÞ;
then the first mode of the cantilever is always sensitive to damage, e.g., dlC1o0: The inverse
problem related to crack location lies in determining the solutions of Eq. (21) in the interval ð0;LÞ
for a fixed (measured) value of the ratio dlF1 =dl

C
1 :

It will be shown that the damage location is uniquely determined by the measurement of the
ratio dlF1 =dl

C
1 :
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To prove this property, it suffices to prove that the function f ¼ f ðxÞ defined in Eq. (21) is
strictly increasing in the interval ð0;LÞ: It is convenient to recall that if ðuF1 ðxÞ; l

F
1 Þ is the first

eigenpair of the eigenvalue problem (1), (2) for the undamaged rod (F), then ðNF
1 ðxÞ �

aðxÞuF
0

1 ðxÞ;L
F
1 � lF1 g=EÞ is the first eigenpair of the eigenvalue problem

ð *aNF0

1 Þ
0 þ LF1 *aNF

1 ¼ 0 in ð0;LÞ;

NF
1 ð0Þ ¼ 0 ¼ NF

1 ðLÞ; ð22Þ

where *aðxÞ � 1=aðxÞ: Similarly, if ðuC1 ðxÞ; l
C
1 Þ is the first eigenpair of the eigenvalue problem (1), (4)

for the undamaged rod (C), then ðNC
1 ðxÞ � aðxÞuC

0

1 ðxÞ;L
C
1 � lC1 g=EÞ is the first eigenpair of the

eigenvalue problem

ð *aNC0

1 Þ0 þ LC1 *aNC
1 ¼ 0 in ð0;LÞ;

NC0

1 ð0Þ ¼ 0 ¼ NC
1 ðLÞ: ð23Þ

By virtue of well-known properties of the solutions of the Sturm–Liouville problems (22) and (23),
NF
1 ðxÞ and NC

1 ðxÞ have no zeros in the interval ð0;LÞ; say NF
1 ðxÞ > 0 and NC

1 ðxÞ > 0 for xAð0;LÞ;
and, moreover, NC

1 ð0Þ > 0: It can now be shown that f ðxÞ is well-defined function in the interval
½0;L
: For this purpose it is sufficient to note that the limit limx-L� f ðxÞ exists and has finite value.
By applying twice the de l’H #ospital rule it is found that

lim
x-L�

f ðxÞ ¼
NF0

1 ðLÞ

NC0

1 ðLÞ

 !2
: ð24Þ

By using the differential equation in Eqs. (22) and (23) to determine NF0

1 ðLÞ and NC0

1 ðLÞ; and
considering that uF1 ðLÞa0; uC1 ðLÞa0; it follows that

lim
x-L�

f ðxÞ ¼
LF1
LC1

 !2
uF1 ðLÞ
uC1 ðLÞ

� 	2
: ð25Þ

Computing the first derivative of f ðxÞ gives

f 0ðxÞ ¼
2NF

1 ðxÞN
C
1 ðxÞ

*aðxÞðNC
1 ðxÞÞ

4
gðxÞ; ð26Þ

where gðxÞ has the expression

gðxÞ ¼ ðNC
1 ð *aNF0

1 Þ � NF
1 ð *aNC0

1 ÞÞðxÞ: ð27Þ

Taking into account Eqs. (22) and (23), it follows that

g0ðxÞ ¼ ðLC1 � LF1 Þ *aðxÞN
C
1 ðxÞN

F
1 ðxÞ: ð28Þ

Since NC
1 NF

1 > 0 in ð0;LÞ by assumption, and since LC1 > LF1 by the variational formulation of the
eigenvalue problem, it turns out that g0ðxÞ > 0 in ð0;LÞ: But gð0Þ ¼ 0 and then gðxÞ > 0 in the whole
interval ð0;LÞ: In conclusion, f ðxÞ is a positive, strictly increasing function in ð0;LÞ; and the
assertion is proved.
Finally, it should be observed that the assumption of small changes restricts the range of

application of the proposed method to cracked configurations that are a perturbation of the
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undamaged one. However, this is not a severe limitation, because in most practical situations it is
crucial to be able to identify damage as soon as it arises.

2.2. Bending vibrating beams

In the previous section, the problem of locating a crack in an axially vibrating rod from
frequency and antiresonance measurements has been discussed. Analogous results concerning
cracked beams in bending, as it will be shown below, are less exhaustive.
The physical model, which will be firstly investigated, is a free–free uniform undamped Euler–

Bernoulli beam with an open crack at the cross-section of abscissa s: According to Ref. [17], the
crack is represented by the insertion of a massless rotational spring at the damaged cross-section.
The stiffness KB of the spring may be related in a precise way to the geometry of the crack as
suggested, for example, in Ref. [19]. Denoting Young’s modulus of the material by E and the
volume mass-density by g; the mth eigenpair fwdmðxÞ; l

F
dmg; m ¼ 0; 1; 2;y; of the bending

vibrations of the cracked beam satisfies the following boundary eigenvalue problem:

EIw0000
dm ¼ lSdgAwdm in ð0; sÞ,ðs;LÞ; ð29Þ

w00
dm ¼ 0; w000

dm ¼ 0 at x ¼ 0 and L; ð30Þ

where the jump conditions

½wdmðsÞ
 ¼ ½w00
dmðsÞ
 ¼ ½w000

dmðsÞ
 ¼ 0; EIw00
dmðsÞ ¼ KB½w0

dmðsÞ
; ð31Þ

hold at the cracked cross-section. In the equations above, I and A represent the moment of inertia
and the area of the cross-section, respectively.
The problem of determining the location of a transverse crack in bending free–free beams from

frequency measurements has been recently investigated in Ref. [7]. Starting from the idea
originally presented in Ref. [20], for each eigenmode considered a curve of the relative crack
stiffness (normalized respect to the beam bending stiffness) versus crack position was determined.
The possible damage sites are given by the common intersections of the curves for the different
modes, see also Refs. [8,10,21] for applications to simply supported beams and cantilevers with
not necessarily small cracks. It should be noted that the analytical determination of these curves
involves the solution of the direct eigenvalue problem for the damaged beam and the not trivial
numerical evaluation of the roots of some determinantal equations usually involving 8� 8
matrices. A numerical study of the curves above shows that the curves corresponding to first and
second frequency intersect at two points symmetrically placed along the beam axis, see Fig. 3 in
Ref. [7]. That is, the first two frequencies determine uniquely the crack location except for a
symmetrical position.
This important property can be easily confirmed for the case of a small crack by adopting the

arguments presented in the previous section. When the crack is small, namely KB is large enough,
on proceeding as in Ref. [11] and with the above notation, the first order variation dlFm of the mth
eigenvalue with respect to 1=KB is given by

dlFm ¼ �
ðMF

mðsÞÞ
2

KB

; ð32Þ
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where MF
mðsÞ � �EIw00

dmðsÞ is the bending moment at the cross-section of abscissa s in the mth
(normalized) bending mode of the undamaged beam, m ¼ 0; 1; 2y .
At this stage, the problem of identifying the position of the crack from the knowledge of the

changes in first two natural frequencies can be posed as it was made in Section 2.1. It follows that
all, and the only possible, locations of the crack are the abscissas of the points of the f ðxÞ ¼
ðMF

2 ðxÞ=MF
1 ðxÞÞ

2 diagram intersecting with the horizontal straight line drawn parallel to the
abscissa axis at a distance equal to the measured ratio dlF2 =dl

F
1 : Note that, since MF

1 ðxÞa0 in
ð0;LÞ; the first eigenvalue of the free–free beam is always sensitive to damage, e.g., dlF1o0:
Moreover, since both two limits limx-0þ f ðxÞ; limx-L� f ðxÞ exist and have finite value, function
f ðxÞ is well defined in the interval ½0;L
: Because of the structural symmetry of the undamaged
beam, it turns out that jMF

mðxÞj ¼ jMF
mðL � xÞj for xA½0;L
; and then f ðxÞ is an even function with

respect to the mid-point x ¼ L=2: A direct calculation based on the explicit expression of the
bending moment shows that f ðxÞ is a strictly decreasing function in ð0;L=2Þ; as it is shown in
Fig. 1. It turns out that the location of the crack is uniquely determined, except for a symmetrical
position, from the first two natural frequencies.
Now it will be shown how a combined use of natural frequencies and antiresonances may

exclude the spurious symmetrical damage location. Consider the first (not vanishing)
antiresonance of the point frf Hð

ffiffiffi
l

p
; 0; 0Þ obtained by fixing the transversal displacement of

the beam axis at the left end of the beam. Because of the well-known physical interpretation, this
antiresonant frequency coincides with the first natural frequency of the supported-free (S–F)

beam, say

ffiffiffiffiffiffiffiffiffi
lS–F1

q
: Therefore, its first order sensitivity can be evaluated via expression (32) and the

following ratio can be defined:

dlF1
dlS–F1

¼
MF
1 ðsÞ

MS–F
1 ðsÞ

� 	2
; ð33Þ

where also in this case dlS–F1 o0: A direct calculation based on the exact expressions of the bending
moments MF

1 ðxÞ and MS–F
1 ðxÞ shows that the function f ðxÞ ¼ ðMF

1 ðxÞ=MS–F
1 ðxÞÞ2 is well-defined

and strictly increasing in the interval ½0;L
; see Fig. 2. It follows that the damage location is
uniquely determined by the measurement of the first resonance of the F–F beam and the first

antiresonance of the point frf Hð
ffiffiffi
l

p
; 0; 0Þ: Note that, also in this case, information can be

extracted solely from the frf measurement of Hð
ffiffiffi
l

p
; 0; 0Þ:
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Fig. 1. Plot of the function f ðxÞ ¼ ðMF
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Damage identification in a simply supported beam leads to a slightly different situation. It is
well-known that, under this set of boundary conditions, measurement of the first two natural
frequencies determines uniquely the severity of the damage and the damage location, except for a
symmetrical position, see Refs. [3,4]. This situation seems to be, in a certain sense, an optimal one
since, differently from the free–free case, knowledge of the first resonance and the first
antiresonance of a point frfHð

ffiffiffi
l

p
; xo;xoÞ; where 0oxooL; it is not enough to uniquely determine

the crack location. As an example, Fig. 3 shows the behaviour of the ratio ðMS–S
a1 ðxÞ=MS–S

1 ðxÞÞ2

between the change of first antiresonance and the change of first frequency for xo ¼ 0:4L: Here,
MS�S

a1 ðxÞ denotes the bending moment when the transversal displacement of the beam axis at the
point xo is hindered. Note that MS–S

1 ðxÞ does not vanish in ð0;LÞ: It can be observed from Fig. 3
that only for sufficiently high values of the ratio dlS–Sa1 =dlS–S1 ; i.e., approximately greater than 15,
the damage location problem admits a unique solution. However, measurement of shifts in the
first antiresonance may be equally useful to exclude the spurious symmetrical locations which
occur when only frequency measurements data is used in identification.
The case of clamped–clamped (C–C) boundary conditions can be similarly discussed and it

leads to a more involved situation. The behaviour of the function f ðxÞ ¼ ðMC–C
a1 ðxÞ=MC–C

1 ðxÞÞ2 for
xo ¼ 0:4L is drawn in Fig. 4. Since MC–C

1 ðxÞ vanishes at two distinct points of the interval ð0;LÞ;
the function f ðxÞ has two vertical asymptotes at these points. Therefore, there are several points of
the beam axis which correspond to the same ratio dlC–Ca1 =dlC–C1 and the damage location problem
does not have a unique solution.
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3. Experimental results

In previous sections it was shown how measurements of natural frequencies and antiresonant
frequencies may be employed to assess the location as well as the severity of a crack in a beam.
The present section is devoted to illustrating some applications of experimental character. Several
cracked steel beams were studied during the experiments. In particular, the following analysis
concerns with a double T beam (beam 1) and a beam with rectangular solid cross-section (beam 2)
under axial and flexural vibration, respectively. The results obtained for these two specimens are
representative of the experimental and theoretical questions arisen in the course of the damage
identification. A complete account of the experiments is presented in Ref. [22].

3.1. Axially vibrating beams

In the first experiment a steel beam of series HE100B (beam 1) was considered. The beam was
suspended by two steel wire ropes to simulate free–free boundary conditions, see Fig. 5. By using
an impulsive dynamic technique, the first lower natural frequencies and the antiresonant
frequencies related to the point frf H

ffiffiffi
l

p
; 0; 0Þ were determined for the undamaged beam and the

beam under two damage configurations D1 and D2. The damage was obtained by saw cutting the
beam at the cross-section at s ¼ 0:55 m far from the left end. Levels D1 and D2 correspond,
respectively, to a symmetrical cut of depth 6 and 15 mm: The width of each cut was equal to about
1:5 mm and, because of the small level of the excitation, during the dynamic tests each crack can
be considered always open. Throughout experiments, the excitation was introduced at the left end
by means of a PCB 086B03 impulse force hammer with a metallic tip. The axial response of the
beam was measured with a PCB 303A03 piezoelectric accelerometer (with mass equal to
4� 10�3 kg) fixed in the centre of the left end cross-section. Vibration signals were acquired by a
HP35670A dynamic analyzer and then processed in the frequency domain to determine the related
frf term. Output signals were weighted by an exponential window, while a force window was
applied to the input signal. The well-separated vibrating modes and the very small damping
allowed identification of the frequencies by means of the single-mode technique. Antiresonances
were determined as dips in the frf magnitude associate with a phase variation of þ180; see
Ref. [14].
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Preliminary tests showed that antiresonances are rather sensitive to the position of the impact
location and to the reproducibility of the impulse. This aspect was emphasized by the
simultaneous presence in the axial response of the beam of transversal vibration with frequency
content close to the antiresonance values. To reduce this indeterminacy, a significant number of
averages for the estimation of frf were required. After a comprehensive series of tests, it was
considered sufficient to estimate each frf term as an average of 20 measurements. Moreover,
special care was necessary to ensure that the different impacts, which are required in the averaging
process, always fall on the same location. Finally, from an extensive session of preliminary
experiments, the intersection point between the upper flange and the vertical web of the cross-
section was selected as an excitation point. In this way, a good reproducibility of the frf
measurements was guaranteed and slight changes of the antiresonances were observed in different
impulsive tests.
Table 1 compares the experimental natural frequencies and antiresonances and their

corresponding analytical estimates for the undamaged and damaged beam. Since the
accelerometer mass is about the 0:007 per cent of the total beam mass, its presence was
disregarded in studying the dynamic behaviour of the system. The analytical model (5), (6) of the
cracked beam was defined by assuming the position s of the damage as known and by determining
the theoretical value of the stiffness KA such that, for each damage configuration, the measured
and the analytical fundamental elastic frequency coincide. Damage generally causes a fall in
natural frequencies and antiresonances. A slight increase in third antiresonance was observed
from the undamaged configuration to D1, but its source has not been understood. Frequency
changes induced by damage are around 0.2–0.6 and 2–10 per cent for D1 and D2 configurations,
respectively. Antiresonance decreasing is about 3–7 per cent for configuration D2.
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As natural frequencies are concerned, the analytical model turns out to be extremely accurate
for all the configurations under investigation, with maximum and average differences between
experimental and theoretical values equal to 1 and 0.3 per cent, respectively, up to the 6th
vibrating mode, see Ref. [22]. Apart from the first antiresonance for damage configuration D1,
average errors on antiresonances are around 1 per cent. The significative reduction measured for
first antiresonant frequency from the undamaged to damage configuration D1 implies a modelling
error around 6 per cent. The source of this disagreement has not been explained. Summing up, the
comparison between measurements and theoretical estimates is quite satisfactory since average
modelling errors, both for natural frequencies and antiresonances, are less then 1 per cent in most
of the vibrating modes considered.
Although the analytical model can be considered very accurate in the frequency range

considered, percentage crack-induced changes in frequency are small and comparable with the
accuracy of the beam model for damage level D1. In fact, both average modelling errors and
average shifts caused by the crack are around 0:4 per cent for the first level of damage. Concerning
antiresonances, it is expected that the important error on first antiresonance will produce wrong
estimates of the damage parameters for damage configuration D1.
The results of the identification are summed up in Tables 2 and 3. For the sake of completeness,

the results of identification using the changes fCFm;C
F
2mg in mth and 2mth natural frequencies,

m ¼ 1; 2; have been included in Tables 2 and 3. Corresponding formulae for damage location and
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Table 1

Experimental and analytical frequencies and antiresonances (of the point frf Hð
ffiffiffi
l

p
; 0; 0Þ) of beam 1 in axial vibration

Mode Frequencies Antiresonances

Exp. Model Dfn% Exp. Model Dfn%

Undamaged (1)

1 941.1 941.1 0.00 468.6 470.6 0.41

2 1879.1 1882.2 0.16 1411.7 1411.7 0.00

3 2814.9 2823.3 0.30 2328.4 2352.8 1.05

4 3725.4 3764.4 1.05 3265.8 3293.9 0.86

Damage D1 (2)

1 939.3 939.3 0.00 439.5 468.2 6.52

2 1868.3 1872.5 0.23 1409.3 1408.9 �0.03
3 2798.5 2809.1 0.38 2337.0 2352.7 0.67

4 3718.3 3757.3 1.05 n.a. 3287.3 —

Damage D2 (3)

1 901.8 901.8 0.00 432.9 427.7 �1.19
2 1693.3 1697.6 0.25 1365.6 1365.4 �0.02
3 2608.9 2616.8 0.30 2324.4 2352.7 1.22

4 3637.0 3667.1 0.83 3102.5 3129.5 0.87

Abscissa of the cracked cross-section: s ¼ 0:550 m: (1) EA ¼ 5:454� 108 N; r ¼ 20:4 kg=m; L ¼ 2:747 m ðKA ¼ NÞ:
(2) KA;anal ¼ 3:507� 1010 N=m: (3) KA;anal ¼ 1:736� 109 N=m: Frequency values in Hz. Dfn% ¼ 100ðfnðmodelÞ �
fnðexp:ÞÞ=fnðexp:Þ:
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damage severity were deduced in Ref. [4] (Eqs. (29) and (30)), namely

KA ¼
1� CF2m=CFm

CFm
; S � cos

2mps

L

� 	
¼

CF2m
2CFm

� 1; ð34Þ

where CFm ¼ ð1=KAÞ sin
2ðmps=LÞ:

With reference to the localization of the cracked cross-section, analytical results are in good
agreement with the theory presented in Section 2. The set of solutions predicted by the theory for
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Table 2

Determination of the crack location in beam 1 by using frequencies (pair CFm;C
F
2m;m ¼ 1; 2) and frequencies–

antiresonances (pair CCm;C
F
2mþ1;m ¼ 0; 1)

m Damage D1 Damage D2

sexp sanal sexp sanal

Frequencies

1 0.477 0.552 0.623 0.625

2.270 2.195 2.124 2.122

2 0.561 0.552 0.577 0.571

0.813 0.822 0.796 0.802

1.934 1.925 1.951 1.945

2.186 2.195 2.170 2.176

Frequencies–antiresonances

0 0.159 0.553 0.671 0.612

1 0.690 0.547 0.484 0.485

1.141 1.284 1.347 1.347

2.521 2.379 2.316 2.316

Experimental ðsexpÞ and analytical ðsanalÞ estimates of the crack location. Actual crack location s ¼ 0:550 m: Lengths in
metres.

Table 3

Determination of the spring stiffness in beam 1 by using frequencies (pair CFm;C
F
2m;m ¼ 1; 2) and frequencies–

antiresonances (pair CCm;C
F
2mþ1;m ¼ 0; 1)

m Damage D1 Damage D2

1010KA;exp 1010KA;anal 109KA;exp 109KA;anal

Frequencies

1 2.717 3.524 2.073 2.086

2 3.178 3.520 1.989 1.983

Frequencies–antiresonances

0 0.330 3.535 2.343 2.016

1 1.680 3.590 2.810 2.794

Actual value 3.507 1.736

Experimental ðKA;expÞ and analytical ðKA;analÞ estimates of the spring stiffness. Stiffness values in N/m.
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the mathematical problem contains a satisfactory estimate of the real solution of the damage
problem. Deviations from the correct values are negligible for configuration D1 and, due to the
assumption of small amount of damage, which is of the order 4–14 per cent for D2 configuration.
Estimates of the crack location are consistent even when experimental data are employed.
However, for configuration D1, the inaccuracy of the antiresonance estimates prejudices the
reliability of the identification based on experimental data.
Identified values for KA are generally less accurate with respect to the corresponding damage

location estimates, and they become worse when the identification is based on experimental data,
as was already observed in previous studies, see Refs. [4,5]. In particular, estimates for KA are
rather rough for damage configuration D2 even when low frequencies are used in identification.
This is because, in the problem under investigation, the damage is rather severe from the
beginning.
In conclusion, experiments show that if antiresonant frequencies used as data in identification

are affected by relatively small errors with respect to the shifts induced by the crack, then
antiresonance measurements are useful to exclude symmetrical solutions which occur when
damage identification is based on natural frequencies only.

3.2. Bending vibrating beams

The second experimental model (beam 2), shown in Fig. 6, is a steel beam of rectangular solid
cross-section. By adopting an experimental technique similar to that used for beam 1, the
undamaged beam and four damaged configurations D1–D4 were studied, see Ref. [22] for more
details on the experiments. Damage was obtained by introducing a symmetrical saw-cut of depth
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1, 2, 3, 4 mm for damaged configurations D1–D4, respectively, at the cross-section 0.445 m far
from the left end. The width of each cut was equal to about 1:0 mm and, because of the small level
of the excitation, during the dynamic tests each crack can be considered always open. The beam
was excited transversally at the left end by means of a PCB 086B03 impulse force hammer, with a
soft tip and a tip of intermediate stiffness for range 0–200 and 200–800 Hz; respectively.
The transversal response at the same end was acquired by a PCB 303A3 piezoelectric
accelerometer (with mass equal to 4� 10�3 kg). Dynamic tests show a good reproducibility
of the frf measurements and slight variations of the antiresonance values were observed in
different impulsive tests. Fig. 7 shows a typical inertance frf obtained as the average of 20
measurements.
Table 4 shows the measured and analytical values for the first four lower modes. Also in this

case, the presence of the accelerometer mass, which is about 0.053 per cent of the total beam mass,
was disregarded in studying the dynamic behaviour of the system. The analytical model of the
cracked beam was obtained in the same way as before assuming that the damage location is
known and determining the stiffness KB of the rotational spring by taking the measured value for
the analytical fundamental frequency. The analytical model generally fits very well with the real
behaviour of the cracked beam. Absolute percentage deviations are negligible for frequencies up
to the 6th vibrating mode. As in experiments on axially vibrating beams shown in previous
section, an analytical model is less accurate for antiresonances. In fact, percentage errors are of
the order of 1 per cent for first six antiresonances. Maximum deviation was measured for the
lower antiresonance and it ranges from 0.7 to 2.0 per cent for configurations D1, D2 to 2.9–3.2 per
cent for configurations D3, D4.
The results of identification are reported in Tables 5 and 6. For the sake of completeness, crack

location is determined by also using the second and fourth frequencies and the second frequency
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and the second antiresonance. Concerning the determination of crack location, the results are in
good agreement with theoretical expectations when exact analytical data are used. It can be noted
that the employment of the antiresonances, which are affected by larger modelling errors,
prejudices the capability of obtaining accurate estimates of the crack location. In such cases,
however, it is advisable, firstly, to resort to frequency data and, subsequently, to intersect the
results with those from antiresonance measurements in order to eliminate symmetrical locations
of the cracked cross-section. Identification based on frequency measurements gives accurate
estimates for the stiffness KB: On the contrary, large errors are observed when antiresonances are
used as data in identification.
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Table 4

Experimental and analytical frequencies and antiresonances of beam 2 in bending vibration

Mode Frequencies Antiresonances

Exp. Model Dfn% Exp. Model Dfn%

Undamaged (1)

1 36.6 36.6 0.00 25.1 25.2 0.38

2 100.8 100.9 0.04 83.1 81.7 �1.63
3 197.7 197.8 0.05 171.5 170.5 �0.55
4 326.8 326.9 0.03 295.2 291.6 �1.23

Damage D1 (2)

1 36.5 36.5 0.00 25.0 25.2 0.78

2 100.7 100.7 0.00 82.6 81.7 �1.05
3 197.7 197.8 0.06 171.7 170.4 �0.77
4 326.4 326.3 �0.01 295.1 291.1 �1.38

Damage D2 (3)

1 36.2 36.2 0.00 24.4 24.9 2.05

2 100.1 100.1 �0.04 82.3 81.5 �0.92
3 197.6 197.7 0.07 171.6 169.9 �0.96
4 324.0 323.9 �0.04 293.5 288.8 �1.60

Damage D3 (4)

1 35.4 35.4 0.00 23.6 24.3 2.94

2 98.4 98.3 �0.08 81.6 81.1 �0.71
3 197.5 197.7 0.08 170.9 168.6 �1.30
4 317.9 317.7 �0.06 287.1 283.1 �1.39

Damage D4 (5)

1 32.2 32.2 0.00 22.5 21.8 �3.19
2 92.9 92.6 �0.25 80.5 79.4 �1.28
3 197.3 197.5 0.13 165.5 164.1 �0.81
4 298.8 299.0 0.07 269.7 266.8 �1.07

Abscissa of the cracked cross-section: s ¼ 0:445 m: (1) EI ¼ 1477 N m2; r ¼ 6:30 kg=m; L ¼ 1:208 m ðKB ¼ NÞ: (2)
KB;anal ¼ 602:5� 103 N m=rad: (3) KB;anal ¼ 111:9� 103 N m=rad: (4) KB;anal ¼ 33:27� 103 N m=rad: (5) KB;anal ¼
7:766� 103 N m=rad: Frequency values in Hz. Dfn% ¼ 100ðfnðmodelÞ � fnðexp:ÞÞ=fnðexp:Þ:
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4. Conclusions

This paper was concerned with the identification of a single open crack in a vibrating beam,
either under axial or bending vibration, from the knowledge of the damage-induced changes in
natural frequencies and antiresonant frequencies.
It was shown how an appropriate use of frequencies and antiresonances may be useful to avoid

the non-uniqueness of the damage location problem, which occurs in symmetrical beams when
only frequency data are used.

ARTICLE IN PRESS

Table 5

Determination of the crack location in beam 2 by using frequencies (pair dlFm; dl
F
2m;m ¼ 1; 2) and frequencies–

antiresonances (pair dlFm; dl
S–F
m ;m ¼ 1; 2)

Damage D1 Damage D2 Damage D3 Damage D4

m sexp sanal sexp sanal sexp sanal sexp sanal

Frequencies

1 0.467 0.445 0.455 0.447 0.454 0.450 0.464 0.461

0.741 0.763 0.753 0.761 0.754 0.758 0.744 0.747

2 0.242 0.244 0.242 0.244 0.244 0.245 0.246 0.248

0.448 0.445 0.447 0.444 0.445 0.443 0.441 0.439

0.760 0.763 0.761 0.764 0.763 0.765 0.767 0.769

0.966 0.786 0.966 0.964 0.964 0.963 0.962 0.960

Frequencies–antiresonances

1 0.214 0.445 0.240 0.447 0.315 0.451 0.582 0.466

2 0.100 — 0.238 — 0.336 — — —

0.585 0.445 0.574 0.444 0.569 0.442 0.418 0.436

0.643 0.638 0.754 0.561 1.017 0.562 0.564 0.562

Experimental ðsexpÞ and analytical ðsanalÞ estimates of the crack location. Actual crack location s ¼ 0:445 m: Lengths in
metres.

Table 6

Determination of the spring stiffness in beam 2 by using frequencies (pair dlFm; dl
F
2m;m ¼ 1) and frequencies–

antiresonances (pair dlFm; dl
S–F
m ;m ¼ 1)

Damage D1 Damage D2 Damage D3 Damage D4

KB;exp KB;anal KB;exp KB;anal KB;exp KB;anal KB;exp KB;anal

Frequencies

655321 604357 118224 114666 36389 35842 10409 10300

Frequencies–antiresonances

84790 604357 23030 114666 15849 35979 13104 10481

602491a 111903a 33270a 7766a

Experimental ðKB;expÞ and analytical ðKB;analÞ estimates of the spring stiffness. Stiffness values in N m=rad:
aActual value.
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Numerical results are in good agreement with the theory when exact analytical data are
employed in identification. A series of dynamic tests on cracked steel beams showed that, in
the inverse problem solution, the noise and the modelling errors on antiresonances are
usually amplified strongly with respect to cases in which only frequency data are used. This
peculiar behaviour suggests that damage identification techniques based on antiresonance data
should be carried out with some caution when mechanical systems of greater complexity are
considered.
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