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Abstract

For spatial free vibration of shear deformable circular curved beams with non-symmetric thin-walled
cross-sections, an improved vibration theory is proposed. The elastic strain and kinetic energies are first
derived by considering constant curvature effects and shear deformation effects due to shear forces and
restrained warping torsion. Next equilibrium equations and force–deformation relations are obtained using
a stationary condition of total potential energy. And then the closed-form solution for out-of-plane
vibration of curved beam is newly derived. In addition F. E. procedures are developed by using
isoparametric curved beam element with arbitrary thin-walled sections. In order to illustrate the accuracy
and the practical usefulness of this study, closed-form and numerical solutions for spatial free vibration are
compared with results by available references and ABAQUS’s shell element. Particularly not only shear
deformation and thickness–curvature effects on vibration behaviors of curved beams but also mode

transition and crossover phenomena with change in curvatures and the length of beams are parametrically
investigated.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The spatially vibrational behavior of thin-walled curved beam structures is very complex due to
the coupling effect of extensional, bending and torsional deformation. Investigation into the free
vibration for thin-walled curved members with open and closed cross-sections has been carried
out extensively since the early works of Vlasov [1] and Timoshenko and Gere [2].
Many researches [3–21] on the free in-plane vibration of curved beam have been done

considering various parameters such as boundary conditions, shear deformation, rotary inertia,
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variable curvatures and variable cross-sections. Particularly several authors [3–13] have reported
on the mode transition phenomena which are characterized by sharp increase in frequencies of some
modes that occurs at combinations of curvature and length of curved beam. Tarnopolskaya et al.
[3,4] examined the phenomenon of mode transition from extensional to inextensional that
accompanies an increase in beam curvature. Chidamparam and Leissa [5] investigated the influence
of extensibility on the in-plane free vibration frequencies of loaded circular arches and the
crossover phenomenon which occur at the crossings of the frequency curves under the extensional
condition. Also Charpie and Burroughs [6] presented an analytical model for the free in-plane
vibration of curved beam with variable curvature and depth and concluded that the vibration
frequencies and mode shapes are far more dependent upon variable depth than upon curvature.
Scott and Woodhouse [7] studied the vibration of S-shaped strip of uniform cross-section and
interpreted the variation of frequency with change in curvature by membrane and bending
theories. Petyt and Fleischer [8] examined the transformation of the mode shape at the stage of the
increase in eigenvalues using the finite-element analysis. Even though a significant amount of
research has been conducted on the frequency crossover phenomenon for the vibration of curved
beam, it is judged that most of these studies was limited to only the in-plane free vibration behavior
and did not analyze the effect of shear deformation in connection with frequency crossover.
On the other hand, the research for spatial free vibrations including the out-of-plane vibration

behavior of curved beam has been performed by several authors [22–34]. Cortinez et al. [22] and
Piovan et al. [23] investigated the out-of-plane vibration of simply and continuous supported thin-
walled curved beam with shear deformation but they did not take fully into account the effect of
thickness-curvature and shear deformation due to shear forces and restrained torsional moment
of curved beam. Interestingly for the spatially coupled vibrational behavior of curved beam,
Gendy and Saleeb [33] presented an effective formulation on spatial free vibration of arbitrary
thin-walled curved beam by including the shear deformation and rotary inertia. However, they
partially considered the effect of thickness-curvature and shear deformation. Recently Kim et al.
[34] presented an analytical and numerical solutions on a spatial free vibration of thin-walled
curved beam with non-symmetric section neglecting shear deformation effects.
Despite those extensive studies, it is judged that there still remain some margins to improve in

formulating coupled vibration problems of curved beams having non-symmetric thin-walled
cross-sections. Namely, it is necessary to present an improved formulation taking into account (1)
non-symmetry of thin-walled cross-sections, (2) the so-called thickness-curvature effects, and (3)
shear deformation effects due to shear forces and warping-torsion. Also, one needs to derive (4)
closed-form solutions for out-of-plane vibration modes of monosymmetric circular beams and to
perform (5) the parametric study on spatially free vibration behaviors of curved beams.
Accordingly the primary aim of this study is to present an improved formulation for spatial free

vibration analysis of shear deformable curved beams having arbitrary thin-walled cross-sections,
to newly derive the closed-form solution for monosymmetric circular beams, and to present the
parametric study for vibrational behaviors of curved beams. The important points presented are
summarized as follows:

1. The shear deformable displacement field for non-symmetric thin-walled curved beams having
constant curvatures is first introduced in which all parameters including the normalized
warping function are defined at the centroid.
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2. Next force–deformation relationships due to simple shear and warping-torsional shear stresses
as well as normal stresses considering the thickness-curvature effects are presented in the
general form.

3. And then the elastic strain and kinetic energies of curved beams considering shear deformation
effects due to shear forces and warping-torsion are formulated and the resulting equilibrium
equations of curved beams are derived using the stationary principle of the total potential
energy.

4. Closed-form solutions are newly derived for out-of-plane free vibration of monosymmetric
thin-walled curved beams and also, F.E. procedures are presented by developing isoparametric
curved beam elements with arbitrary thin-walled sections.

5. Finally spatial free vibration behavior of curved beams is investigated through the parametric
studies. Particularly, not only shear deformation and thickness-curvature effects but also mode
transition and crossover phenomena with change in curvature are investigated on spatial free
vibration for non-symmetric curved beams.

2. A spatial free vibrational theory of shear deformable thin-walled curved beams

To degenerate a spatial free vibrational theory for the continuum to that for the thin-walled
curved beam, the following assumptions are adopted:

1. The thin-walled curved beam is linearly elastic and prismatic.
2. The cross-section of the thin-walled curved beam is not deformed in its own plane.
Accordingly, the effects of distortional deformations are negligible.

3. The axis of curvature does not necessarily coincide with one of the principal axes.
4. Shear deformations due to shear forces and restrained warping torsion are taken into account.

It is worth remarking that actually the contour of curved beams with unstiffened closed cross-
sections deforms substantially more than open ones when warping effects are present. Therefore,
the validity of the second assumption requires that the cross-section is fairly thick or adequately
stiffened by its own plane rigid diaphragms. Nevertheless, as a practical matter, bulkheads or
frames are usually present; then there is a large field of application of this simplified theory [35].
Referring to the fourth assumption, plane sections originally normal to the centroid axis remain
plane and undistorted under deformation but not necessarily normal to this axis. Consequently,
the warping modes remain unchanged in evaluating the shear strain energy due to bending-shear
and warping-shear stresses.

2.1. Kinematics and force–deformation relations of thin-walled curved beams

To develop a general theory for free vibration analysis of shear deformable thin-walled curved
beams consistently, a curvilinear co-ordinate system ðx1; x2;x3Þ shown in Fig. 1 is adopted in
which the x1-axis coincides with a centroid axis having the radius of curvature R but x2;x3 are not
necessarily principal inertia axes according to assumption 3. In this study, the phrases ‘‘in-plane’’
and ‘‘out-of-plane’’ are frequently used, which are referred to x1–x3 plane (the plane of curvature)
and x1–x2 plane, respectively.
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Now to introduce the displacement field for the non-symmetric thin-walled cross-section, seven
displacement parameters are shown in Fig. 2(a). Ux;Uy;Uz and o1;o2;o3 are rigid body
translations and rotations of the cross-section with respect to x1;x2 and x3 axes, respectively. f is a
displacement parameter measuring warping deformations. In addition, ðxp

2;x
p
3Þ means principal

axes defined at the centroid where a is the angle between x
p
2 and x2 axes in the counterclockwise

direction. Assuming that the cross-section is rigid in its own plane, the total displacement field can
be written as follows:

U1 ¼ Ux � x2o3 þ x3o2 þ ffðx2;x3Þ; ð1aÞ

U2 ¼ Uy � x3o1; ð1bÞ

U3 ¼ Uz þ x2o1; ð1cÞ

where f is the normalized warping function defined at the centroid.
An improved stability theory including force–deformation relations of shear deformable curved

beams having non-symmetric thin-walled cross-sections have been already derived in the study of
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Fig. 2. Notation for (a) displacement parameters and (b) stress resultants.
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Kim et al. [36]. Hence, force–deformation relations that need to develop a vibrational formulation
of curved beams are shortly summarized and then the kinetic energy is newly derived. Stress
resultants with respect to the centroid are defined as follows:

F1 ¼
Z

A

t11 dA; F2 ¼
Z

A

t12 dA; F3 ¼
Z

A

t13 dA; M1 ¼
Z

A

ðt13x2 � t12x3Þ dA;

M2 ¼
Z

A

t11x3 dA; M3 ¼ �
Z

A

t11x2 dA; Mf ¼
Z

A

t11f dA;

MR ¼
Z

A

t12f;2 þ t13 f;3 �
f

R þ x3

� �� �
R þ x3

R
dA; ð2a–hÞ

where F1 is the axial force, F2 and F3 are the shear forces acting at the centroid, M1 the total twist
moment with respect to the centroid axis, M2 and M3 are the bending moments with respect to x2
and x3 axes,MR andMf are the restrained torsional moment and the bimoment about the x1 axis.
In addition, sectional properties are defined by

I2 ¼
Z

A

x23 dA; I3 ¼
Z

A

x22 dA; I23 ¼
Z

A

x2x3 dA; If ¼
Z

A

f2 dA;

If2 ¼
Z

A

fx3 dA; If3 ¼
Z

A

fx2 dA; I222 ¼
Z

A

x33 dA; I223 ¼
Z

A

x2x
2
3 dA;

I233 ¼
Z

A

x22x3 dA; I333 ¼
Z

A

x32 dA; If22 ¼
Z

A

fx23 dA; If33 ¼
Z

A

fx22 dA;

If23 ¼
Z

A

fx3x2 dA; Iff2 ¼
Z

A

f2x3 dA; Iff3 ¼
Z

A

f2x2 dA; ð3a–oÞ

where A; I2; I3 and I23 are the cross-sectional area, second moments of inertia and
product moment of inertia about x2 and x3 axes, respectively, If the warping moment
of inertia. Also, normal and shear strain–displacement relations may be expressed as
follows:

e11 ¼ U 0
x þ

Uz

R

� �
� x2 o0

3 �
o1
R

� �
þ x3o0

2 þ ff 0
� �

R

R þ x3
; ð4aÞ

2e12 ¼ ðU 0
y � o3Þ

R

R þ x3
� f;2 þ

x3R

R þ x3

� �
o0
1 þ

o3
R

� �
þ f þ o0

1 þ
o3
R

� �
f;2; ð4bÞ

2e13 ¼ U 0
z þ o2 �

Ux

R

� �
R

R þ x3
þ

x2R

R þ x3
� f;3 þ

f
R þ x3

� �
o0
1 þ

o3
R

� �

þ f þ o0
1 þ

o3
R

� �
f;3 �

f
R þ x3

� �
: ð4cÞ
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Now substituting Eq. (4a) into Eqs. (2a), (2e)–(2g) and integrating over the cross-section
leads to

F1

M2

M3

Mf

0
BBB@

1
CCCA ¼ E

A þ
#I2

R2
�

#I2

R

#I23

R
�

#If2

R

�
#I2

R
#I2 � #I23 #If2

#I23

R
� #I23 #I3 � #If3

�
#If2

R2
#If2 � #If3 #If

2
666666666664

3
777777777775

U 0
x þ

Uz

R

o0
2

o0
3 �

o1
R

f 0

0
BBBBBB@

1
CCCCCCA
; ð5a–dÞ

where E is the Young modulus and

#I2 ¼ I2 �
I222

R
; #I3 ¼ I3 �

I233

R
; #I23 ¼ I23 �

I223

R
;

#If ¼ If �
Iff2

R
; #If3 ¼ If3 �

If23

R
; #If2 ¼ If2 �

If22

R
ð6a–fÞ

and also, the following approximation is used:

R

R þ x3
D 1�

x3

R
þ

x3

R

� �2
: ð7Þ

On the other hand, it may be assumed that the force–deformation relations for shear forces,
restrained torsional moment and St. Venant torsion in curved beams take the same form as those
in straight beams [37] except that the curvature effect terms should be added to average shear
deformations. Accordingly force–deformation relations due to shear stresses are given by

F2

F3

MR

0
B@

1
CA ¼ G

A2 A23 A2r

A23 A3 A3r

A2r A3r Ar

2
64

3
75

U 0
y � o3

U 0
z �

Ux

R
þ o2

o0
1 þ

o3
R

þ f

0
BBBB@

1
CCCCA; ð8a–cÞ

Mst ¼ M1 � MR ¼ M1 � M 0
f ¼ GJ o0

1 þ
o3
R

� �
; ð8dÞ

where G is the shear modulus, J the torsional constant and

A2 ¼ As
2 cos

2 aþ As
3 sin

2 a; A3 ¼ As
3 cos

2 aþ As
2 sin

2 a;

Ar ¼ As
r þ As

2e
2
3 þ As

3e
2
2; A23 ¼ ðAs

2 þ As
3Þ cos a sin a;

A2r ¼ �As
2e3 cos a� As

3e2 sin a; A3r ¼ �As
2e3 sin aþ As

3e2 cos a; ð9a–fÞ

where As
2;A

s
3 and As

r are the effective shear areas defined by

1

As
2

¼
1

I23p

Z
A

Q2
3

ds

t
;

1

As
3

¼
1

I22p

Z
A

Q2
2

ds

t
;

1

As
r

¼
1

ðIs
fÞ
2

Z
A

Q2
r

ds

t
ð10a–cÞ
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and

I2p ¼
Z

A

ðxp
3Þ
2 dA; I3p ¼

Z
A

ðxp
2Þ
2 dA; Is

f ¼
Z

A

ðfsÞ2 dA;

Q2 ¼
Z s

0

x
p
3t ds; Q3 ¼

Z s

0

x
p
2t ds; Qr ¼

Z s

0

fst ds: ð11a–fÞ

Consequently Eqs. (5) and (8) constitute force–deformation relations of shear deformable thin-
walled curved beams. In reference to Eq. (8d), it may be demonstrated that a supplementary
equilibrium equation ðMR ¼ M 0

fÞ is satisfied between the bimoment Mf and the restrained
warping torsion MR:

2.2. Principle of linearized virtual work for thin-walled curved beams

The principle of linearized virtual work for the general continuum vibrating harmonically is
expressed as Z

V

tijdeij dV � o2
Z

V

rUidUi dV ¼
Z

S

TidUi dS; ð12Þ

where tij and eij are the stress and linear strain, respectively, r the density, o the circular
frequency, Ti the surface force, Ui the displacement.
In case of the thin-walled circular beam, Eq. (12) may be transformed to principle of the total

potential energy P as follows:

P ¼ PE �PM �Pext; ð13Þ

where the detailed expressions for each term of P are

PE ¼
1

2

Z L

0

Z
A

½t11e11 þ 2t12e12 þ 2t13e13 �
R þ x3

R
dA dx1; ð14aÞ

PM ¼ 1
2
ro2

Z L

0

Z
A

½U2
1 þ U2

2 þ U2
3 �

R þ x3

R
dA dx1; ð14bÞ

Pext ¼
1

2

Z
S

TiUi dS: ð14cÞ

Substituting the linear strain (4) into Eq. (14a) and integrating over the cross-sectional area,
Eq. (14a) are reduced to the following equation:

PE ¼
1

2

Z L

0

F1 U 0
x þ

Uz

R

� �
þ M2o0

2 þ M3 o0
3 �

o1
R

� �
þ Mff 0 þ F2ðU 0

y � o3Þ
�

þ F3 U 0
z �

Ux

R
þ o2

� �
þ ðM1 � MRÞ o0

1 þ
o3
R

� �
þ MR o0

1 þ
o3
R

þ f
� ��

dx1: ð15Þ
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Now substitution of the force–deformation relations (5) and (8) into Eq. (15) leads to the elastic
strain energy:

PE ¼
1

2

Z L

0

EA U 0
x þ

Uz

R

� �2
þE #I2 o0

2 �
U 0

x

R
�

Uz

R2

� �2
þE #I3 o0

3 �
o1
R

� �2
þE #Iff 02

"

þ 2E #If2 o0
2 �

U 0
x

R
�

Uz

R2

� �
f 0 � 2E #If3 o0

3 �
o1
R

� �
f 0 � 2E #I23 o0

3 �
o1
R

� �
o0
2 �

U 0
x

R
�

Uz

R2

� �

þ GJ o0
1 þ

o3
R

� �2
þGA2ðU 0

y � o3Þ
2 þ GA3 U 0

z �
Ux

R
þ o2

� �2
þGAr o0

1 þ
o3
R

þ f
� �2

þ 2GA23ðU 0
y � o3Þ U 0

z �
Ux

R
þ o2

� �
þ 2GA2rðU 0

y � o3Þ o0
1 þ

o3
R

þ f
� �

þ 2GA3r U 0
z �

Ux

R
þ o2

� �
o0
1 þ

o3
R

þ f
� �#

dx1: ð16Þ

Also substituting the displacement field (1) into Eq. (14b), the kinetic energy PM including
shear deformation and rotary inertia can be obtained as

PM ¼ 1
2
ro2

Z L

0

AðU2
x þ U2

y þ U2
z Þ þ *I0o21 þ *I2o22 þ *I3o23 þ *Iff 2 þ 2

I2

R
ðUxo2 � Uyo1Þ

�

� 2
I23

R
ðUxo3 � Uzo1Þ � 2 *I23o2o3 þ 2 *If2o2 f � 2 *If3o3 f þ 2

If2

R
Ux f

�
dx1; ð17Þ

where

*I0 ¼ I2 þ I3 þ
I222 þ I233

R
; *I2 ¼ I2 þ

I222

R
; *I3 ¼ I3 þ

I233

R
; *I23 ¼ I23 þ

I223

R

*If ¼ If þ
Iff2

R
; *If2 ¼ If2 þ

If22

R
; *If3 ¼ If3 þ

If23

R
: ð18a–gÞ

Finally invoking the stationary condition of the total potential energy, equations of motion and
boundary conditions for curved beams are obtained as described in Appendix A.
In neglecting the shear deformations and putting y in place of o1; Eqs. (16) and (17) are reduced

and given in Appendix B, which are identical to Eqs. (10) and (12) in Kim et al. [34].

3. Closed-form solutions for monosymmetric thin-walled curved beams

We consider out-of-plane free vibration of thin-walled curved beams with the cross-section
monosymmetric for the x3 axis. In this case, it turns out that the section properties
ðI23; I223; I333; If2; If22;A23;A3rÞ and initial stress resultants vanish so that in-plane and out-of-
plane modes are decoupled. Consequently the potential energyPout corresponding to out-of-plane
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vibrational mode is given as follows:

Pout ¼
1

2

Z L

0

E #I3 o0
3 �

o1
R

� �2
þE #Iff

02 � 2E #If3 o0
3 �

o1
R

� �
f 0 þ GJ o0

1 þ
o3
R

� �2�

þ GA2ðU 0
y � o3Þ

2 þ GAr o0
1 þ

o3
R

þ f
� �2

þ2GA2rðU 0
y � o3Þ o0

1 þ
o3
R

þ f
� �

� ro2fAU2
y þ *I0o21 þ *I3o23 þ *Iff 2 � 2

I2

R
Uyo1 � 2 *If3o3f g

�
dx1: ð19Þ

From the stationary condition, governing equations and boundary conditions at x1 ¼ 0;L are
obtained as follows:

�GA2ðU 00
y � o0

3Þ�GA2r o00
1 þ

o0
3

R
þ f 0

� �
� ro2 AUy�

I2

R
o1

� �
¼ 0; ð20aÞ

�
E #I3

R
o0
3 �

o1
R

� �
þ E #If3

f 0

R
� GJ o00

1 þ
o0
3

R

� �
� GAr o00

1 þ
o0
3

R
þ f 0

� �

�GA2rðU 00
y � o0

3Þ � ro2 *I0o1�
I2

R
Uy

� �
¼ 0; ð20bÞ

� E #I3 o00
3 �

o0
1

R

� �
þ E #If3f

00 þ
GI

R
o0
1 þ

o3
R

� �
� GA2ðU 0

y � o3Þ þ
GAr

R
o0
1 þ

o3
R

þ f
� �

þ GA2r

U 0
y � o3

R
� o0

1 þ
o3
R

þ f
� �� �

� ro2ð *I3o3 � *If3f Þ ¼ 0; ð20cÞ

� E #Iff 00 þ E #If3 o00
3 �

o0
1

R

� �
þ GAr o0

1 þ
o3
R

þ f
� �

þ GA2rðU 0
y � o3Þ

� ro2ð *Iff� *If3o3Þ ¼ 0 ð20dÞ

and

dUy ¼ 0 or GA2ðU 0
y � o3Þ þ GA2r o0

1 þ
o3
R

þ f
� �

; ð21aÞ

do1 ¼ 0 or GJ o0
1 þ

o3
R

� �
þ GAr o0

1 þ
o3
R

þ f
� �

þ GA2rðU 0
y � o3Þ ¼ 0; ð21bÞ

do3 ¼ 0 or E #I3 o0
3 �

o1
R

� �
� E #If3f

0 ¼ 0; ð21cÞ

df ¼ 0 or E #Iff 0 � E #If3 o0
3 �

o1
R

� �
¼ 0: ð21dÞ

On the other hand, Cortinez et al. [22] and Piovan et al. [23] derived the governing equations
neglecting the underlined terms in Eqs. (20a)–(20d) for the out-of-plane free vibration of curved
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beam. In case of simply supported conditions, (21) is reduced to

dUy ¼ 0; do1 ¼ 0;

M2 ¼ E #I3 o0
3 �

o1
R

� �
� E #If3f

0 ¼ 0;

Mf ¼ E #Iff 0 � E #If3 o0
3 �

o1
R

� �
¼ 0: ð22a–dÞ

Now the lateral displacement, flexural rotation, the torsional rotation, and the warping
parameter for out-of-plane vibration of simply supported circular arches can be assumed,
respectively, as follows:

Uy ¼ An sin lx; o3 ¼ Bn cos lx; o1 ¼ Cn sin lx; f ¼ Dn cos lx; n ¼ 1; 2; 3;y; ð23a–dÞ

where l ¼ np=L: An;Bn;Cn;Dn are unknown coefficients. Substituting displacement functions into
Eq. (20) and arranging yields

k11 k12 k13 k14

k22 k23 k24

k33 k34

symn: k44

2
6664

3
7775

An

Bn

Cn

Dn

0
BBB@

1
CCCA ¼

0

0

0

0

0
BBB@

1
CCCA; ð24Þ

where

k11 ¼ GA2l
2 þ ro2A;

k12 ¼
ðGA2r � GA2RÞl

R
;

k13 ¼ GA2rl
2 þ ro2

I2

R
;

k14 ¼ GA2rl;

k22 ¼ E #I3l
2 þ

ðGAr þ GJ � 2GA2rR þ GA2R
2Þ

R2
� ro2 *If3;

k23 ¼
E #I3l

R
þ

ðGAr þ GJ � GA2rRÞl
R

;

k24 ¼ �E #If3l
2 þ

ðGAr � GA2rRÞ
R

þ ro2 *If3;

k33 ¼
E #I3

R2
þ ðGAr þ GJÞl2 � ro2 *I0;

k34 ¼
�E #If3l

R
þ GArl;

k44 ¼ E #Ifl
2 þ GAr � ro2 *If: ð25a–jÞ
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Then the characteristic equation is obtained by taking the determinant of Eq. (24). Here it
should be noticed that natural frequencies evaluated from Eq. (24) are exact solutions because not
only the displacement functions (23) satisfy both governing equations (20) and boundary
conditions (22) but also they minimize the total potential energy.

4. Isoparametric thin-walled curved beam elements

In this section, isoparametric curved beam elements having arbitrary thin-walled cross-sections
are presented. The element has seven degrees of freedom per a node. Generally the reduced
integration scheme is adopted to avoid the shear-locking phenomena.
Fig. 3 shows the nodal displacement vector of three-noded isoparametric thin-walled curved

beam element. In this study, two-, three-, and four-noded isoparametric curved beam element are
introduced to interpolate displacement parameters that are defined at the centroid axis.
Resultantly, the co-ordinate and all the displacement parameters of the curved beam element
can be interpolated with respect to the nodal co-ordinates and displacements, respectively, as
follows:

x1 ¼
L

2
ð1þ rÞ; ð26aÞ

Ui ¼
Xn

a¼1

NaðrÞUa
i ; i ¼ x; y; z; ð26bÞ

oi ¼
Xn

a¼1

NaðrÞoa
i ; i ¼ 1; 2; 3; ð26cÞ

f ¼
Xn

a¼1

NaðrÞf a; ð26dÞ

where n is the total number of node a element, Ua
i ; oa

i and f a are the translational and rotational
displacements in the xi direction and warping parameter at node a; respectively, Na is the
isoparametric interpolation function whose the detailed expression is presented in Bathe [38], r is a
natural co-ordinate that varies from �1 to þ1:
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Fig. 3. Nodal displacement vector of three-noded isoparametric curved beam element.
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Substituting the shape functions, cross-sectional properties into Eqs. (16) and (17) and
integrating along the element length, the total potential energy of thin-walled curved beam
element is obtained in matrix form as

P ¼ 1
2
UTe ðKe � o2MeÞUe; ð27Þ

where Ke andMe are element elastic stiffness and mass matrices in local co-ordinate, respectively.
Ue is nodal displacement vector which is defined as

Ue ¼ ½U1;U2;y;Un�; ð28aÞ

Ua ¼ ½Ua
x ;U

a
y ;U

a
z ;o

a
1;o

a
2;o

a
3; f

a�T; a ¼ 1; 2;y; n; ð28bÞ

where elastic stiffness matrix is evaluated using a reduced Gauss numerical integration scheme.
Now using direct stiffness method, the matrix equilibrium equation for the free vibration

analysis of non-symmetric thin-walled curved beam is obtained as

KEU ¼ o2MEU; ð29Þ

where KE and ME are global elastic stiffness and mass matrices, respectively.

5. Numerical examples

Closed-form solutions and numerical results analyzed by the curved beam element are
presented and compared with other researchers’ analytical solutions and results by shell element
of ABAQUS [39]. Also, parametric studies for spatial free vibration of curved beams with respect
to various subtended angle and boundary conditions are performed in this section.

5.1. Convergence study

To examine the convergence properties of the isoparametric thin-walled curved beams
developed by this study, we consider a simply supported curved beam with monosymmetric cross-
section for the x3 axis. The geometric and material data are given in Fig. 4, in which the subtended
angle y0 is taken to be 90� and the length of beam l is 250 cm:
The convergence study using two-, three- and four-noded isoparametric curved beam elements

is performed for in-plane and out-of-plane free vibrational cases and Figs. 5 and 6 show plots of a
number of elements versus fundamental in-plane and out-of-plane normalized frequencies,
respectively, where o230 denotes the frequency obtained by 30 four-noded isoparametric curved
beam elements. It may be noticed that the convergence speeds of both three and four-noded
elements are much higher than those of two-noded element for two cases. Furthermore,
convergence speeds for out-of-plane frequency are higher than those for in-plane frequency. With
five elements, the ratios o2=o230 are 1:823; 1:013 and 1.000 for two-, three- and four-noded
elements, respectively for in-plane frequencies and 1:299; 1:002 and 1.000 for out-of-plane
frequencies. Based on results of this convergence study, in subsequent examples on the free
vibrational problems of thin-walled curved beam, a curved beam is modelled by 20 three-noded
curved beam elements.
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5.2. Simply supported curved beam with doubly symmetric cross-sections

To compare the results by present theory with those by other researchers, in-plane and
out-of-plane vibration behaviors of the simply supported curved beam with doubly symmetric
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Fig. 4. Circular curved beam with monosymmetric cross-section: (a) simply supported curved beam; (b) monosymmetric

cross-section; (c) material and section properties.
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cross-sections are examined. First consider in-plane vibration of curved beams with square cross-
section whose subtended angle is 10� and 100� with the constant radius. Material and geometric
data used for analysis are follows:

E ¼ 73; 000 kg=cm2; r ¼ 0:00785 kg=cm2; b ¼ h ¼ 1 cm; R ¼ 100 cm:

Numerical solutions by this study for the lowest four frequencies are presented in Table 1 with
solutions by the previous study [34] neglecting only shear deformation and results by
Chidamparam and Leissa [5] neglecting effects of shear deformation, rotary inertia and thickness
curvature. Table 1 shows that the maximum difference of the present results with those by the
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Table 1

In-plane natural frequencies of simply supported doubly symmetric beam ðradian=sÞ2

Angle ðy0Þ Mode Present study Ref. [34] Ref. [5]

10 1 1550.05 1556.79 1564.99

2 12416.9 12826.5 12963.4

3 60005.7 64335.5 65897.8

4 177374. 199312. 207855.

100 1 0.89954 0.89976 0.89978

2 5.20058 5.20297 5.20349

3 19.0033 19.0120 19.0183

4 46.7508 46.7534 46.7779
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previous study [34] and with Chidamparam and Leissa’s results are 12.4% and 17.2%,
respectively, at the fourth natural frequency for the angle is 10�:
Next, the out-of-plane natural frequencies of simply supported curved beam with H shaped

cross-section having various subtended angles but the constant length of beam is evaluated. The
geometric and material data for analysis are given in Fig. 7. Closed-form solutions based on the
governing equation (20) and numerical solutions are presented in Table 2 with the result following
the governing equation given by Piovan et al. [23] which neglect the underlined terms in (20).
From Table 2, it is found that there are some differences for a small subtended angle between this
study and the result by Piovan et al. Particularly, the difference becomes large with increase of the
subtended angle up to the maximum difference 92.5% at the frequency corresponding to two half
sine waves for the subtended angle y0 ¼ 180�:

5.3. Thin-walled curved beam with monosymmetric section x3-axis

In this example, in-plane and out-of-plane vibrational behaviors of curved beams are
investigated through the various parametric studies. The same geometric and material data of
curved beam as the one used in the example 5.1 are adopted (see Fig. 4).
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Fig. 7. Profile of H shaped cross-section and material and section properties: (a) H shaped cross section; (b) material

and section properties.

Table 2

Out-of-plane natural frequencies for the simply supported doubly symmetric beam ðradian=sÞ2 ðL ¼ 200 cmÞ

Angle ðy0Þ Mode (n) Present study Ref. [23]

Analytic solution F.E. solution

10 1 1.9634 1.9634 1.9700

2 37.974 37.976 38.116

3 181.47 181.51 182.19

4 519.25 519.65 521.12

90 1 0.0515 0.0515 0.0723

2 6.5659 6.5665 7.5920

3 71.853 71.879 78.449

4 302.10 302.40 322.77

180 1 0.0000 0.0000 0.0000

2 1.3263 1.3265 2.5528

3 26.795 26.807 37.449

4 161.64 161.84 199.51
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Table 3 shows the first five in-plane natural frequencies with respect to the various subtended
angles for simply supported curved beams whose length is 50 and 200 cm; respectively. For
comparison, the results by 20 cubic Hermitian beam elements without shear deformation effect are
together presented. And also, in Table 4 is listed the first five out-of-plane natural frequencies by the
closed-form solution with shear deformation and by the numerical solution with and without shear
deformation. It can be noticed that not only relative differences of frequencies due shear
deformation effects are large in higher vibrational modes but also the closed-form solutions are in a
good agreement with the results by curved beam element in the whole range of subtended angles.
The fundamental in-plane symmetric and antisymmetric frequencies for the simply supported

(S–S) and clamped (C–C) curved beams of length l ¼ 100 cm versus various subtended angles
have been plotted in Fig. 8. As shown in Fig. 8, the antisymmetric frequencies decrease slowly as
the subtended angle increases whereas the symmetric frequencies experience a sharp increase. Also
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Table 3

In-plane natural frequencies for the simply supported monosymmetric beam ðradian=sÞ2

Length Angle ðy0Þ Mode With shear deformation Without shear deformation

50 30 1 1041.96 1048.64

2 3398.32 3731.69

3 15613.7 18850.2

4 36737.3 37264.3

5 43238.4 57386.0

90 1 2610.44 2869.24

2 6686.94 6893.78

3 15931.4 18767.3

4 35904.5 40589.4

5 49058.0 58828.1

180 1 1147.45 1265.21

2 8981.06 10787.5

3 31214.9 34479.5

4 33400.2 40603.0

5 68574.1 73140.7

200 30 1 14.8261 14.9206

2 44.3843 44.5777

3 89.7269 90.6257

4 237.870 243.762

5 576.534 598.278

90 1 11.3731 11.4458

2 61.4545 62.3146

3 222.826 228.350

4 445.721 453.289

5 650.445 664.558

180 1 4.94910 4.98098

2 45.6069 46.2587

3 183.525 188.096

4 476.864 494.805

5 1038.69 1093.71
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this figure exhibits the phenomenon of mode crossover, which occurs at the crossing of symmetric
and antisymmetric natural frequency curves. The crossover occurs at the subtended angle around
y0 ¼ 31�; 50� for simply supported and clamped conditions, respectively. Furthermore, after the
crossover point is passed, it is observed that frequencies corresponding to the symmetric mode
increase rapidly and then change very slowly as the subtended angle increases further. In this
range, it turns out that the symmetric mode having one half-wave is transformed into the
symmetric mode with three half-waves (see Fig. 9). This is called mode transition phenomenon for
the symmetric in-plane vibrational mode of simply supported curved beams. A similar situation
occurs for the clamped ends.
Now, effects of shear deformation on the in-plane natural frequencies are examined. Fig. 10

shows relative differences of the fundamental in-plane frequencies due to shear deformation with
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Table 4

Out-of-plane natural frequencies for the simply supported monosymmetric beam ðradian=sÞ2

Length Angle ðy0Þ Mode (n) Analytic solution F.E. solution

With shear deformation Without shear deformation

50 30 1 102.591 102.591 111.133

2 516.113 516.130 558.077

3 553.314 553.315 576.594

4 1475.40 1475.67 1789.61

5 3298.78 3300.75 4507.84

90 1 22.6827 22.6829 23.3032

2 861.117 861.135 1014.20

3 1511.18 1511.18 1605.78

4 1875.86 1876.15 2328.27

5 3794.64 3796.71 4957.10

180 1 0.00000 0.00000 0.00000

2 763.880 763.956 946.746

3 2617.22 2617.51 3353.05

4 3162.78 3162.79 3490.99

5 4586.99 4589.14 6456.94

200 30 1 0.34351 0.34352 0.34495

2 7.43988 7.44025 7.61160

3 28.8676 28.8735 30.0129

4 38.6432 38.6432 38.7100

5 65.5991 65.6371 68.9167

90 1 0.04343 0.04343 0.04346

2 4.39389 4.39424 4.45395

3 35.7129 35.7228 37.5227

4 92.0290 92.0804 98.7250

5 158.050 158.237 170.521

180 1 0.00000 0.00000 0.00000

2 0.87041 0.87050 0.87389

3 17.0762 17.0841 17.5055

4 98.2060 98.3089 106.156

5 222.706 222.994 248.870
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the increase of subtended angles for simply supported and clamped ends, respectively, in which
o�2 denotes the natural frequency neglecting shear deformation. It is interesting to note that effect
of shear deformation jumps upward at the point of crossover for simply supported and clamped
ends. In the low range of subtended angle, effect of shear deformation is small because the
fundamental vibrational mode is symmetric mode with one half-wave as can be seen Fig. 9.
However after the crossover point, the fundamental mode changes into the antisymmetric mode
with two half-waves, in which shear deformation effect is large. Also it can be found that the shear
deformation effect of curved beam with clamped ends is not always larger than that of simply
supported curved beam in the whole range of subtended angles due to the phenomenon of
crossover mentioned above. In addition, shear deformation effect of the antisymmetric mode is
almost constant with increase of subtended angle for both boundary conditions.
Next Figs. 11 and 12 show the out-of-plane symmetric and antisymmetric frequencies of curved

beam with simply supported ends versus various subtended angle and relative differences of the
fundamental out-of-plane frequency due to shear deformation, respectively. From Fig. 11, it can

ARTICLE IN PRESS

20 40 60 80 100 120 14010 30 50 70 90 110 130

Subtended angle, θ o 

0

400

800

1200

1600

200

600

1000

1400

In
-p

la
ne

 f
re

qu
en

cy
, �

2  

symmetric mode (S-S)
antisymmetric mode (S-S)
symmetric mode (C-C)
antisymmetric mode (C-C)

Fig. 8. In-plane frequency with subtended angle ðl ¼ 100 cmÞ:

Fig. 9. Mode transition of fundamental symmetric vibrational modes for the simply supported curved beam.
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be found that the crossover of symmetric and antisymmetric out-of-plane frequency curves occurs
at the subtended angle of around y0 ¼ 320�: Also the effect of shear deformation jumps upward at
the crossover point (Fig. 12). This phenomenon is due to the fact that the fundamental vibrational
mode is interchanged from the symmetric mode with one half-wave into the antisymmetric mode
with two half-waves at the crossover point.

5.4. Clamped semicircular beams with Z-sections

This example considers the clamped semicircular beam with Z-section of equal flanges as shown
in Fig. 13. Table 5 shows the lowest five spatially coupled natural frequencies by present study.
For comparison, the numerical solutions [34] neglecting shear deformation and the results by the
Gendy and Saleeb [33] and those by the shell element model of Noor et al. [40] are together
presented. From Table 5, it is observed that the results by the present study are slightly better than
those by Gendy and Saleeb’s model when comparing with those using the shell element. Also the
maximum difference of results by this study and those by Gendy and Saleeb’ model is 6.4% at
third vibrational mode.

5.5. Cantilever and clamped curved beams with non-symmetric cross-sections

In this example, the spatially coupled free vibration analysis of non-symmetric curved beams
with clamped–free and clamped–clamped ends is performed for various subtended angles. Fig. 14
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Table 5

Natural frequencies of clamped semicircular beam ðradian=sÞ2

Mode Present study Ref. [34] Ref. [33] Ref. [40]

1 4.8198 4.8963 4.8993 4.5199

2 23.119 23.252 23.852 22.777

3 107.22 107.90 114.06 105.60

4 162.93 166.50 168.55 156.79

5 333.93 336.97 335.82 329.87
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Fig. 13. Clamped semicircular curved beam with Z cross-section: (a) clamped curved beam; (b) non-symmetric Z cross-

section; (c) material and section properties.
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Fig. 14. Cantilever curved beam with non-symmetric cross-section: (a) geometry of curved beam; (b) cross-section;

(c) material and section properties.
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shows a non-symmetric curved cantilever beam and its material and sectional properties. In
Tables 6 and 7, the lowest 10 frequencies of curved cantilever and clamped–clamped curved beams
of length l ¼ 200 cm are presented with respect to the various subtended angles. The solutions by
present study, the solutions [34] neglecting shear deformation and the results by 300 shell elements
of ABAQUS which is the commercial F.E. analysis program are presented for comparison. From
tables, it is shown that the results by present method are in a good agreement with those by
ABAQUS’s shell elements. As shown in Table 6, for the curved cantilever beam, the maximum
difference of frequencies due to shear deformation is 6.0% at the eighth mode for the subtended
angle y0 ¼ 180�: Also it is observed that the shear deformation effects in the clamped–clamped
curved beam are relatively larger than those in the cantilever beam and the maximum difference is
12.9% at the tenth mode for the subtended angle y0 ¼ 10�:

6. Conclusions

For spatial free vibration analysis of shear deformable curved beams having arbitrary thin-
walled cross-sections, an improved theory is formulated. The closed-form solution for out-of-
plane vibrational deformations of monosymmetric circular beams is newly derived and the
isoparametric curved beam elements are developed. The closed-form and the F.E. solutions by the
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Table 6

Natural frequencies of non-symmetric cantilever curved beam ðradian=sÞ2

Angle ðy0Þ Method Vibration mode

1 2 3 4 5 6 7 8 9 10

10 Present study 0.0289 0.2672 0.5938 1.5157 5.0785 7.5997 16.973 20.192 26.497 50.875

Ref. [34] 0.0290 0.2686 0.5963 1.5252 5.1373 7.7438 17.386 20.623 27.159 52.344

30 Present study 0.0211 0.2798 0.3737 2.2526 4.9884 7.2984 19.109 20.051 27.454 47.676

Ref. [34] 0.0212 0.2815 0.3747 2.2666 5.0554 7.4328 19.493 20.511 28.177 49.067

60 Present study 0.0107 0.2470 0.3067 2.3617 5.6800 7.0548 17.886 27.702 30.422 43.573

Ref. [34] 0.0107 0.2480 0.3084 2.3788 5.8332 7.1242 18.221 28.219 31.322 44.828

90 Present study 0.0062 0.2051 0.2883 2.0111 5.0525 7.2818 17.197 31.627 37.201 46.719

Ref. [34] 0.0062 0.2061 0.2901 2.0272 5.2139 7.3646 17.473 32.844 37.949 47.721

ABAQUS [39] 0.0060 0.2043 0.2779 1.9714 5.0293 7.1815 17.079 32.233 36.624 43.574

120 Present study 0.0042 0.1598 0.2929 1.6744 4.2126 6.9482 16.484 32.775 35.555 66.874

Ref. [34] 0.0043 0.1608 0.2945 1.6893 4.3515 7.0502 16.728 34.383 36.373 67.954

150 Present study 0.0034 0.1213 0.3127 1.3800 3.5354 6.3441 15.567 31.995 33.572 66.454

Ref. [34] 0.0034 0.1222 0.3141 1.3938 3.6529 6.4512 15.798 33.813 34.377 68.559

180 Present study 0.0030 0.0922 0.3447 1.1265 3.0410 5.6769 14.500 29.706 31.903 62.142

Ref. [34] 0.0030 0.0929 0.3462 1.1389 3.1403 5.7825 14.724 31.503 32.765 64.026
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present study are compared with other researchers’ results and numerical results using
ABAQUS’s shell elements and the parametric study is performed. Consequently, conclusions
drawn from this study are as follows:

1. Mode transition phenomena from the symmetric mode having one half-wave to the symmetric
mode with three half-waves are observed in case of in-plane free vibration of simply supported
and clamped curved beams. In this case, shear deformation effects increase sharply around the
mode transition point due to the increase of the half-wave number.

2. Crossover phenomena are detected for out-of-plane vibrational mode as well as in-plane mode
of monosymmetric curved beams.

3. For spatially coupled free vibration problem of non-symmetric thin-walled cantilever and
clamped curved beams, it is shown that the numerical solutions by the isoparametric curved
beam element considering shear effects are in a good agreement with the results by shell
elements of ABAQUS.
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Table 7

Natural frequencies of non-symmetric clamped curved beam ðradian=sÞ2

Angle ðy0Þ Method Vibration mode

1 2 3 4 5 6 7 8 9 10

10 Present study 0.9388 4.3755 6.2020 16.887 18.361 20.637 47.850 57.241 95.128 105.91

Ref. [34] 0.9488 4.4120 6.3262 17.732 18.778 21.295 49.634 59.534 99.775 119.58

30 Present study 0.8264 5.2791 10.645 17.672 21.490 30.441 43.626 65.695 88.794 110.16

Ref. [34] 0.8338 5.3737 10.799 18.125 22.087 31.469 45.206 68.388 93.079 123.91

60 Present study 0.7681 4.4271 15.044 23.538 26.510 38.338 58.008 80.708 101.98 117.80

Ref. [34] 0.7753 4.4992 15.392 24.041 27.515 39.667 60.538 84.626 104.35 131.16

90 Present study 0.7134 3.9278 13.272 30.219 34.103 41.075 67.752 76.159 128.49 137.44

Ref. [34] 0.7223 3.9916 13.570 31.829 35.223 41.852 71.047 80.568 138.20 148.88

ABAQUS [39] 0.7020 3.9088 13.388 30.838 34.855 37.792 69.831 78.659 115.15 140.53

120 Present study 0.6344 3.5618 11.986 30.249 31.713 63.380 66.200 79.918 124.23 151.78

Ref. [34] 0.6446 3.6238 12.257 31.523 33.616 64.519 68.869 86.169 130.81 165.18

150 Present study 0.5420 3.2285 10.998 27.214 30.484 60.262 83.318 94.335 115.54 180.24

Ref. [34] 0.5522 3.2906 11.259 28.378 32.733 62.680 90.153 96.772 121.55 193.33

180 Present study 0.4495 2.8955 10.162 24.061 28.316 55.990 84.329 107.63 129.94 188.48

Ref. [34] 0.4589 2.9571 10.422 25.347 30.400 58.225 93.334 113.14 131.99 200.85
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Appendix A

Equations of motion and boundary conditions for shear deformable curved beams are given as
follows:
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Appendix B

For shear rigid curved beam, the elastic strain energy and the kinetic energy are given as
follows:
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