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Abstract

This article presents selected research results in the field of stochastic dynamic stability problems. Both
the geometrical properties and the loading conditions are supposed to be random in nature. The stability
behavior of structures excited by time-dependent loads can be described by the maximum Lyapunov
exponent. This exponent turns positive for unstable systems and can be computed by a non-linear time
integration with simultaneous stability analysis. Alternatively, an approximation can be obtained by
investigating a linearized version of the structural model. The non-linear time integration of large structures
requires a huge numerical effort, thus this method is limited by available computer capacities. In this article
both methods are applied and the respective results are compared for geometrically perfect and imperfect
systems of different sizes.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This document gives a survey of several investigations in stochastic dynamic stability analysis.
In previous publications the authors considered geometrically imperfect structures with static
loading [1] and periodic loading conditions [2,3] by using stability analysis of the linearized
system. The non-linear equation of motion of the system was linearized and the Lyapunov
exponents for almost sure stability were computed by using the FLOQUET theory [4]. This
linearization was based on an expansion of the stiffness matrix of the system into an asymptotic
series with respect to a static loading parameter.
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In Ref. [2], 1t6 analysis [5] was applied for cases of random loading. Stability was expressed in
terms of the long-term behavior of the second moments. The main difficulty in this investigation
was to analyze the effect of random imperfections. These geometrical imperfections are
interpreted as randomly spatially distributed deviations from a perfect geometry. Mathematically,
they are represented by random fields discretized at points which are equivalent to the nodes of
the finite element model. The covariance matrix of such a random field can be diagonalized [6] by
means of a similarity transformation based on the eigenvectors of the covariance matrix. These
eigenvectors can be interpreted as spatially orthogonal imperfection shapes with probabilistic
weights. The influence of these imperfection shapes on the stability behavior can be analyzed
separately for each shape using standard methods of structural mechanics.

A quite complete review of bifurcations of non-linear systems is given by To and Li [7]. Here
analytical expressions for the largest Lyapunov exponent are derived using an amplitude—phase
transformation. This is extremely useful for single degree-of-freedom systems (s.d.o.f.).
Unfortunately, it is not a simple task to expand their approach to cover arbitrary multiple
degree-of-freedom systems (m.d.o.f.). Consequently, numerical procedure are required as e.g.,
proposed by To and Liu [8]. This paper actually refers to an earlier publication by Wolf et al. [9].

A later publication of Schorling et al. [10] investigated non-linear systems under random
loading. The approach presented there is based on the convergence criterion ‘“‘stability with
probability one” (almost sure stability). The stability of the structure is determined by analyzing
the tangential equations of motion of the structure as obtained from a consistent linearization,
see, e.g., Refs. [4,11,12]. This procedure theoretically requires a time integration of the system with
an accompanying stability analysis until infinity. For this analysis type arbitrary non-linearities of
the system can be considered, however, at the price of generating the system matrices at each time
step. Obviously for this method the time integration of the system is the crucial numerical
operation. The random loading is described by a scalar-valued random process. It is assumed to
be stationary in time and normally distributed with a given mean value and power spectral
density. By using a finite Fourier series representation with random coefficients [13] the process
can be discretized within a given frequency band.

In this article the stability analysis based on non-linear time integration is explained. Systems
with different types and sizes are investigated. Problems in the application of the method as
outlined are exemplified. Finally, the reliability analysis of a non-linear shell structure with
geometrical imperfection modelled by random fields is presented in detail. All analysis tasks are
performed with the SLang Software package [14,15].

2. Stability concept
2.1. Basics

Stability analysis investigates the long-term behavior of motion under the influence of
perturbations [4,16]. For a stable motion, perturbations are insignificant, the perturbed motion
stays close to the unperturbed motion. In the unstable case an infinitesimal perturbation causes a
considerable change of the motion. Depending on the type of perturbation, the stability analysis is
sub-classified in structural stability and stability in Lyapunov sense. The structural stability
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analysis investigates the effect of perturbed system properties such as mass, stiffness and damping
[17,18]. The stability concept in Lyapunov sense analyses the effect of perturbations of the initial
conditions.

An unperturbed motion x; is called stable in the Lyapunov sense if for any given ¢ > 0 there is a
0(¢) > 0 so that for any perturbed motion x,(¢) with

[Ix1(20) — x2(20)I| <0, (1)
one has
Ix1(2) — xa(D)l| <e, (2)

for all ¢,toeR™ [4]. In Fig. 1 both solutions are displayed.
A motion satisfying Eq. (2) is asymptotically stable if the condition

Jim - [lx1(2) — x2(2)] = 0, 3)

is fulfilled. For the stability analysis it is useful to investigate the behavior of the perturbed
neighboring motion x,(¢). It is only necessary to describe the long-term behavior of

(1) = x2(0) — x1(2). 4)
The asymptotic stability condition Eq. (3) gets the form
lim [yl = 0. (5)

2.2. Application in structural dynamics

The equation of motion of non-linear dynamic systems is usually given in the form
MX + r(x,x) = f, (6)
where M is the mass matrix, x the displacement vector, r the non-linear restoring force vector and

f a time depending continuous loading function. The dimension of this system of equations is N.
The linearization of Eq. (6) leads to

r = r(xo, %) + Cy + Ky, 0

with y = X — x¢ as the deviation from the reference solution and K and C as the tangential
stiffness and damping matrices [10]. The equation of motion may be split in a differential equation

Fig. 1. Stability in Lyapunov sense.
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for the reference solution itself,

MXg + r(xo,X9) = f, (8)
and a differential equation for the neighboring (tangential) motions

My + Cy + Ky = 0. )

To apply the Lyapunov stability analysis a transformation into the state space z' = (yT,y") is
helpful:

0 I
M 'K M IC

z, (10)

or abbreviated
z = A[x¢(?)]z. (11)
The Lyapunov exponents are a measure for the average exponential divergence or convergence of

neighboring orbits in the phase space. They represent universal stability properties of arbitrary
dynamical processes. The kth one-dimensional Lyapunov exponent is defined [19] by

: 1
Ak = lim —In flzi(Oll/llzi(to)ll, - ke[l 2N] (12)

z; denotes a set of linearly independent perturbation vectors in the phase space. For a linear
system with constant coefficients, the A; correspond to the real parts of the eigenvalues. The
largest Lyapunov exponent decides upon stability of the process [20]

stable if max A, <0, } i

) =1,...,2N. (13)
unstable if maxA; >0,

The states of z(¢,), t, = ty + nAt can be determined with the fundamental matrix ®
Z(tn) - G(tna [nfl)z([nfl)- (14)

In case the time interval Az = ¢, — ¢, is chosen small enough to consider the term A(#) constant
within any interval, the transition matrix between the time steps may be derived analytically (e.g.,
Ref. [21]) as

O(t,, 1,-1) = R(t,_1) diag(e“*)R(t,_1) " (15)
The transition matrix from time 0 to ¢ is then approximated by the product
01,0)= [[ Ot (16)
n=1,nstep

The Lyapunov exponents can be determined by solving the eigenvalue problem
O(t, 10)z = pz, (17)
with this equation [19]

Inju . (18)

1> — 1y
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Here the tilde indicates the approximation to Eq. (12) introduced by the time discretization in
Eq. (14). The presented procedure requires the exact determination of the tangential matrices
(consistent linearization) and it easily enables the detection of the complete Lyapunov exponent
spectrum.

2.3. Stochastic stability

The elements of the system matrix A in Eq. (11) are random processes in the case of stochastic
excitation. This implies that stability can only be checked in terms of probabilities or expected
values. Based on the asymptotic stability condition of the state-space vector

lim [[z]] = 0, (19)

different stability conditions may be defined [22,23]:
Stability with probability one or almost sure or sample stability

P[lim 2] :o} — 1. (20)
t— 0
Stability in probability
P[nm ||z||>£} —0 Ve>0. 1)
t— o0

Stability in mean square or stability in second moments

lim E[ljz|] = 0. (22)

The most stringent criterion of these is given by the stability in mean square.
The top Lyapunov exponent for almost sure stability A,.x can be determined by a limiting
process

~ .1
Fmax(Xo,8) = lim =~ log 10(xo, sl (23)

in which s is an arbitrary unit vector. Based on the multiplicative ergodic theorem (e.g., Ref. [24])
the Lyapunov exponent can also be calculated as an expected value

Fos(30.8) = E| § o 000,051 o9

The norm ||®(xo, ?)s|| can be expressed in terms of
1O(x0, D)sl| <[|O(xo, NI - [Is]| = [|O(x0, V)I. (25)

In this equation, a matrix norm must be chosen which is compatible to the vector norm used in
Eq. (23). If the Euclidean vector norm is used, equality in Eq. (25) is obtained by choosing the
matrix norm equal to the eigenvalue p,,, of @(xo, ¢) with maximum absolute value (cf. Eq. (18)).

This result is used in calculating the Lyapunov exponent according to Eq. (23). The limit for ¢
has to be taken at some finite value for which convergence can be assumed. For the statistical
estimation of the convergence of the Lyapunov exponent, Eq. (24) is suitable.
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3. Structural analysis
3.1. Modal reduction and time integration

In order to reduce the system size a modal reduction can be applied, in which the equation of
motion Eq. (42) is projected into a subspace defined by m modes of vibration @; of the structure
which correspond to the lowest natural frequencies. These mode shapes are the solutions to

K(Xsta) —’M)® =0, i=1,...,m, (26)

in which xg,, is a reference solution, typically chosen to be the static solution under permanent
loading. To obtain real eigenvalues, which are necessary for the modal reduction, the reference
solution Xy, has to be chosen in that way, that stable modes of vibration exist. The mode shapes
obtained with Eq. (26) are assumed to be mass normalized:

O K (X))@ = diag(e}), (27)
with
O'™MD =1. (28)

By assuming modal damping the linear damping matrix C can be obtained from the eigenvalues
; and the modal damping ratios D; in the form

C = ® "diag(2D,w;)®". (29)

A transformation y = ®v and a multiplication of Eq. (6) with @' represents a projection of the
differential equation of motion into the subspace of dimension m as spanned by the eigenvectors
obtained from solving Eq. (26)

V+ ®Tr(x,x) = O'f. (30)

The integration of this equation by the central difference method [25] requires a time step less than
Aleic = 2w, ! (approximation for a linear system). This is considerably large than the critical time
step for the full system (Eq. (6)). The time integration in the subspace and the computation of the
restoring forces on the full system causes the following problem: If the initial displacement or
velocity vector of the time integration is not zero, for example due to static loading, the projection
of these vectors into the subspace leads to an optimization problem caused by the higher number
of variables in the full space. By using a least-squares approach

v=0x; o=@ D)D", (31)

this projection is optimally approximated, but not suitable for a subspace spanned by a small
number of eigenvectors. A possibility for handling this, is to start the time integration in the
subspace with a displacement and velocity vector equal to zero. The initial vectors have to be
saved in the full system and the restoring force vector has to be computed by addition of the initial
and the time integration vectors

r(X, X) = r(Xinit + @V, Xjnit + OV), vit=0)=v(it=0)=0. (32)

The stability of the reference solution x¢(#) is determined by the long-term behavior of the
neighboring motion (Eq. (9)). For m.d.o.f. systems this equation could be projected into the same
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subspace as in Eq. (30)
W+ ®TCOW + ®'Kdw = 0. (33)

The subspace of the neighboring motion could also be smaller than of the reference solution,
because a smaller number of modes is necessary to approximate the stability behavior then to map
the motion of the system.

Even for the commonly employed Rayleigh or the somewhat more general modal damping
assumption Eq. (29) remains a system of coupled equations, as the term K—which depends on the
reference solution—is not diagonalized by the matrix of eigenvectors. Eq.(33) may be
transformed into its state-space description as defined by z' = (w', w') as

0 I
—O'K® -oo'Cco

z. (34)

3.2. Random excitation

The time-dependant loading function is assumed to be of the form
f = 1o + v(Ofucs, (35)

where v(f) is a scalar white noise random process with zero mean value and the power spectral
density S,,(w). The white noise process is characterized by a infinitely wide frequency band. To
compute discrete samples of the random process it is necessary to fix the maximum and the
decomposition of this frequency band. In this form, v(¢) is represented by Fourier series (using
FFT)
.
v(t) = Z 05(As cos wgt + By sin wyt). (36)
s=1
The Fourier coefficients A, B, are zero-mean Gaussian random variables with unit standard
deviation. The random amplitudes are given as [13]

o = / Sy(@) do ~ Sy, (wy)Aws. (37)
Awyg

In this case the spectrum is not smooth caused by the random amplitudes. To obtain a smooth
spectrum, the amplitudes have to be deterministic values. Then the Fourier coefficients and the
amplitudes are given as [26]

As =B, = 1: GzszvAws, va = vv(wl) == va(a)r)- (38)

3.3. Random imperfections

Geometrical imperfections are interpreted as spatially fluctuating structural properties with
respect to a perfect geometry. They are modelled as random fields, described by a mean and
covariance function and a defined degree of homogeneity and isotropy [27]. For simplicity the
random imperfections considered in this article are assumed to be weakly homogeneous and
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normally distributed. An exponential correlation function with a defined correlation length /, is
used.

If the random field is discretized at the nodes of a finite element structure the correlation matrix
may be determined in a straightforward manner as a function of the nodal co-ordinates [28].
Support conditions of the structure have considerable influence on the stability behavior. In order
to isolate such effects the location of the supports is assumed to be deterministic, while the
structure itself remains geometrically imperfect. Mathematically, this step is carried out by
conditioning the random field. The resulting conditional random field [27,29] then has vanishing
variances at the supports and non-vanishing variances in the remaining structure and thus is no
longer weakly homogeneous. Its parameters are determined via a stochastic interpolation scheme
which is based on the maximum likelihood principle [29].

The correlation matrix Cy, finally obtained is diagonalized:

YIC. W = diag(s},) with 63, >0, >0}, (39)

where p is the total number of random variables of the random field. The eigenvectors W can be
interpreted as imperfections shapes, the eigenvalues O.zy/ represent variances of the respective
amplitudes. In this representation these amplitudes are normally distributed, have zero mean and
for convenience are ordered with decreasing size [28].

The failure probability of the structure is computed by integration of the marginal distribution

of the random variable vector Y over the failure domain indicated by ¢g(y)<0

=] Ay (40)
9(y)<0
In the case of failure due to loss of stability, ¢g(y)<O corresponds to the case Amax > 0.
To solve Eq. (40) imperfection shapes are increased until the stability border is reached.
When fy is of dimension one the failure probability may be calculated analytically. An interaction
model between the random variables can be applied for higher dimensions. A procedure like the
response surface method [28] combined with adaptive sampling strategies [30] gives accurate
results for the solution of Eq. (40) as long as the dimension of the random variable vector fy
remains sufficiently small. This requires a sensitivity study to identify the most important random
variables.
The stability behavior for the different imperfection shapes may be analyzed for non-linear and
linearized systems.

3.4. Linearization

In order to analyze non-linear systems by methods of linear dynamics, the non-linear system
matrices have to be linearized. Usually, the non-linear stiffness matrix in Eq. (9) is approximated
by an asymptotic series with respect to the load ¢v(z):

K = K(Xsiat) + @v(0K; + 9"V (OK; + -+ (41)
In this equation, Xy, is chosen to be the displacement solution of Eq. (8) under static loading. The

matrices K; and the factor ¢ may be determined by static equilibrium conditions. First-order
approximation of Eq.(41) by assuming smallness of ¢v(¢) leads to the following linearized
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differential equation of the neighboring motions
My + Cy + (K(Xstat) + @v()K 1)y = 0. (42)

Applying modal reduction (Eqs (30)—(42)) and transforming the result into its state-space
description as defined by z' = (vT,vT) according to Eq. (10) leads to

0 ! M P 43)
— f),
diag(@?) —diageDo) | |~ K@ 0"
or abbreviated,
=AMz, A1) = o+ Bov(1), (44)

with the constant coefficient matrices .o/ and 4.

4. Numerical examples
4.1. Convergence properties

The s.d.o.f. system in Eq. (45) was investigated with the sample analysis.
mx + cx + k[1 + /v(¢)]x = 0. (45)

In this example the excitation v(¢) is assumed to be a broadband random process with zero mean
and unit standard deviation. Time series for this process are calculated by using Eq. (36). This
means that a number of periodic functions with different frequencies are added. The phase angles
are random quantities. The load factor / is increased from 0.5 to 2.0 in four steps. Fig. 2 shows the
time-dependent mean value and standard deviation of the estimated Lyapunov exponents for the
third load level obtained from 50 simulations, each having 35000 time steps at At =7 x 1072 s
The figure clearly indicates that the estimate for the Lyapunov exponent is a random quantity.
This is a consequence of the band limitation (wmax) and the spectral discretization (Aw) of the
white noise. It can be observed that both the mean value /.« and the standard deviation o; are
quite stable after a certain number of time steps. Fig. 3 shows three samples obtained by using
100000 time steps with the same step size as above, where different limit values are obtained.
Therefore the average of many simulations is necessary to obtain a fast convergence of the mean
value.

0.3
é 0.2
ﬁgj- . “"""\s&
0.1
8 T
5
g 0
>
-
-0.1
0 200 400 600 800 1000

Time (s)

Fig. 2. Top Lyapunov exponent for s.d.o.f.-system for load factor 1.5.
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Fig. 3. Top Lyapunov exponent for s.d.o.f.-system for different samples.

Table 1

Top Lyapunov exponents obtained by sample analysis and Lin/Cai approach
{ Sample analysis Lin/Cai

0.25 —0.0939+0.0013 —0.093864

0.50 —0.0758 +£0.0019 —0.075456

0.75 —0.0453 +0.0040 —0.044777

1.00 —0.0031+0.0051 —0.001825

1.25 0.0517+0.0059 0.053398

1.50 0.115540.0095 0.120893

1.75 0.1890+0.0143 0.200660

The Lyapunov exponent of linear s.d.o.f. systems under white noise excitation can be
approximated analytically according to Lin and Cai [23]:

Jmax = —Dwy + 18,03 /4, (46)

in which wy = \/k/m, D is modal damping ratio and S,, is the power spectral density of the white-
noise excitation. An improved approximation can be obtained using the approach by Pardoux
and Wihstutz [31] which takes the series expansion of the Lyapunov exponent in terms of the noise
intensity up to second order terms. In the present example this proved not to be necessary.

Eq. (46) was applied to the s.d.o.f. given in Eq. (45). The excitation power spectral density has
to be obtained from the power spectral density of the unit random process and the load factor as

va,exc = /25\?\,',)’(1)- (47)

The random process spectral density Sy () can be calculated from the band limitation of the two-
sided frequency band by the relation

Sunsy = 1/20max = A/2. (48)

The obtained analytical Lyapunov exponents are shown in Table 1 in comparison to numerical
results from the sample analysis obtained by calculating 50 simulations with 10° time steps. The
agreement is excellent.
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4.2. Analytical solution and verification

A direct analytical solution of the differential equation system like Eq. (45) in terms of
elementary integrations is possible if the system matrix A(?) can be transformed to a triangular
matrix by a time-independent transformation T. This is practicable e.g., if A(¢) has identical
column-sums

A(r) = [ 0 ! ] + 0 ]/v(t). (49)
-1 =2 -1 -1
The transformation takes place as follows
v=T'A@)Tv with z=A(0)z, z = Tv. (50)
The transformation matrix is given as
T(1) = [ to , T'= [1 O], (51)
-1 1 1 1

and leads to the differential equation system
1')1 —1 1 U1
= ) (52)
0 0 —1—=0v@) ||

1 t T
_ /v d _ /v(0) d¢ —
v = V1€ tefo odr = vp0e”" / efo v© “dt + vy e (53)
0

As solutions of this equations

The obtained transformed monodromy matrix
UG
0 ej; /v(t) dt

can be transformed back. The eigenvalues of the solved monodromy matrix lead to the top
Lyapunov exponent:

O*(1,0)=¢"' , V(1) = ©*(1,0)v(0) (54)

!
_ - /v(t) d
K@,l = ¢ t, K®’2 = ¢ teﬁ) V(‘t) T’

t
/IT(I):—I, iz(t):—l—i/ /v(t)dr,
0

Fmnan(t) = max (2 (1), 23 (1), (55)

For the comparison of the analytical and the numerical Lyapunov exponents it is necessary to
solve the time integral of the excitation process. For a discretized white-noise process this is only
possible by numerical integration. For random excitation the Lyapunov exponents were
calculated and verified for a unstable load level. The relative deviations between the numerical
and the analytical solutions did not exceed a value of 2.5 x 107® as displayed in Fig. 4.
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Fig. 4. Relative deviation of the numerical maximum Lyapunov exponent from the analytical solution for random
excitation.

i F(t) = FotFiuat
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[ Jossn

0.15m

Fig. 5. m.d.o.f.-Column subjected to parametric excitation.

4.3. Effect of modal reduction on non-linear analysis

To analyze the non-linear stability behavior of m.d.o.f. systems, the above mentioned explicit time
integration procedure is applied. It is then necessary to compute the tangential stiffness matrix at
every time step. This necessitates the reduction into a smaller subspace in order to reduce the huge
numerical effort. The size of this subspace has to be large enough to reproduce the dynamic behavior
adequately. This can be checked by comparing simulations of the full and the reduced system.

The simple column as shown in Fig. 5 is analyzed with the non-linear sample analysis. The
system is modelled with 20 geometrically non-linear beam elements with 60 d.o.f. by enabling only
displacements in one plane. The static load Fj is chosen to be 80% of the critical load of the
perfect column. A non-linear static stability analysis leads to the value of F . = 259.2 N. The
dynamic load is chosen to be a Gaussian white noise. For the dynamic stability analysis, a modal
damping ratio of Dy = 0.01 is assumed for all modes.

To check how many modes are necessary to reproduce the dynamic behavior of the full system,
different modal subspaces were investigated. Fig. 6 compares the Lyapunov exponents obtained
from analyses with m = 20 and 60 modes, respectively. The latter case corresponds to a full
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Fig. 6. Influence of modal reduction on the top Lyapunov exponent.
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Fig. 7. Comparison of top Lyapunov exponents from the analysis of the non-linear and linearized system: —, mean
value; ----, standard deviation; ------- , linear.

explicit analysis. Critical time steps were one order of magnitude apart so that m = 20 led to a
speed-up of 10. The time steps for this simulation were assumed with Az = © x 10~* s for the full
system and Az =  x 1073 s for the reduced system. The used load factor of 400 N leads to an
unstable motion. Due to the smaller time step it has to be multiplied the with factor \/E for the
full system to get the same intensity value of the white noise.

By using this size of the subspace for the time integration and the respective time step, the
Lyapunov exponents for different load levels were computed by calculating 100 simulation with
10° time steps each. The stability analysis itself does not need a large number of modes, it is
important that the mode shape in the load direction (in this example the longitudinal mode shape)
is observed. The analysis needs more modes only for the non-linear time integration. Because of
this reason just five modes were necessary to compute the Lyapunov exponent from the full
system matrices. Fig. 7 shows the obtained mean values and the standard deviations of the
Lyapunov exponents.

4.4. Comparison between linear and non-linear analysis

To analyze the quality of the Lyapunov exponents the results obtained from the non-linear
column explained in the previous section are compared with the Lyapunov exponents obtained
from the linearized system. The linearization was done by using Eq.(42). In Fig. 7 these
Lyapunov exponents are compared. The sample analysis of the linearized system uses 100
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Fig. 8. Comparison of one element of linearized and non-linear stiffness matrices: —, linear; --- -, non-linear.

simulations each having 10° time steps with A7 = 7 x 1073 s again. The full system is reduced to
the size m = 5.

The results of both methods show differences at higher load factors. The assumption of similar
time fluctuation of the stiffness matrix and the excitation is not exact. This is shown in Fig. 8. Here
one element of the tangential stiffness matrix is monitored throughout non-linear dynamic
analysis and compared to its linearized counterpart as obtained from Eq. (42). There is quite
substantial difference in the time fluctuations.

In this example the linear analysis can be used for a first approximation of the stability
boundary. Because of the huge effort of the non-linear analysis, a linear analysis should be applied
before the non-linear analysis is used.

4.5. Effect of prescribed imperfections on non-linear analysis

The influence of imperfections on the behavior of a non-linear structure was analyzed using the
previously described column under random excitation. Imperfections proportional to the first
buckling shape were assumed. First investigations of the column discretized with four beam
elements led to stabilizing effects with increasing imperfection size which is considered to be
infeasible. A static stability analysis of this four element and a 20-element system has shown, that
a certain level of discretization is necessary to reproduce the stability behavior correctly. In Fig. 9
the results of these non-linear static calculations are shown. The perfect systems of both variants
have nearly the same load dependency. The imperfect four element system does not reach an
unstable point, the smallest natural frequency increases above a defined load.

The imperfection influence was investigated for a fixed load factor £ = 200 N on the 20-element
model. The magnitudes of mid-span imperfections are varied from 0 to 2.79 cm. The non-linear
system was investigated by calculating 20 simulations with 10° time steps and Af =7 x 1073 s.
The destabilizing influence of the geometrical imperfections is easily seen from the results as given
in Fig. 10.

4.6. Reliability analysis of a shell structure

A cylindrical panel was considered, which is mentioned e.g., in Refs. [3,32,33]. The assumed
structure is shown in Fig. 11. The geometrical and the material properties were given as: radius
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Fig. 11. Cylindrical panel structure.
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Fig. 12. Weighted imperfection shapes.

R =283.33 m, the half-width and height ¢ =5m, the thickness # =0.1 m, the Young’s
modulus E = 3.410'° N/m?, the mass density p = 3400 kg/m? and the Poisson ratio p = 0.2.
The load is assumed according to Eq. (35) as P(t) = Py + Ppuct(?). The structure is discretized with
7 x 7 nodes and meshed with geometrically non-linear 9-node shell elements. At a static load of
Py, = 16,825 kN/m the structure reaches an unstable state [32]: Py, = 15,120 kN/m, [3]:
Py, = 16,200 kN/m. The static load is assumed to be Py = 0.85P, . The fluctuating load is
considered as Pyyci(?) = /v(f) x 1 kN/m, where v(7) is a unit white-noise process and 7 is the load
factor. The damping is assumed as modal damping with the damping ratios D; = 0.02 for all
modes.

The geometrical imperfections are considered in terms of radial deviations from the
perfect panel surface. They are modelled as a conditional Gaussian random field as
described in Section 3.3. The mean is assumed as zero and the standard deviation as ¢ =
10~3 m, which is 1% of the wall thickness. The correlation length of the exponential correlation
function is considered with [/ =10 m. The imperfection shapes are obtained by the
decomposition of the covariance matrix according to Eq. (39). The first four imperfection shapes
are shown in Fig. 12. The corresponding standard deviations oy; in uncorrelated normal space are
indicated in the figure. The imperfection shape with the largest standard deviation is very similar
to the buckling shape.

First the linearized structure was investigated. The first five modes were considered. It was
found that only the first imperfection shape has a major influence on the stability behavior.

Then the Lyapunov exponents of the non-linear system are obtained by using 12-mode shapes
which requires a maximal time step of At =4 x 1073 s 10° time steps and 20 simulations were
calculated. The obtained critical noise intensity for the perfect system has the value Dy, =
20357x.

To compute the failure probability, it is necessary to interpolate the stability
boundaries depending on the imperfection amplitudes. These boundaries are displayed
in Fig. 13. It is seen that negative imperfection amplitudes decrease the stability boundary
and positive amplitudes stabilize the system. This is caused by the cylindrical shape
of the structure. Neglecting the minor influence of the other imperfection shapes the
failure probability can by easily calculated under the assumption of normal distribution.
The failure probability is shown in Fig. 14 depending on the noise intensity. The figure shows,
if the noise intensity reaches the critical value for the perfect system, the failure probability has the
size 0.5.

crit

crit
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Fig. 14. Failure probability depending on the noise intensity.

5. Concluding remarks

The article presents an approach to consider random geometrical imperfections together with
stochastic loading conditions within structural stability analysis. The geometrical uncertainties are
modelled by using conditional random fields, the stochastic loading conditions are described in
spectral form by using FFT transformation. The geometrical imperfections can be represented as
a linear combination of different imperfection shapes with random amplitudes. The loading
conditions are assumed to be ergodic. To analyze the non-linear dynamic stability behavior of the
system an integration in the time domain is necessary. The used sample time series of the load
process are generated by simulation procedures.

The non-linear structural response due to the load processes is computed by explicit time
integration schemes. The stability behavior is then computed by using the linearized equation for
the neighboring motion around the reference solution. This requires an evaluation of the
tangential stiffness matrix at every time step.

This method of non-linear analysis as presented shows several major difficulties. Within a
reliability analysis obviously states of the structure which are in the vicinity of the limit state are
the most interesting ones. For these cases the integration by an Newmark algorithm may fail,
because the stiffness matrix need not necessarily be positive definite any more. To overcome this
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difficulty one used a suitably adapted explicit time integration scheme. Since explicit schemes
typically require a small time step a projection into a modal subspace is applied to reduce the
numerical effort.

Theoretically, the time integration required to estimate the Lyapunov exponents has to be
performed until infinity, which of course is not possible. Here a criterion has to be established
which is based on the limitation of the variances for the estimator of the Lyapunov exponent, see
Eq. (24). Finally and most importantly, in a statistical sense the statement with respect to the
Lyapunov exponent, gets less precise as the structural response gets more critical. Thus states
which are closer to the limit state require a ‘“longer” loading process and thus a more time
consuming integration procedure.

A simplified method based on linear analysis was used to obtain an approximation for the
sample stability. This required a linearization of the stiffness matrix with respect to the static
loading condition. Of course, this method can be only suitable as long as such a linearization is
accurate for the description of the problem. With respect to the numerical effort it seems
reasonable that for a stability analysis the linear analysis approach should be applied first to
investigate which imperfection shapes are important and at which intensity levels the stability
boundaries are reached. In the presented examples it was shown that the influence of non-
linearities could be varying significantly for different types of structures. The non-linear analysis
method should be applied in each case to validate the obtained stability boundaries or to correct
them.

Certainly the number of application for the presented analysis methods is limited “in the real
world”, as only few structures are submitted to a stationary loading process. Further within a
design process a reliability-based stability analysis is of course only one of several required
analysis tasks. Especially for the case considered (stationary loading) in this article, fatigue might
be at least as relevant for the design process.
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