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1. Introduction

For most cases where plates are used in engineering structures, mass and stiffness modifications
become necessary. Ingber et al. [1] investigated experimentally, vibrations of clamped plates with
concentrated mass and spring attachments by using a modal analysis technique and mixed
boundary-element method. Boay [2] analyzed the natural frequencies of plates with and without a
concentrated mass. The Rayleigh-energy method was used in the theoretical formulation. Lin and
Lim [3] derived the receptances based on mode superposition and then used it to calculate the
receptances of the plate with arbitrary mass and stiffness modification. McMillan and Keane [4]
developed the direct modal sum method for shifting resonances from a frequency band by
applying concentrated masses to a thin rectangular plate. Cha [5] applied the hybrid approach to
analyze the free vibration of a simply supported rectangular plate carrying a concentrated mass.
Wu and Luo [6] determined the natural frequencies and mode shapes of a rectangular plate
carrying any number of point masses and springs by means of the analytical-and-numerical
combined method. Dowell and Tang [7] studied the high-frequency response of a plate carrying a
concentrated mass/spring system. Ref. [8] was concerned with satisfying a design aim such that the
fundamental frequency of a cantilever beam remains the same in spite of the addition of a mass at
some point on the beam. The present study represents to some extent the counterpart of the
publication [8] for plate vibrations. Within this framework, the present study aims to investigate
the possibility of using springs to preserve the fundamental frequency of a thin rectangular plate
carrying any number of point masses. The numerical results obtained in this study are not only
related to the fundamental frequency of the plate, but the formulation can also be adopted when
any one of the natural frequencies of the plate is desired to be kept constant. The problems on
plates carrying concentrated masses are encountered, e.g., in the design of electronic systems. The
printed circuit boards and plate-like chassis can be approximated as flat rectangular plates
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carrying concentrated masses and subjected to vibration [2]. By calculating the receptance matrix
of the unmodified plate and the receptance matrix corresponding to the modification, the
receptance matrix of the modified plate are obtained based on substructuring analysis. Then
the natural frequencies of the modified plate are calculated by analyzing the receptance data.
Finally, the required coefficients of the springs to be placed at certain locations such that the
fundamental frequencies will remain the same although there are added point masses that can be
calculated.

2. Receptances of a rectangular plate

According to the classical thin-plate theory, the governing equation in terms of the lateral
displacement wðx; y; tÞ is given by

Dr4w þ rh@2w=@t2 ¼ P; ð1Þ

where r4 is the two-dimensional biharmonic operator, h is the thickness of the plate, D is the
flexural rigidity, r is the mass density, and P is the lateral load per unit area. The flexural rigidity
is given by

D ¼ Eh3=12ð1� n2Þ; ð2Þ

where E is the modulus of elasticity, and n is the Poisson ratio. The receptance of a plate aijðoÞ is
the response at the location wi ¼ wðxi; yiÞ due to a harmonic force of unit magnitude and
frequency o applied at location wj ¼ wðxj; yjÞ and can be expressed as [3]

aijðoÞ ¼
XN
m¼1

XN
n¼1

jmnðxj; yjÞjmnðxi; yiÞ
ðo2

mn � o2Þ
; ð3Þ

where omn are the natural frequencies, jmn are the normalized shape functions of the plate under
consideration. For a plate shown in Fig. 1 having edge supports of S–S–S–S and S–C–S–C, the
natural frequencies and the normalized shape functions are given as [2]
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Fig. 1. The two support conditions of the rectangular plate studied: (a) S–S–S–S; (b) S–C–S–C.

V. Mermerta-ss, M. G .urg .oze / Journal of Sound and Vibration 276 (2004) 440–448 441



S–S–S–S edge supports:
For m ¼ 1; 2; 3;y and n ¼ 1; 2; 3;y

omn ¼

ffiffiffiffiffiffi
D

rh

s
mp
a

� �2
þ

np
b

� �2� �
; ð4Þ

jmn ¼
2ffiffiffiffiffiffiffiffiffiffi
rabh

p sin
mpx

a

� �
sin

npy

b

� �
ð5Þ

S–C–S–C edge supports:
For m ¼ 1; 2; 3;y and n ¼ 1

omn ¼
p2

a2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dð3b4m4 þ 16a4 þ 8a2b2m2Þ

3rh

s
: ð6Þ

For m ¼ 1; 2; 3;y and n ¼ 2; 3; 4;y

omn ¼
p2

a2b2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D½b4m4 þ a4ð1þ 6n2 þ n4Þ þ 2a2b2m2ð1þ n2Þ�

rh

s
; ð7Þ

jmn ¼
2ffiffiffiffiffiffiffiffiffiffi
rabh

p sin
mpx

a

� �
sin

py

b

� �
sin

npy

b

� �
: ð8Þ

The expressions given in Eq. (8) represent the mode shapes corresponding to the natural
frequencies given in Eqs. (6) and (7), where m ¼ 1; 2; 3;y and n ¼ 1; 2; 3;y :

3. Frequency response function (FRF) method of coupled structure analysis

This method is often referred to as the ‘impedance coupling method’ or the ‘dynamic stiffness
method’ [9]. The two components A and B shown in Fig. 2 are to be connected by the coupling

ARTICLE IN PRESS

A B

xac 

xaa 

xbc 

xbb 

C 

Fig. 2. Basis of modified structure analysis.
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co-ordinates to form the connected system C: The substructures, A and B; the ’input’ to coupling
process will comprise two square FRF matrices, one of nA 	 nA and the other nB 	 nB which will
then be combined to yield a corresponding FRF matrix for the coupled structure, C; which is of
nC 	 nC : Both components A and B have two types of co-ordinates of interest (coupling and slave
co-ordinates);

fxAgnA	1 ¼
xac

xaa

( )
¼

coupling

slave

( )
; fxBgnB	1 ¼

xbc

xbb

( )
¼

coupling

slave

( )
: ð9Þ

The receptance FRF properties for component A are contained in a matrix ½aA� which can be
partitioned as shown below, separating those elements which relate to the coupling d.o.f.’s from
those which do not:

½aA� ¼
aA

aa aA
ac

aA
ca aA

cc

" #
nA	nA

: ð10Þ

This receptance FRF matrix can be used to determine the corresponding impedance FRF
matrix as follows:

½ZA� ¼ ½aA��1 ¼
ZA

aa ZA
ac

ZA
ca ZA

cc

" #
nA	nA

: ð11Þ

Similarly, one can write a corresponding impedance FRF matrix ½ZB� for the other component,
B; as

½ZB� ¼ ½aB��1 ¼
ZB

bb ZB
bc

ZB
cb ZB

cc

" #
nB	nB

: ð12Þ

By an application of the equilibrium and compatibility conditions which must exist at the
connection points, one can derive both a receptance an impedance version of the FRF matrix for
the coupled structure of the form as given in Ref. [9]. The results repeated briefly from Ref. [9],
will be applied below to a plate modified by a point mass and/or a spring. Then the natural
frequencies of the modified plate can be calculated by performing a subsequent modal analysis on
its receptance data.
Hence, the original plate (unmodified structure) corresponds to component A; whereas the

substructure to be attached to it will correspond to component B: The impedance FRF matrix of
the combined system consisting of the plate modified by the mass and spring reads as

½ZC �nC	nC
¼

ZA
aa 0 ZA

ac

0 ZB
bb ZB

bc

ZA
ca ZB

cb ðZA
cc þ ZB

ccÞ

2
64

3
75: ð13Þ

The FRF of the added substructure B; aB; which consists of a mass, or a spring, can be
expressed as

aB ¼

1

�o2mB
for a mass;

1

kB

for a spring:

8>><
>>: ð14Þ
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The receptance matrix of the unmodified plate for the co-ordinates of the points of the mass and
spring attachment is obtained as

½a� ¼
amm amk

akm akk

" #
; ð15Þ

by using Eq. (3). After the connection of mass mB and spring kB to the plate, the receptance matrix
of the so modified plate is obtained in accordance with Eqs. (13) and (14) as follows:

½a�� ¼
a�mm a�mk

a�km a�kk

" #
; ð16Þ

a�mm ¼
ð�kBakmamk þ amm þ kBakkammÞ

dmk

; ð17Þ

a�mk ¼
amk

dmk

; ð18Þ

a�km ¼
akm

dmk

; ð19Þ

a�kk ¼
½mBakmamko2 þ akkð1� mBammo2Þ�

dmk

; ð20Þ

where

dmk ¼ 1þ kBakk þ mB½kBakmamk � ð1þ kBakkÞamm�o2: ð21Þ

The right side of the above expression equated to zero represents the frequency equation of the
modified plate.
In case of attaching merely a single mass to the plate, receptances are calculated by placing

kB ¼ 0 in equations above and by substituting mB ¼ 0 in case of attaching a sole spring. When
more than one masses and springs are attached to the plate at different points, the receptance
matrix after each modification is attained by the employment of Eqs. (17)–(20) successively. The
process is continued by substituting the new members of matrix ½a� into Eqs. (17)–(20), permitting
the determination of another ½a�� matrix.
The denominators, which are common to all elements of the receptance matrix (16), represent

the frequency equation of the modified plate. If oi denotes one of the natural frequencies of the
modified plate, the value of the spring coefficient kB to be attached for compensating the effect of
the attachment of the mass mB at this frequency is obtained simply by solving this equation with
respect to kB which yields

kB ¼
mBammo2

i � 1

ðakk þ mBakmamko2
i � mBakkammo2

i Þ
: ð22Þ

Eq. (22) can be used not only for the fundamental frequency of the plate, but also for any one of
the natural frequencies which is desired to be kept constant. In the special case of the attachment
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of the mass and spring to the plate at the same point ðaxm; bZmÞ; i.e., when the attachment points
are collocated, one has

amm ¼ akk ¼ akm ¼ amk: ð23Þ

The receptance expression of the modified plate for the same point of the mass and spring
attachment is obtained as

a�mm ¼ a�1mm þ
1

kB � mBo2ð Þ

� ��1" #�1

: ð24Þ

In this case, Eq. (21) reduces to

dmm ¼ dmk ¼ 1þ ammðkB � mBo2Þ: ð25Þ

The elements of the receptance matrix are now as follows:

a�mm ¼ a�kk ¼ a�km ¼ a�mk ¼
amm

dmm

: ð26Þ

As seen from Eqs. (25) and (26), to keep the receptance unchanged at a prescribed frequency o;
the natural frequency of the attached mass–spring system with one degree-of-freedom, should be
equal to this frequency o ðo ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kB=mB

p
Þ: This enables one to calculate the required coefficient of

the spring to be placed such that the fundamental frequency remains unchanged, although a point
mass is added.

4. Numerical results

This section is devoted to the testing of the expressions obtained. The rectangular plates shown
in Fig. 1 are taken as examples. One of them is simply supported on its four edges denoted as
(S–S–S–S) and two edges of the second plate are simply supported whereas the remaining two are
clamped, denoted as (S–C–S–C). Before following the design aim that the fundamental frequency
remains unchanged despite mass attachment, the two natural frequencies of the simply supported
(S–S–S–S) rectangular plate carrying three concentrated masses: m1 ¼ 70 kg; m2 ¼ 50 kg; m3 ¼
60 kg located at xm1

¼ x1=a ¼ 0:375; Zm1
¼ y1=b ¼ 0:25; xm2

¼ 0:5; Zm2
¼ 0:625; xm3

¼
0:75; Zm3

¼ 0:5 and three springs k1 ¼ 106 N=m; k2 ¼ 104 N=m; k3 ¼ 105 N=m located at
xk1 ¼ 0:125; Zk1

¼ 0:25; xk2 ¼ 0:5; Zk2
¼ 0:5; xk3 ¼ 0:625; Zk3

¼ 0:625 are determined by using
the FRF method for m ¼ n ¼ 3; m ¼ n ¼ 6; m ¼ n ¼ 12; m ¼ n ¼ 20; m ¼ n ¼ 30; and the
results are compared with those of the analytical-and-numerical combined method (ANCM) [6]
given in Table 1. The effect of m and n values upon the first and second natural frequencies for the
example is illustrated in Table 1, which shows that five-digit accuracy has been achieved assuming
m ¼ 20 and n ¼ 20: Table 1 makes it clear that when the number of the considered modes
increase, calculated natural frequency value decreases indicating that the results get more precise.
The physical properties of the plate are chosen as: a ¼ 2 m; b ¼ 3 m; h ¼ 0:005 m; r ¼
7850 kg=m3; E ¼ 2:051	 1011 N=m2; and n ¼ 0:3:
Table 2 shows the values of the calculated spring coefficients for 16 positions of the spring

which compensates for the decreasing effect of the attached point mass (mB ¼ 0:4 kg at
the location xm ¼ 0:625; Zm ¼ 0:375) on the fundamental frequency. The mass is attached
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to the plate with the S–S–S–S supporting condition shown in Fig 3. The material properties
used for generating the results are E ¼ 2:1	 1011 N=m2; n ¼ 0:3 and r ¼ 7800 kg=m3: The
dimensions of the plate are: a ¼ 0:4 m; b ¼ 0:5 m and h ¼ 0:01 m: For calculation of
the receptances of the modified plate, m ¼ 50 and n ¼ 50 were chosen. A look at Table 2 makes
clear that spring coefficients get higher values at the points closer to the edges of the plate, as
expected.
The spring coefficients of the modified plate with S–C–S–C supporting conditions are shown in

Table 3. When corresponding data of Tables 2 and 3 for the same spring locations are compared,
it is seen that higher spring coefficients are required at S–C–S–C supported conditions as can be
expected. If mass and spring attachments are collocated ðxk ¼ xm ¼ 0:625; Zk ¼ Zm ¼ 0:375Þ; the
natural frequency of the mass–spring system is equal to the natural frequency of the unmodified
plate. In this case, in accordance with kB ¼ o2

1mB equation for both supporting conditions, the
desired spring coefficient can be calculated via o1 ¼ 1588:45 and 2142:09 rad=s which are the
corresponding fundamental frequency values for S–S–S–S and S–C–S–C supporting conditions,
respectively with mB ¼ 0:4 kg:
Table 4 aims to show on how m and n; i.e., the numbers of the modes considered, affect the

results of the spring coefficients kB; calculated, which should be attached to the points ðxk ¼
0:125; Zk ¼ 0:625Þ; ðxk ¼ 0:375; Zk ¼ 0:625Þ; ðxk ¼ 0:625; Zk ¼ 0:625Þ; ðxk ¼ 0:875; Zk ¼ 0:625Þ
for both of the plates with S–S–S–S and S–C–S–C supporting conditions. A scrutiny of this table
shows the result that as the coefficients m and n considered increase, values of the calculated
spring coefficients also rise. The reason for this is the lowered natural frequency value, which
is due to the increasing mode numbers. In order to keep the natural frequency value at its
original level, decreasing natural frequency value should be compensated by raising the spring
coefficient.
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Table 1

The effect of number of modes on the first two natural frequencies of the modified plate with S–S–S–S supporting

condition

m ¼ 3; n ¼ 3 m ¼ 6; n ¼ 6 m ¼ 12; n ¼ 12 m ¼ 20; n ¼ 20 m ¼ 30; n ¼ 30 ANCM

o1 30.894 29.012 28.536 28.429 28.429 28.632

o2 42.038 39.811 39.073 38.914 38.914 39.392

Table 2

The spring coefficients necessary for preservation of the fundamental natural frequency of the rectangular plate with

S–S–S–S supported condition ðxm ¼ 0:625; Zm ¼ 0:375; mB ¼ 0:4 kgÞ

xk ¼ 0:125 xk ¼ 0:375 xk ¼ 0:625 xk ¼ 0:875

Zk ¼ 0:875 9:23328	 107 7:92495	 106 7:83593	 106 8:76105	 107

Zk ¼ 0:625 7:27805	 106 1:11025	 106 1:08940	 106 6:95162	 106

Zk ¼ 0:375 7:00683	 106 1:05948	 106 1:00920	 106 6:45712	 106

Zk ¼ 0:125 7:77206	 107 7:09827	 106 6:83444	 106 6:73664	 107
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5. Conclusions

The present study is concerned essentially with the derivation of the receptance matrix of a
rectangular thin plate to which several point-masses and springs are attached, by the so-called
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Fig. 3. A rectangular plate carrying a concentrated mass mB at the position ðxm; ZmÞ and a spring kB at point ðxk; ZkÞ to
compensate the decrease in the fundamental frequency.

Table 3

The spring coefficients necessary for preservation of the fundamental natural frequency of the rectangular plate with

S–C–S–C supported condition ðxm ¼ 0:625; Zm ¼ 0:375; mB ¼ 0:4 kgÞ

xk ¼ 0:125 xk ¼ 0:375 xk ¼ 0:625 xk ¼ 0:875

Zk ¼ 0:875 1:60731	 109 8:46949	 107 8:27329	 107 1:36421	 109

Zk ¼ 0:625 1:41627	 107 2:03812	 106 1:97713	 106 1:31233	 107

Zk ¼ 0:375 1:38169	 107 1:96630	 106 1:83532	 106 1:22758	 107

Zk ¼ 0:125 1:35943	 109 7:83263	 107 7:41753	 107 1:01011	 109
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‘impedance coupling method’. The study enables one to obtain the eigenfrequencies of the
combined system described above. Further, an examination was carried out of the problem of
determining the stiffness coefficient of the spring to be placed at a specified position so that the
fundamental frequency of the plate subject to two different (S–S–S–S and S–C–S–C) boundary
conditions does not change, despite the attachment of a point mass at a predefined position.
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