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1. Introduction

For most cases where plates are used in engineering structures, mass and stiffness modifications
become necessary. Ingber et al. [1] investigated experimentally, vibrations of clamped plates with
concentrated mass and spring attachments by using a modal analysis technique and mixed
boundary-element method. Boay [2] analyzed the natural frequencies of plates with and without a
concentrated mass. The Rayleigh-energy method was used in the theoretical formulation. Lin and
Lim [3] derived the receptances based on mode superposition and then used it to calculate the
receptances of the plate with arbitrary mass and stiffness modification. McMillan and Keane [4]
developed the direct modal sum method for shifting resonances from a frequency band by
applying concentrated masses to a thin rectangular plate. Cha [5] applied the hybrid approach to
analyze the free vibration of a simply supported rectangular plate carrying a concentrated mass.
Wu and Luo [6] determined the natural frequencies and mode shapes of a rectangular plate
carrying any number of point masses and springs by means of the analytical-and-numerical
combined method. Dowell and Tang [7] studied the high-frequency response of a plate carrying a
concentrated mass/spring system. Ref. [8] was concerned with satisfying a design aim such that the
fundamental frequency of a cantilever beam remains the same in spite of the addition of a mass at
some point on the beam. The present study represents to some extent the counterpart of the
publication [8] for plate vibrations. Within this framework, the present study aims to investigate
the possibility of using springs to preserve the fundamental frequency of a thin rectangular plate
carrying any number of point masses. The numerical results obtained in this study are not only
related to the fundamental frequency of the plate, but the formulation can also be adopted when
any one of the natural frequencies of the plate is desired to be kept constant. The problems on
plates carrying concentrated masses are encountered, e.g., in the design of electronic systems. The
printed circuit boards and plate-like chassis can be approximated as flat rectangular plates
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carrying concentrated masses and subjected to vibration [2]. By calculating the receptance matrix
of the unmodified plate and the receptance matrix corresponding to the modification, the
receptance matrix of the modified plate are obtained based on substructuring analysis. Then
the natural frequencies of the modified plate are calculated by analyzing the receptance data.
Finally, the required coefficients of the springs to be placed at certain locations such that the
fundamental frequencies will remain the same although there are added point masses that can be
calculated.

2. Receptances of a rectangular plate

According to the classical thin-plate theory, the governing equation in terms of the lateral
displacement w(x, y, t) is given by

DV*w + phd*w/or* = P, (1)

where V* is the two-dimensional biharmonic operator, / is the thickness of the plate, D is the
flexural rigidity, p is the mass density, and P is the lateral load per unit area. The flexural rigidity
is given by

D = ER*/12(1 —?), )

where E is the modulus of elasticity, and v is the Poisson ratio. The receptance of a plate oy;(w) is
the response at the location w; = w(x;,y;) due to a harmonic force of unit magnitude and
frequency w applied at location w; = w(x;,y;) and can be expressed as [3]

o0

OCU(CL)) = E E go"m(x./"zyj)qomn(xiayi)’ (3)
n=1
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where w,,, are the natural frequencies, ¢,,, are the normalized shape functions of the plate under
consideration. For a plate shown in Fig. 1 having edge supports of S—-S—S-S and S—C-S—C, the
natural frequencies and the normalized shape functions are given as [2]
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Fig. 1. The two support conditions of the rectangular plate studied: (a) S-S-S-S; (b) S—-C-S-C.
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S—S—S-S edge supports:
Form=1,2,3,...andn=1,2,3, ...

om =[P 242

O = \/,% sin (m;rx) sin (?) ®)

S—-C-S—C edge supports:
Form=1,2,3,...andn=1

> [D3b*m* + 16a* + 8a’b*m?)
Wyn = : (6)
a*b? 3ph
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w2 [D[b*m* + a*(1 + 6n* + n*) + 2a°b’m?*(1 + n?)]
WDy = > (7)
a*b? ph
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The expressions given in Eq. (8) represent the mode shapes corresponding to the natural
frequencies given in Egs. (6) and (7), where m = 1,2,3,... and n=1,2,3, ... .
3. Frequency response function (FRF) method of coupled structure analysis

This method is often referred to as the ‘impedance coupling method’ or the ‘dynamic stiffness
method’ [9]. The two components 4 and B shown in Fig. 2 are to be connected by the coupling
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Fig. 2. Basis of modified structure analysis.
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co-ordinates to form the connected system C. The substructures, 4 and B, the ’input’ to coupling
process will comprise two square FRF matrices, one of ny x ny and the other ng x ng which will
then be combined to yield a corresponding FRF matrix for the coupled structure, C, which is of
ne X ne. Both components 4 and B have two types of co-ordinates of interest (coupling and slave
co-ordinates);

Xae coupling Xpe coupling
{Xatna = = o AXBl e = = : )
Xaa slave Xpb slave

The receptance FRF properties for component 4 are contained in a matrix [er,4] which can be
partitioned as shown below, separating those elements which relate to the coupling d.o.f.’s from
those which do not:

A4 4
ol o
[og] = [ " aif] : (10)
ca cc ngXNy
This receptance FRF matrix can be used to determine the corresponding impedance FRF
matrix as follows:
- e
Zaa ZLIC

[Z4] = [oa] ' = 74 i (11)

dngXny
Similarly, one can write a corresponding impedance FRF matrix [Zp] for the other component,
B, as
f 5 ]
71— ol ! = | Z00 “be . 12

A ngpxnp

By an application of the equilibrium and compatibility conditions which must exist at the
connection points, one can derive both a receptance an impedance version of the FRF matrix for
the coupled structure of the form as given in Ref. [9]. The results repeated briefly from Ref. [9],
will be applied below to a plate modified by a point mass and/or a spring. Then the natural
frequencies of the modified plate can be calculated by performing a subsequent modal analysis on
its receptance data.

Hence, the original plate (unmodified structure) corresponds to component A, whereas the
substructure to be attached to it will correspond to component B. The impedance FRF matrix of
the combined system consisting of the plate modified by the mass and spring reads as

Zi 0 Zi
[Zcliosne = | 0 Zj, zp, : (13)
zy zh (Zi+Zh)
The FRF of the added substructure B,op, which consists of a mass, or a spring, can be
expressed as

1
— 2B for a mass,
oap = 1 (14)

T for a spring.
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The receptance matrix of the unmodified plate for the co-ordinates of the points of the mass and
spring attachment is obtained as

[o] = ; (15)

[ Omm Xk

Okem  %kk

by using Eq. (3). After the connection of mass mp and spring kg to the plate, the receptance matrix
of the so modified plate is obtained in accordance with Egs. (13) and (14) as follows:

o ok
* k
o] = [ar:m a’: ; (16)
km kk
o(:x;,m _ (_kBOCkmO‘mk +;mm + kBO‘kkO‘mm), (17)
mk
Cmie
o‘:;k - d:k, (18)
* Okem
= 19
Liem dmk’ ( )
2 1 — 2
a;(kk _ [mBakmamkw +;kk( mplym @ )]’ (20)
mk
where
dmk =1+ kBOCkk + mB[kBakmfxmk - (1 + kBakk)amm]w2~ (21)

The right side of the above expression equated to zero represents the frequency equation of the
modified plate.

In case of attaching merely a single mass to the plate, receptances are calculated by placing
kg = 0 in equations above and by substituting mp = 0 in case of attaching a sole spring. When
more than one masses and springs are attached to the plate at different points, the receptance
matrix after each modification is attained by the employment of Egs. (17)—(20) successively. The
process is continued by substituting the new members of matrix [a] into Egs. (17)—(20), permitting
the determination of another [ matrix.

The denominators, which are common to all elements of the receptance matrix (16), represent
the frequency equation of the modified plate. If w; denotes one of the natural frequencies of the
modified plate, the value of the spring coefficient kp to be attached for compensating the effect of
the attachment of the mass mp at this frequency is obtained simply by solving this equation with
respect to kg which yields

2
mpm@; — 1

kp = 5 5
(Ot 4 1B L ©OF — TR Oy 07 )

(22)

Eq. (22) can be used not only for the fundamental frequency of the plate, but also for any one of
the natural frequencies which is desired to be kept constant. In the special case of the attachment
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of the mass and spring to the plate at the same point (a¢,,, bn,,), i.e., when the attachment points
are collocated, one has

OCmm = ik = %km = Umk- (23)

The receptance expression of the modified plate for the same point of the mass and spring
attachment is obtained as
1 -
Oy + [7} ] : (24)

(kg — mpw?)

%k
O(mm -

In this case, Eq. (21) reduces to

dmm = dmk =1+ amm(kB - mbz)' (25)
The elements of the receptance matrix are now as follows:
* * * * Cmm
Lpim = %k = % = % = d : (26)

mm

As seen from Egs. (25) and (26), to keep the receptance unchanged at a prescribed frequency w,
the natural frequency of the attached mass—spring system with one degree-of-freedom, should be
equal to this frequency @ (w = /kg/mp). This enables one to calculate the required coefficient of
the spring to be placed such that the fundamental frequency remains unchanged, although a point
mass is added.

4. Numerical results

This section is devoted to the testing of the expressions obtained. The rectangular plates shown
in Fig. 1 are taken as examples. One of them is simply supported on its four edges denoted as
(S—S—S-S) and two edges of the second plate are simply supported whereas the remaining two are
clamped, denoted as (S—C-S—C). Before following the design aim that the fundamental frequency
remains unchanged despite mass attachment, the two natural frequencies of the simply supported
(S—S—S-S) rectangular plate carrying three concentrated masses: m; = 70 kg, m, = 50 kg, m3 =
60 kg  located at ¢, =x1/a=0.375, n, =y/b=025 ¢, =0.5, n,, =0.625 ¢, =
0.75, 1,,, =0.5 and three springs k; = 10° N/m, k, = 10* N/m, k3 = 10> N/m located at
Sk, = 0.125, ny, = 0.25, &, = 0.5, ny, = 0.5, &, = 0.625, n;, = 0.625 are determined by using
the FRF method for m=n=3, m=n=6, m=n=12, m=n=20, m =n = 30, and the
results are compared with those of the analytical-and-numerical combined method (ANCM) [6]
given in Table 1. The effect of m and n values upon the first and second natural frequencies for the
example is illustrated in Table 1, which shows that five-digit accuracy has been achieved assuming
m =20 and n = 20. Table 1 makes it clear that when the number of the considered modes
increase, calculated natural frequency value decreases indicating that the results get more precise.
The physical properties of the plate are chosen as: a=2m, b=3m, h=0.005m, p =
7850 kg/m?, E =2.051 x 10! N/m?, and v = 0.3.

Table 2 shows the values of the calculated spring coefficients for 16 positions of the spring
which compensates for the decreasing effect of the attached point mass (mp = 0.4 kg at
the location &, = 0.625, n,, = 0.375) on the fundamental frequency. The mass is attached



446

V. Mermertag, M. Giirgoze | Journal of Sound and Vibration 276 (2004) 440448

Table 1
The effect of number of modes on the first two natural frequencies of the modified plate with S-S-S-S supporting
condition

m=3, n=3 m=6 n==06 m=12, n=12 m=20, n=20 m =30, n=130 ANCM
o 30.894 29.012 28.536 28.429 28.632
oy 42.038 39.811 39.073 38914 39.392
Table 2

The spring coefficients necessary for preservation of the fundamental natural frequency of the rectangular plate with

S—S—S-S supported condition (&,, = 0.625, #,, = 0.375, mp = 0.4 kg)

& =0.125 & = 0375 & = 0.625 & = 0.875
1, = 0.875 9.23328 x 107 7.92495 x 10° 7.83593 x 10° 8.76105 x 107
e = 0.625 7.27805 x 10° 1.11025 x 106 1.08940 x 106 6.95162 x 10°
. = 0.375 7.00683 x 10° 1.05948 x 106 1.00920 x 106 6.45712 x 10°
e = 0.125 7.77206 x 107 7.09827 x 10° 6.83444 x 10° 6.73664 x 107

to the plate with the S—-S—-S-S supporting condition shown in Fig 3. The material properties
used for generating the results are E = 2.1 x 10! N/m?, v=0.3 and p = 7800 kg/m>. The
dimensions of the plate are: ¢=04m, b=0.5m and /£ =0.0l m. For calculation of
the receptances of the modified plate, m = 50 and n = 50 were chosen. A look at Table 2 makes
clear that spring coefficients get higher values at the points closer to the edges of the plate, as
expected.

The spring coefficients of the modified plate with S—-C—S—C supporting conditions are shown in
Table 3. When corresponding data of Tables 2 and 3 for the same spring locations are compared,
it is seen that higher spring coefficients are required at S—-C—S—C supported conditions as can be
expected. If mass and spring attachments are collocated (¢, = &, = 0.625, n, = n,, = 0.375), the
natural frequency of the mass—spring system is equal to the natural frequency of the unmodified
plate. In this case, in accordance with kp = w?mp equation for both supporting conditions, the
desired spring coefficient can be calculated via @w; = 1588.45 and 2142.09 rad/s which are the
corresponding fundamental frequency values for S—S—S—S and S—C-S—C supporting conditions,
respectively with mp = 0.4 kg.

Table 4 aims to show on how m and n, i.e., the numbers of the modes considered, affect the
results of the spring coefficients kp, calculated, which should be attached to the points (&, =
0.125, n, = 0.625), (&, = 0.375, n;, = 0.625), (&, = 0.625, 1, = 0.625), (¢, = 0.875, n, = 0.625)
for both of the plates with S—S—S—S and S—C-S—C supporting conditions. A scrutiny of this table
shows the result that as the coefficients m and n considered increase, values of the calculated
spring coefficients also rise. The reason for this is the lowered natural frequency value, which
is due to the increasing mode numbers. In order to keep the natural frequency value at its
original level, decreasing natural frequency value should be compensated by raising the spring
coefficient.
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Fig. 3. A rectangular plate carrying a concentrated mass mp at the position (&,,,7,,) and a spring kg at point (&, ;) to
compensate the decrease in the fundamental frequency.

Table 3
The spring coefficients necessary for preservation of the fundamental natural frequency of the rectangular plate with
S—C-S—C supported condition (&,, = 0.625, #,, = 0.375, mp = 0.4 kg)

& = 0.125

& =0375

& = 0.625

& = 0875

ne = 0.875
e = 0.625
Ny = 0.375
ne = 0.125

1.60731 x 10°
1.41627 x 107
1.38169 x 107
1.35943 x 10°

8.46949 x 107
2.03812 x 108
1.96630 x 10°
7.83263 x 107

8.27329 x 107
1.97713 x 10°
1.83532 x 10°
7.41753 x 107

1.36421 x 10°
1.31233 x 107
1.22758 x 107
1.01011 x 10°

5. Conclusions

The present study is concerned essentially with the derivation of the receptance matrix of a
rectangular thin plate to which several point-masses and springs are attached, by the so-called
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Table 4
The effect of number of modes used on the spring coefficients (&,, = 0.625, #,, = 0.375, mp = 0.4 kg)

& =0.125 & =0.375 & =0.625 & =0.875
m=6, n==6 7.18330 x 10° 1.10591 x 106 1.08644 x 10° 6.86644 x 10°
m=12, n=12 7.25344 x 10° 1.10929 x 10° 1.08855 x 10° 6.92911 x 10°

S-S-S-S m=20, n=20 7.26976 x 10° 1.10992 x 106 1.08911 x 106 6.94405 x 10°

m =40, n =40 7.27705 x 10° 1.11021 x 108 1.08936 x 10° 6.95070 x 10°

e = 0.625 m =150, n= 50 7.27805 x 10° 1.11025 x 108 1.08940 x 10° 6.95162 x 10°
m=6, n==6 1.38701 x 107 2.02610 x 10° 1.96900 x 10° 1.28748 x 107

m=12, n=12 1.40841 x 107 2.03538 x 10° 1.97475 x 10° 1.30557 x 107

S-C-S-C m=20, n=20 1.41360 x 107 2.03718 x 10° 1.97630 x 10° 1.31004 x 107

m =40, n=40 1.41595 x 107 2.03800 x 10° 1.97702 x 10° 1.31205 x 107

m =150, n= 50 1.41627 x 107 2.03812 x 10° 1.97713 x 106 1.31233 x 107

‘impedance coupling method’. The study enables one to obtain the eigenfrequencies of the
combined system described above. Further, an examination was carried out of the problem of
determining the stiffness coefficient of the spring to be placed at a specified position so that the
fundamental frequency of the plate subject to two different (S—S—-S-S and S-C-S—C) boundary
conditions does not change, despite the attachment of a point mass at a predefined position.
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