
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 276 (2004) 65–80

Asymptotic modal analysis of dynamical systems: the effect of
modal cross-correlation

A. Li, E.H. Dowell*

Department of Mechanical Engineering and Materials Science, Duke University, Box 90300,

Durham, NC 27708-0300, USA

Received 3 September 2002; accepted 19 July 2003

Abstract

Asymptotic modal analysis (AMA) has been shown to be a useful approximation and valid limiting case
for classical modal analysis (CMA) when the number of resonant modes in a frequency bandwidth becomes
sufficiently large and the cross-correlation between resonant modes is neglected. For CMA the neglect of
these cross-correlations is usually justified if the damping is small and the resonant modal frequencies are
well separated. In this paper it is shown that the cross-correlations may be neglected in the AMA limit even
when the damping is not small. There is a rare exception to this, i.e., when two or more identical resonant
frequencies occur. But this exceptional case is easily treated by including the cross-correlations for only
such modes that have the same frequencies.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The standard reference on statistical energy analysis (SEA) is the well-known text by Lyon [1]
and is highly recommended to readers. The second author became interested in this subject some
years ago because of some questions about the underlying basis for SEA and considered the case
of many resonant modes being excited in a frequency bandwidth as an asymptotic limit of
classical modal analysis. Since then various authors have considered the basis for SEA and
thereby advanced our understanding of it. A more recent edition of Lyon’s classic book [1] is that
by Lyon and DeJong [2] which contains numerous references to the SEA literature per se.

In Ref. [3], a comparison of results of classical modal analysis (CMA) and asymptotic modal
analysis (AMA) was made for the response of a single general linear structure under a random or
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sinusoidal excitation. It was shown that the asymptotic behavior of the AMA results depends
upon the number of modes in a frequency interval of interest and the location of the point forces,
and that all the points on the structure except some special points, including the excited points,
asymptotically have the same response. Some numerical examples for a beam were presented. In
Ref. [4], Kubota and Dowell also verified these theoretical predictions using an experiment on a
rectangular plate. For a recent extension of AMA to multi-component systems see Ref. [5] which
contains references to much of the literature.

However, cross-correlations between modal responses were neglected in Refs. [3,4] and the
other literature on AMA and SEA to the best of authors’ knowledge by assuming they are
negligible compared with the auto-correlation of each modal response. In this paper a theoretical
and numerical analysis of the cross-correlation effects is carried out to assess whether they have an
important effect on the asymptotic response of the structure.

As will be shown, the neglect of cross-correlations among modal responses is usually well
justified in the AMA limit even for moderately large damping levels. This is in contrast to the
results of CMA where the neglect of such cross-correlations requires the damping to be relatively
small and the resonant modal frequencies to be well spaced. For a discussion of CMA, see Lin [6]
and To [7]. Also Crandall [8] has provided interesting and valuable insights into modal responses
as the number of responding modes becomes large and his work has been an inspiration for much
of the work on AMA that has followed.

2. Theoretical modal analysis

2.1. Classical modal analysis under random point forces

According to classical modal analysis, the mean square response of the plate under point forces
can be calculated by the following equation (see Ref. [6]):
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All the terms are defined in the Nomenclature. If the cross-correlation between forces is neglected,
i.e., neglecting cross-correlation terms for which iaj; then Eq. (1) becomes
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However, cross-correlation of the modes is included in Eq. (2). When the cross-correlation
between modes is neglected (neglecting terms for which nar), Eq. (2) further simplifies to
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If the external force is nearly white noise, i.e., FFiFi
is slowly varying with frequency, the

integration over frequency in Eqs. (1) and (2) can be performed analytically, i.e.,Z
N
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In this paper for our damping model, we assume that the modal damping obeys the following
relationship (however, similar results are obtained when other assumptions about modal damping
are made):

xnon ¼ x1o1 ¼ constant; ð5Þ

where n ¼ 2; 3;y Under this assumption, Eq. (2) becomes

%w2ðx; yÞ ¼
X

n

X
r

X
i

4pxnoncnðx; yÞcrðx; yÞcnðxi; yiÞcrðxi; yiÞFFiFi

MnMr½ðo2
n � o2

r Þ
2 þ 8x2

no2
nðo2

n þ o2
r Þ�

: ð6Þ

Further, when a spatial average is computed for the mean square response, Eqs. (2) and (3)
become (for a plate of uniform mass and stiffness)

/ %w2S ¼
p
4

X
n

/c2
nS

M2
no3

nxn

XI

i¼1

c2
nðxi; yiÞFFiFi

ðonÞ; ð7Þ

where I is the number of the point forces and the orthogonality of the modes has been used to
eliminate the terms for which nar: Note that taking the spatial average eliminates any cross-
correlation between modes. In the present paper the focus will largely be on the local response of
the plate and the difference between Eqs. (2) and (3), i.e., with and without modal cross-
correlation.

2.2. Asymptotic modal analysis under random point forces

If M2
n ;o

3
n; xn; and /c2

nS are slowly varying with respect to modal number in the frequency
bandwidth of the excited modes, in a certain interval of frequency of Do; then Eq. (7) becomes
[3,4]
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where DM is the number of the modes in the frequency interval. Alternatively Eq. (8) is often
written as
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X
FFiFi
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Eq. (8) or Eq. (9) are the final result of AMA for the response of a plate under point random
forces at all but certain special points on the structure. For simplicity of notation, it can be simply
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called AMA response. Note that Eq. (10) states that the total mean square of all the exciting
forces, %F2; is given by

%F2 ¼ %F2
1 þ %F2

2 þ %F2
3 þ?: ð11Þ

This implies that the point forces are uncorrelated. Of course, this is exactly true when the point
forces are uncorrelated in time. However, in the AMA limit there is a diminished spatial
correlation because xi; yi and xj; yj are point forces at different positions which makes Eq. (8) a
good approximation when a large number of modes are excited and responding whether or not
the individual point forces are uncorrelated in time.

It is important to note that the AMA limit assumes that the frequency bandwidth is so large
that the number of excited modes, DM; is large but that the frequency bandwidth is not so large
that Mn;on or xn vary significantly. Eq. (9) was previously obtained in the context of SEA [1,2]
and SEA has the priority in obtaining this result.

As one of the reviewers has noted it is unlikely that multiple modes with identical natural
frequencies will occur in a practical structure. However, it is a possibility for simple structures
with spatial symmetries and idealized boundary conditions. Hence this rare in practice, but
possible in theory, occurence is discussed here so that the reader and practitioner will be aware of
this possibility. The more usual (simpler) case of no repeated resonant frequencies is also
discussed as well.

3. Comparison of SEA/AMA and CMA

Taking the ratio of Eq. (6) to Eq. (8) and the ratio of Eq. (7) to Eq. (8) one has a measure of the
goodness of the asymptotic approximation (AMA or SEA) and one can also see how the modal
cross-correlation terms affect the response of the plate. For definiteness consider a uniform,
pinned plate under one or more point forces for which the modal function is cnðx; yÞ ¼
sinðnxpxÞ sinðnypyÞ; where x; y are non-dimensional co-ordinates. The geometric structure of the
system is shown in Fig. 1.
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3.1. Part 1: The effect of the structural geometry

Here the modal damping is chosen as x1 ¼ 0:01:

3.1.1. One point force only ðI ¼ 1Þ
First, we consider an aluminum plate of dimensions 762 � 508 � 0:794 mm3: Only one point

force is applied in the middle of the plate, i.e., xf ¼ yf ¼ 0:5: The aspect ratio, 762=508 ¼ 1:5; is a
rational number. Thus, this structure has repeated natural frequencies or multiple eigenvalues. As
will be seen this is important. The distribution of the natural frequencies of the structure is shown
in Fig. 2. Note that although the frequencies are discrete, on the scale shown they appear to be
continuous.

3.1.2. Spatial average response

Fig. 3 shows how the ratio of the CMA spatial average response without cross-correlation to
the AMA response varies with respect to the minimum frequency of the bandwidth, fmin; for
various bandwidths, Df ; and xf ¼ yf ¼ 0:5: Fig. 3 shows the same ratio for frequency intervals of
(a) Df ¼ 300 Hz; (b) Df ¼ 100 Hz; (c) Df ¼ 30 Hz and (d) Df ¼ 10 Hz: The corresponding
number of modes, DM; is approximately 45; 15; 5 and 2. It is clear that the ratio of CMA/AMA
approaches one as the frequency bandwidth, Df ; becomes large, i.e., as the number of the modes
in the frequency interval increases.

3.1.3. Local response

At most points on the plate the response ratio of CMA/AMA still has this kind of property.
The ratio approaches one as the frequency bandwidth becomes large (see Fig. 4).
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Fig. 2. Natural frequencies of an aluminum plate with dimension of 762 � 508 � 0:794 mm3: (a) natural frequency vs.

nx and ny; (b) natural frequency vs. modal number.
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3.1.4. Spatial distribution of responses

The spatial response of the plate is shown in Fig. 5. Fig. 5(a) shows the ratio of CMA response
to AMA response neglecting the cross-correlation between different modes while the result with
cross-correlation terms is shown in Fig. 5(b). From these two figures it is clear that the response at
the excitation point is much larger than the response at other points. See the interesting discussion
of Crandall [8] regarding such special points. Neglecting modal cross-correlation, it is shown in
Ref. [4] that the response of the excitation point is four times larger than that of the other points in
the AMA limit. The numerical response obtained by neglecting cross-correlation terms is indeed
almost four times larger than the general spatial response. It is also noted that the response along
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Fig. 3. Ratio of CMA spatial average response to AMA response versus minimum frequency for xf ¼ yf ¼ 0:5: (a)

Df ¼ 300 Hz; (b) Df ¼ 100 Hz; (c) Df ¼ 30 Hz; (d) Df ¼ 10 Hz: Cross-correlation between modal responses is

neglected.
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the lines passing through the point of excitation and parallel to an edge is larger than the general
response [4].

Comparing the two results with and without the modal cross-correlation included (Figs. 5(a)
and (b)) shows there is a measurable difference, suggesting that the cross-correlation terms may
have an important effect on the response of the plate. Thus, there is a clear need to reconsider the
assumptions of AMA method. For this reason, the ratio of CMA/AMA including the cross-
correlation of only those modes having the same natural frequencies is also calculated and shown
in Fig. 6. Note that the results of Figs. 5(b) and 6 are virtually the same. This suggests that it is the
modes with identical resonant frequencies whose cross-correlation must be included. Fig. 7(a)
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(a) without cross-correlation and (b) with cross-correlation.
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shows a comparison of the ratio of the results of the CMA/AMA with all modal correlations
included to those without and Fig. 7(b) shows the ratio of responses with all correlations included
to those with only correlations of the modes of the same natural frequencies. Note the difference
in vertical scales for Figs. 7(a) and (b). These results indicate the cross-correlations of the modes
of the same natural frequency play an important role in the response of the plate. This means it is
not quite exact to omit all the terms for which nar in Eq. (1) and one must include the effects of
the multiple or repeated frequencies even in the AMA limit.

To gain further understanding of this result, now consider a plate with dimensions of 762 �
762=p� 0:794 mm3: The point force is again applied at point xf ¼ yf ¼ 0:5: The distribution of
natural frequencies of this plate is shown in Fig. 8. Note that for this case the aspect ratio of the
plate is p which is not a rational number. Thus, no two natural modes have the same frequency.
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Fig. 6. CMA/AMA including the cross-correlations between the modes of the same frequency for the case: xf ¼ yf ¼
0:5; fmin ¼ 4995 Hz and fmax ¼ 5295 Hz:

(a) (b)

Fig. 7. Comparison of CMA/AMA for xf ¼ yf ¼ 0:5; fmin ¼ 4995 Hz and fmax ¼ 5295 Hz: (a) ratio of CMA/AMA

with all cross-correlations included to CMA/AMA without cross-correlations and (b) ratio of CMA/AMA with all

cross-correlations included to CMA/AMA with cross-correlations of only modes with identical frequencies.

A. Li, E.H. Dowell / Journal of Sound and Vibration 276 (2004) 65–8072



The result for CMA/AMA neglecting cross-correlations is shown in Fig. 9(a) and the result with
cross-correlations included is shown in Fig. 9(b). The ratio of these two results is shown in Fig. 10.
Clearly these two results are almost same. Therefore, the modal cross-correlation terms are indeed
negligible as the AMA limit is approached when the structure does not have multiple natural
frequencies.

3.2. Two point forces ðI ¼ 2Þ

Consider the aluminum plate with dimension 762 � 762=1:5 � 0:794 mm3: The natural
frequencies are same as shown in Fig. 2.
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Fig. 8. Natural frequencies of the structure with dimension of 762 � 762=p� 0:794 mm3: (a) natural frequency vs. nx

and ny and (b) natural frequency vs. modal number.
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Fig. 9. CMA/AMA for the plate with dimension of 762 � 762=p� 0:794 mm3; xf ¼ yf ¼ 0:5; fmin ¼ 4995 Hz and

fmax ¼ 5495 Hz: (a) without cross-correlation, and (b) with cross-correlation.
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Fig. 10. The ratio of CMA with cross-correlations to CMA without cross-correlations for the case: xf ¼ yf ¼
0:5; fmin ¼ 4995 Hz and fmax ¼ 5495 Hz:
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Fig. 11. Ratio of CMA spatial average response to AMA response versus minimum frequency for xf ð1Þ ¼ yf ð1Þ ¼ 0:25

and xf ð2Þ ¼ yf ð2Þ ¼ 0:75: (a) Df ¼ 300 Hz; (b) Df ¼ 100 Hz; (c) Df ¼ 30 Hz; and (d) Df ¼ 10 Hz:
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3.2.1. Spatial average response

Results are shown in Fig. 11 for spatial average response with two point forces whose locations
are xf ð1Þ ¼ yf ð1Þ ¼ 0:25 and xf ð2Þ ¼ yf ð2Þ ¼ 0:75: Comparing the results of Fig. 11 with those of
Fig. 3, we see that the ratio approaches 1 in both cases. This is expected and similar to the
theoretical prediction for a beam (see Ref. [3]).

3.2.2. Spatial distribution of response
The spatial response is shown in Fig. 12. Fig. 12(a) shows the ratio of CMA/AMA

neglecting the cross-correlation between different modes while the result with cross-
correlations included is shown in Fig. 12(b). It is noted that the response along the lines
passing through the point of excitation and parallel to an edge is larger than the general
response. Comparing these two results also indicates there is a measurable difference, again
suggesting that the cross-correlation terms may have an important effect on the response of the
plate. The ratio of CMA/AMA including the cross-correlation of only those modes having the
same frequencies is shown in Fig. 13. Note the similarity between Figs. 12(b) and 13. The ratio of
the results with all modal correlations included to those without correlations is shown in Fig.
14(a) and the ratio of the results with all modal correlations included to those with only
correlations of the modes with the same natural frequencies is shown in Fig. 14(b). From Fig.
14(b) it is clear the ratio of two results are almost 1 everywhere. This example again verifies that
modal cross-correlation is important in the calculation of the response of the system which has
repeated natural frequencies.

Now as before consider another plate with dimension of 762 � 762=p� 0:794 mm3: The
response of the plate are shown in Fig. 15. Comparing two results in Fig. 15 we see that the ratio
of these two results are almost 1 everywhere; see Fig. 16. Thus, the response of the plate with two
forces again indicates that the modal cross-correlation terms are indeed negligible as the AMA
limit is approached when the structure does not have multiple natural frequencies.
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Fig. 12. Ratio of CMA response to AMA response on the plate for xf ð1Þ ¼ yf ð1Þ ¼ 0:25 and xf ð2Þ ¼ yf ð2Þ ¼
0:75; fmin ¼ 4995 Hz and fmax ¼ 5295 Hz: (a) without cross-correlation, (b) with cross-correlation.
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3.3. Part 2: The effect of the modal damping

In Part 1 the numerical results are obtained by choosing x1 ¼ 0:01: In this part of the paper we
will increase the value of x1 to see whether the modal damping will affect the response of the plate.
The dimension of the plate is again selected as 762 � 762=1:5 � 0:794 mm3 and the excitation
point is at xf ¼ yf ¼ 0:5:

Comparing Eqs. (7) and (8), it can be seen that the ratio of CMA/AMA without cross-
correlation is independent of modal damping. This is also seen to be true when only cross-
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identical frequencies.
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correlations between modes of the same natural frequencies are included by considering Eqs. (6)
and (8). Therefore, the results shown in Figs. 3, 5(a) and 6 are also the results for any value of x1:
The only difference for different x1 is the result for the ratio of CMA/AMA with all cross-
correlations included. The ratios of CMA/AMA with all correlations included for x1 ¼ 0:1 and
1.0 are shown in Fig. 17. However, note that for x1 ¼ 0:1; the result of Fig. 17(a) is similar to that
of Fig. 5(b) and Fig. 6 for x1 ¼ 0:01; suggesting that it is only the cross-correlation of modes with
identical frequencies that is important at this damping level. For x1 ¼ 1:0; however, cross-
correlations of other modes appear to be important. Therefore, Figs. 17 and 5(b) indicate that the
cross-correlation becomes more and more important as x1 increases. However, the damping must
be quite large, x1BOð1Þ; for this effect to be detectable.
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(a) (b)

Fig. 15. CMA/AMA for the plate with dimension of 762 � 762=p� 0:794 mm3; xf ð1Þ ¼ yf ð1Þ ¼ 0:25;xf ð2Þ ¼ yf ð2Þ ¼
0:75; fmin ¼ 5500 Hz and fmax ¼ 6000 Hz: (a) without cross-correlation, (b) with cross-correlation.

Fig. 16. The ratio of CMA with cross-correlations included to CMA without cross-correlation for the case: xf ð1Þ ¼
yf ð1Þ ¼ 0:25; xf ð2Þ ¼ yf ð2Þ ¼ 0:75; fmin ¼ 5500 Hz and fmax ¼ 6000 Hz:
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To find the reason of this tendency, consider the transfer functions for all modes. The transfer
functions are expressed by

HnðoÞ ¼
1

Mn½o2
n � o2 þ 2ixnono�

: ð12Þ

The transfer functions vs. frequencies are shown in Figs. 18 and 19 in which only transfer
functions with the natural frequency in the frequency interval are plotted. From these three figures
it is obvious that the overlapping between different modes gets larger and larger as x1 becomes
larger. This explains the results shown in Fig. 17. That is to say, the cross-correlation between

ARTICLE IN PRESS

(a) (b)

Fig. 17. CMA/AMA for the plate with dimension of 762 � 762=1:5 � 0:794 mm3; xf ¼ yf ¼ 0:5; fmin ¼ 4995 Hz and

fmax ¼ 5295 Hz: (a) x1 ¼ 0:1 and (b) x1 ¼ 1:0:
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Fig. 18. Mean square of transfer functions versus frequency for fmin ¼ 4995 Hz and fmax ¼ 5295 Hz: (a) x1 ¼ 0:01 and

(b) x1 ¼ 0:1:
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modes is important for very large modal damping but not for the small to moderate levels of
damping typical of most structures.

4. Concluding remarks

Cross-correlation of modal responses is shown to be important for AMA only under special
circumstances. It should be noted that the modal cross-correlation has no effect on the result for
the spatial average response of uniform structures because of the orthogonality of the modes. In
this paper AMA with modal cross-correlations neglected is shown to be a reasonable
approximation when modal damping is small to moderate (and this includes the case of most
structural elements) and the structure does not have multiple modes with the same natural
frequencies. For systems which have multiple modes with the same natural frequencies, the cross-
correlation of only those modes with identical natural frequencies must be included to get a better
approximation. For very large damping the cross-correlations between other modes also appear
to be important but such levels of damping are not usually found in most structures.
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Appendix A. Nomenclature

w vertical displacement of the plate
cn the nth modal function of the plate
FFiFj

cross-correlation of the point forces, Fi and Fj

Mn modal mass of the nth mode of plate: Mn 	
R R

mðx; yÞc2
n dx dy
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Fig. 19. Mean square of transfer functions versus frequency for fmin ¼ 4995 Hz; fmax ¼ 5295 Hz and x1 ¼ 1:0:
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Mp total mass of the plate
on the nth natural frequency of plate
fmin the minimum frequency in a certain frequency interval
fmax the maximum frequency in a certain frequency interval
fc;oc center frequency: fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fmin�fmax

p
xn the nth modal critical damping ratio of plate
xc critical modal damping ratio corresponding to the center frequency
nx; ny modal numbers of plate in x-, y-directions, respectively
HnðoÞ transfer function of the nth mode

%w2 mean square response (averaged over time)
/ %w2S mean square average over (time and) space
xf ; yf location of point forces
x; y location of structural response
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