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Abstract

In the view of structure-borne sound, the vibrational power flow of circular plates with peripheral surface
crack is investigated. The peripheral surface crack is modelled as a joint of a local spring. The local stiffness
of the rotational spring is deduced by using fracture mechanics and strain energy arguments. At high
frequencies, the motion of bending wave and the input power flow are researched in the case of a harmonic
force loaded at its center.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Under fatigue load and external pulse conditions, damages may be produced as a result of the
flaws or manufacturing defects in the structures. So dangers are inherent in the life of structures.
For this reason, methods for making early detection and for locating of damages have been the
subject of many recent investigations.

Currently available non-destructive evaluation (NDE) methods are mostly non-model methods,
either visual or localized experimental methods, such as acoustic or ultrasonic methods, magnetic
field methods, radiographs, eddy-current methods and thermal field methods. Accessing these
techniques is time consuming and costly. Some of them are also impractical in many cases, e.g., in
service ship testing and space structure. Almost all of them require that the vicinity of the damage
is known in advance and that the portion of the structure being inspected is readily accessible for
human beings. Subjected to these limitations, these non-model methods can provide only local
information and no indication of the structural strength at a system level.
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Shortcomings of currently available NDE methods indicate a requirement of damage
inspection techniques that can give global information on the structure and they do not require
direct human accessibility of the structure. This requirement has led to the development of model-
based methods that examine changes in the vibration characteristics of the structure.

Most of the previous researches on vibration-related damage detection are based on modal
methods. The basis for such methods is that damage produces a decrease in dynamic stiffness.
This decrease in turn produces decreases in natural frequencies in an undamped simple beam. This
basic premise has produced a number of results using modal analysis, i.e., frequency measurement
to perform diagnostics [1]. Though modal-based method may have advantages, it possess a
number of major disadvantages [2].

The results of previous efforts in damage detection provide evidence that something is gained
by including the effects of geometry and hence modelling the local changes in modulus. This then
raises significant questions as to the validity of using traditional modal analysis (i.e.,
measurements of natural frequencies, assuming a uniform model) as the foundation of a damage
detection.

In recent years, the structure-borne sound analysis and control of flexible structures and cabins
of marine-structures and aeronautical crafts are becoming an important topic. The use of
vibrational power flow in a problem of this type is very valuable. The premise of the effort
proposed here is that damage to a structure will correspond in some way to changes, though
small, in the structure’s mass, damping and stiffness properties and so the vibrational power flow
is influenced by changes of propagating waves [3].

In view of structure-borne sound, the vibrational power flow of circular plates with peripheral
surface crack is investigated. The peripheral surface crack is modelled as a joint of a local spring.
At high frequencies, the motion of bending wave and the input power flow are researched in the
case of a harmonic force loaded at its center.

2. Theoretical model of flexural vibration

2.1. Flexural vibration of circular plate

If a thin plate is excited by a harmonic force F0e
iot at point ðx0; y0Þ; the equation governing the

flexural vibration is (for brevity, the term eiot is ignored in all the following formulas)

r4wðx; yÞ � k4wðx; yÞ ¼ ðF0=DÞdðx � x0Þdðy � y0Þ; ð1Þ

where dð�Þ is delta function, k is flexural wave number of thin plate, k4 ¼ o2rs=D; o is angular
frequency, rs is the material density per unit area, D ¼ Et3=½12ð1� n2Þ�; E; n; and t are Young’s
modulus, the Poisson ratio and thickness, respectively.

For circular plates, it is convenient to use a system of polar co-ordinates. If the harmonic force
is loaded at the center of the plate, x0 ¼ y0 ¼ 0; then r ¼ 0: Considering the singularity of dð�Þ
function at the point r ¼ 0 and using ignorable co-ordinates, Eq. (1) may be written as

r4w � k4w ¼ ðF0=DÞdðrÞ=2pr; ð2Þ
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where the operator

r4 ¼
d2

dr2
þ

1

r

d

dr

� �2

:

The modal solution of Eq. (2) can be written as [4]

wðrÞ ¼
XN
n¼1

F0

2MAn

fnð0ÞfnðrÞ
ðo2

n � o2 þ izoonÞ
; ð3Þ

where M is the mass of the circular plate and z is the loss factor defined as twice the damping
ratio. The constant An is defined as

An ¼
1

R2

Z R

0

½fnðrÞ�
2r dr: ð4Þ

R is the radius of the circular plate. The natural frequency on is defined as

o2
n ¼ ðD=rsÞðdn=RÞ2: ð5Þ

dn is the non-dimensional variable. For clamped boundary, the characteristic equation about dn is

J0ðdnÞ I1ðdnÞ þ J1ðdnÞ I0ðdnÞ ¼ 0; ð6Þ

where J0 and J1 are the Bessel functions, and I0 and I1 are the modified Bessel functions. fnðrÞ is
the nth mode shape is given for clamped case [5]:

fnðrÞ ¼ J0ðdnr=RÞ � bnI0ðdnr=RÞ; ð7Þ

where the constant bn ¼ J0ðdnÞ=I0ðdnÞ:
In this paper, another analytical expression of Eq. (2) is used for convenience [6]:

uðrÞ ¼ ðu0 � BÞJ0ðkrÞ þ BI0ðkrÞ �
iF0

pZ
Y0ðkrÞ þ 2K0ðkrÞ½ �; ð8Þ

where uðrÞ ¼ iowðrÞ is the vibrational velocity of the circular plate. B is a constant and uð0Þ is the
vibrational velocity of the center of the plate, which can be determined by the boundary
conditions. Y0 and K0 are the Bessel functions and the modified Bessel functions, respectively. Z is
the force impedance of the driving point. At high frequencies ðkrb1Þ; the input point impedances
of finite plates are equal to that of infinite plates [7]. Accurate input point impedance of finite
circular plate is [6]

Z0 ¼ �
i

Z

� �
ctgðkR � p=4Þ; Z ¼ 8ðDrsÞ

1=2: ð9Þ

The Bessel functions and the modified Bessel functions may be given with their asymptotic
expressions [8]:

J0ðkrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2=pkr

p
cosðkr � p=4Þ; Y0ðkrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2p=kr

p
sinðkr � p=4Þ;

I0ðkrÞ ¼ e�kðR�rÞ=
ffiffiffiffiffiffiffiffiffiffi
2pkr

p
; K0ðkrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
p=2kr

p
e�kr:

ð10Þ

In view of expression (10), we can find that expression (8) contains cylindrical waves and
nearfield waves, and the nearfield waves decay with exponential forms. At high frequencies
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ðkrb1Þ; the response of the circular plate is dominated by the cylindrical waves except the
domains near the center point and the boundaries of the circular plate.

For the circular plates with clamped supports, B and uð0Þ are [6] given by

B ¼
½iðF0=pZÞðY0

0 þ 2K0
0Þ� � u0I

0
0

I00 � J00
; ð11Þ

u0

F0
¼

i

pZ

ðY0
0 þ 2K0

0ÞðI0 � J0Þ � ðY0 þ 2K0ÞðI00 � J00Þ
J00I0 � I00J0

; ð12Þ

where the superscript denotes differentiation with respect of the argument kr: After
differentiation, the variable of the Bessel functions and the modified Bessel functions is kR:

For symmetric flexural vibration, the shear force and bending moment in the radial direction
are, respectively,

Qr ¼ D
@

@r

@2w

@r2
þ

1

r

@w

@r

� �
; Mr ¼ �D

@2w

@r2
þ
n
r

@w

@r

� �
: ð13Þ

Based on the above analysis, a state vector equation of the circular plate may be written as

w

y

M

Q

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ r½ �

u0

B

1

8><
>:

9>=
>;; ð14Þ

where all element expressions of the matrix ½r� can be easily obtained by expressions (8) and (13).
To deal with the load terms conveniently, the constant ‘‘1’’ is used in Eq. (14).

2.2. Peripheral surface crack model

At r ¼ rc; there is a peripheral surface crack which is satisfied with the conditions of linear
elastic theory. In this paper, the research is only limited on the bending vibration of the circular
plate, therefore, it can be considered that the crack mostly induces the discontinuity of
the rotation. Then the crack can be simplified as a local peripheral rotational spring [9]. The
rotational stiffness of the local spring is KrcðaÞ; where a is the depth of the surface crack.
The relationship between the depth and the rotation stiffness of the crack may be derived from
fracture mechanics theory and strain energy method. Generally, this relationship is approximate
and known results for the stress intensity of cracked rectangular beams may be used.

For the sake of convenience, define the non-dimensional rotational stiffness as

K ¼ KrcðaÞ
2t

D
; ð15Þ

where t is the thickness of the circular plate. In the case of flexural vibration, the rotating angle
yrcðaÞ of a strip with a peripheral surface crack due to bending moment MrcðaÞ may be written as

yrcðaÞ ¼
@

@MrcðaÞ

Z a

0

J da; ð16Þ

ARTICLE IN PRESS

T.Y. Li et al. / Journal of Sound and Vibration 276 (2004) 1081–10911084



where MrcðaÞ is the bending moment at r ¼ rc: The strain energy release function J; for the
opening mode of fracture and a strip of width a dj; with a crack of depth a is

J ¼
Z 2p

0

K2
1

E
dj; ð17Þ

where dj is the micro-increment of rotation between both sides of the crack strip due to flexural
vibration. K1 is the stress intensity factor, and E is Young’s modulus of the circular plate.
According to fracture mechanics theory, an expression can be obtained:

1

KrcðaÞ
¼

@2

@M2
rc

Z a

0

J da: ð18Þ

From Eqs. (16)–(18), the local rotational stiffness KrcðaÞ may be computed by appropriate use
of K1 for the cracked strip. From Ref. [10], by suitable rearrangement of terms, integration and
substitution in Eqs. (17) and (18), the non-dimensional rotational stiffness K is given by

K ¼
1

3F1ðZÞ
; ð19Þ

where

Z ¼
a

2t
;

F1ðZÞ ¼ 1:862Z2 � 3:95Z3 þ 16:37Z4 � 37:226Z5 þ 75:81Z6 � 126:9Z7

þ 172:5Z8 þ 143:97Z9 þ 66:56Z10:

The model about local rotational spring expressed by Eq. (19) can be used for crack depth up to
0.8 of the plate thickness [9].

2.3. Transfer matrix of vibrating wave propagating

Eq. (8) is an analytical expression of the ideal circular plates with fully clamped supports. When
there are peripheral surface cracks on the circular plate, a transfer matrix can be used to express
the propagation of the bending vibrational waves.

For brevity, the domain of rprc is denoted by subscript ‘‘1’’, and the domain of rXrc is denoted
by subscript ‘‘2’’.

When rXrc; the expression of the free flexural vibration is [11]

w2ðrÞ ¼ A1J0ðkrÞ þ A2Y0ðkrÞ þ A3I0ðkrÞ þ A4K0ðkrÞ; ð20Þ

where Ai ði ¼ 1; 2; 3; 4Þ are constants which are determined by the boundary conditions of the
circular plate.
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For the cross-section of the circular plate when rXrc; the state vector equation is

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ ½D2�

A1

A2

A3

A4

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð21Þ

where the elements of the matrix ½D2� may also derived from expressions (13) and (20). At the
boundary of r ¼ rc; the state vector equation of is

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

rc

¼ ½D2�rc

A1

A2

A3

A4

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
: ð22Þ

From Eq. (22), constants Ai ði ¼ 1; 2; 3; 4Þ can be expressed as

A1

A2

A3

A4

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ ½D2��1
rc

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

rc

: ð23Þ

Substituting Eq. (23) into Eq. (21), the state vector equation of rXrc may be written as in the form
of transfer matrix:

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ ½D2�½D2��1
rc

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

rc

¼ ½D�

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

rc

: ð24Þ

At r ¼ rc; the continuity conditions are

w2 ¼ w1;

M2 ¼ M1;

Q2 ¼ Q1:

ð25Þ

Because rotational springs exist at r ¼ rc; the compatible conditions are

w0
2 ¼ w0

1 þ
Mrc

Krc

: ð26Þ

ARTICLE IN PRESS

T.Y. Li et al. / Journal of Sound and Vibration 276 (2004) 1081–10911086



According to expression (13), expression (26) can be transferred to another form:

w0
2 ¼ w0

1 �
l
K

w00
1 �

nx
K

w0
1; ð27Þ

where l is the non-dimensional frequency, l4 ¼ ð2tKÞ4 ¼ ð16o2rst
4Þ=D; x ¼ 2t=rc:

Applying the form of point transfer matrix, expressions (25) and (27) can be written as follows:

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

rc

¼ ½C�

w1

y1

M1

Q1

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

rc

; ð28Þ

where ½C� is point transfer matrix. According to coupling conditions of peripheral surface cracks
that are expressed by Eqs. (14), (24) and (28), a transfer matrix equation can be obtained:

w2

y2

M2

Q2

1

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

¼ ½D�½C�½r�

u0

B

1

8><
>:

9>=
>; ¼ ½b�

u0

B

1

8><
>:

9>=
>;; ð29Þ

where ½b� ¼ ½D�½C�½r�:
At high frequencies, when the radius and the damping of the structure are rather large, the

proportion of the nearfield waves is very small in the solution of flexural vibration and its
influence can be ignored and expression (8) can be simplified in the region of rorc [6]:

uðrÞ ¼ ðu0 � BÞJ0ðkrÞ �
iF0

pZ
Y0ðkrÞ: ð30Þ

This simplification not only avoids complex calculations but insures enough precision.
To the circular plate structure, its boundary (r ¼ R) is clamped, and hence the boundary

conditions are:

w2 ¼ 0;

y2 ¼ 0:
ð31Þ

Substitution of expression (31) into expression (29) results in following equations:

b11ðRÞu0 þ b12ðRÞB þ b13ðRÞ ¼ 0;

b21ðRÞu0 þ b22ðRÞB þ b23ðRÞ ¼ 0:
ð32Þ

The unknown argument u0 and B could be solved by the above equations, and then the problem
of the bending waves of the whole system can be computed.
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2.4. Vibrational power flow analysis

As above analysis, when the damping of structures is large, only the propagating waves are
considered here. Introducing complex Young’s modulus E0 ¼ Eð1þ izÞ; z is the loss factor of
material, and then the complex wave number is kð1� iz=4Þ: When the response of the structure is
in the state of fully stability, the vibrating energy input by the excitation is continuously exhausted
by the damping. The input power flow by the point load to the circular plate is [12] given by

Ps ¼ 1
2
ReðF0u#

0 Þ; ð33Þ

where # denotes complex conjugations.
For perfect circular plate, The input power flow at high frequency can be written as

Ps ¼ 1
2
jF0j

2Reð1=Z#Þ ð34Þ

According to the statistical energy analysis (SEA), Z ¼ 8ðDrsÞ
1=2 is constant. So input power

flow is also a constant at high frequency.
The input power flows of the perfect circular plate and the cracked circular plate could be

obtained by Eq. (33). In practical measurement, the value of the input power flow can be
measured with the impedance head [13].

3. Results and discussions

In this paper, the parameters are chosen such that R ¼ 1:0m, t ¼ 0:01m, n ¼ 0:3; Z ¼ a=2t ¼
0:8; rc ¼ 0:5R; E ¼ 2:0� 1011 N/m2. Fig. 1 shows the input power flows of the perfect circular
plate and the cracked circular plate for different driving frequencies and loss factors. The
co-ordinate of X-axis is f (Hz), and the co-ordinate of Y-axis is log10ðPs=F2

0 Þ (dB). It can be seen
from Fig. 1 that the analytical results and the SEA results are in good agreement with the perfect
plate at high frequencies. The input power flow of the cracked plate is more than that of the
perfect plate at high frequencies. Obviously, the input power flow increases with the increasing of
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Fig. 1. The input power flow of perfect and cracked circular plates.
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the loss factor of material in both cracked plate and perfect plate cases. Because the influence of
loss factor is little on the natural frequencies, the curve shapes of the input power flows are almost
the same for the cracked plate or for the perfect plate.

The peripheral surface crack is modelled as rotational spring in this paper. The rotational
spring divides the circular plate structure into two smaller parts: the circular plate structure ðrorcÞ
and the circular ring plate structure ðr > rcÞ: At higher frequencies, their vibrational modal are
denser and modal density is larger than that of the perfect circular plate. Moreover, the resonant
response of the structure dominates the flexural vibration. Hence when there are peripheral
surface cracks in the circular plate, the damping of the circular plate structure exhausts more
energy which is provide by the exterior exciting force.

Changing the parameter a=t (that implies changing the parameter Z) and keeping the other
parameters constant, the curves of input power flows of perfect circular plate and cracked circular
plate are plotted in Fig. 2. For perfect plate, Z ¼ 0; the value of the input power flow curve is a
fixed constant and the corresponding curve is a straight line. But for cracked plate, the value of
the input power flow varies with the parameter a=t and the driving frequency, and at point
a=t ¼ 0:5; the curves have wave troughs. The value 0.5 is just the ratio of the radius and the
distance between the plate center and the peripheral surface crack (rc=R ¼ 0:5). Meantime, Fig. 2
shows that the driving frequency has an effect on the input power flow of cracked plate.

Fig. 3 shows the curves of the input power flows of the perfect circular plate and the cracked
circular plate when changing the parameter rc=R and fixing the other parameters. For cracked
plate, the value of input power flow varies with the parameter rc=R and the driving frequency. At
rc=R ¼ 0:8; curves have peaks. The value 0.8 is just the ratio of the thickness of the circular plate
and the depth of the peripheral surface crack (Z ¼ a=2t ¼ 0:8). Meantime, Fig. 2 shows that the
driving frequency has an effect on the input power flow of cracked plate.

At high frequencies, the results have enough precision. But at low frequencies, the results have
little accuracy because of the application of impedance expression of high frequencies and the
omission of nearfield waves.
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4. Conclusion

This paper presented an approach to analyze vibrational power flow characteristics of circular
plate structures with peripheral surface crack. When there is peripheral surface crack in the
circular plate, the peripheral surface crack is modelled as a joint of a local rotational spring. The
local stiffness of the rotational spring is deduced by the fracture mechanic theories. At high
frequencies, the motion of bending wave and the input power flow are researched.

This paper assumed a harmonic transverse force loading at the center of circular plate and non-
modal solution is used for convenience, so point transfer matrix can be easily applied. If the types
of forces and position have been changed, the transverse vibrational expression of circular plate
has to make use of the form of modal solution. In this case, detailed procedure will be given in a
planned future work.

Further work will be done to diagnose the crack based on the power flow analysis presented in
this paper.
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