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1. Introduction

The equations of motion of damped linear n-degree-of-freedom dynamical systems can be
represented by

M .xðtÞ þ C ’xðtÞ þ KxðtÞ ¼ yn; xð0Þ ¼: x0; ’xð0Þ ¼: ’x0 ð1Þ

for all tX0; where

xðtÞ ¼ ½x1ðtÞ x2ðtÞ y xnðtÞ�TARn ð2Þ

is the displacement vector, x0ARn and ’x0ARn are, respectively, the vectors of initial displacements
and velocities, yn is the zero vector in Rn ; the mass matrix MARn�n and the stiffness matrix
KARn�n are symmetric and positive definite, and the damping matrix CARn�n is symmetric and
non-negative definite.
Let the damping matrix C be positive semi-definite. In this case, some components of system (1)

lack damping. Thus, it can happen that xjðtÞ for some j ¼ 1; 2;y; n would oscillate persistently
without decaying to zero as t-N: In this case, system (1) is said to have residual motion. Also,
when C is positive semi-definite, it can happen that xjðtÞ-0 for all j ¼ 1; 2;y; n as t-N . The
latter situation is somewhat surprising since the positive semi-definiteness of C implies that some
components of system (1) lack damping, and hence they would conceivably oscillate persistently
without coming to rest. Thus, a problem to be solved is as follows.

Problem P. In system (1), let the damping matrix C be positive semi-definite. Under what
conditions does system (1) have or not have residual motion?

The authors of Refs. [1–7] have attempted to solve Problem P. The authors of Refs. [1,2,4,6]
have used intuitive arguments to establish the existence or non-existence of residual motion for
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two-, three-, and four-degree-of-freedom systems. In Refs. [3,5,7], the existence of residual motion
is established by matrix rank tests.
In this note, Problem P is solved by giving easy-to-check conditions which establish the

existence or non-existence of residual motion in system (1).

2. Residual motion

In this section, the residual motion in system (1) is studied.
System (1) is written as

d

dt

xðtÞ

’xðtÞ

" #
¼ A

xðtÞ

’xðtÞ

" #
;

xð0Þ

’xð0Þ

" #
¼

x0

’x0

" #
ð3Þ

for all tX0; where

A :¼
0 In

�M�1K �M�1C

" #
AR2n�2n ð4Þ

and In denotes the n � n identity matrix. The solution of system (3) is given by

xðtÞ

’xðtÞ

" #
¼ expðAtÞ

x0

’x0

" #
ð5Þ

for all tX0:
The unique equilibrium point of system (3) is Xe :¼ ½yTn yTn �

T: The equilibrium point Xe is said to
be asymptotically stable if and only if xjðtÞ-0 and ’xjðtÞ-0 for all j ¼ 1; 2;y; n as t-N: Thus,
the asymptotic stability of Xe is equivalent to the non-existence of residual motion in system (1). It
is well known that Xe is asymptotically stable if and only if A is a Hurwitz matrix, i.e., all
eigenvalues of A are in the open left-half of the complex plane, denoted by Co

�; see. e.g., Ref. [8, p.
103] or [9, Theorem 33, p. 195].
A result is now stated which is relevant to residual motion.

Theorem 2.1. In system (1), if C is a positive definite matrix, then the system does not have residual
motion; equivalently, A in Eq. (4) is a Hurwitz matrix.

Proof. By a result in Ref. [8, p. 123], if C is a positive definite matrix, then Xe is the asymptotically
stable equilibrium point of system (3). Thus, there is no residual motion. The asymptotic stability
of Xe is equivalent to having A a Hurwitz matrix. &

The interesting case of positive semi-definite damping matrix C is now considered. A useful fact
is first stated.

Fact 2.2. If C is a positive semi-definite matrix, then eigenvalues of the matrix A in Eq. (4) are in Co
�

or on the imaginary axis of the complex plane.

Proof. See Ref. [10, Theorem 3, p. 246]. &
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Now, the existence or non-existence of residual motion in system (1) is established.

Theorem 2.3. In system (1), let C be a positive semi-definite matrix. System (1) does not have
residual motion if and only if A in Eq. (4) is a Hurwitz matrix.

Proof. Obvious: the equilibrium point Xe of system (3) is asymptotically stable if and only if A is a
Hurwitz matrix; see, e.g., Ref. [8, p. 103] or [9, Theorem 33, p. 195]. &

Remark 2.4. Theorem 2.3 provides a test by which the existence or non-existence of residual
motion in system (1) can be established. This test requires the computation of all 2n eigenvalues of
the matrix AAR2n�2n: Once the eigenvalues of A are computed the existence or non-existence of
residual motion in system (1) is decided. By Fact 2.2, it is guaranteed that A does not have
eigenvalues with positive real parts. If all eigenvalues of A have negative real parts, then system (1)
does not have residual motion. If A has pairs of eigenvalues on the imaginary axis of the complex
plane, then system (1) has residual motion. Note that multiple eigenvalues of A of any multiplicity
on the imaginary axis of the complex plane do not cause instability in the system (unbounded
solution). This statement is proved as follows. Let

EðtÞ ¼ 1
2
½xTðtÞ ’xTðtÞ�

K 0

0 M

" #
xðtÞ

’xðtÞ

" #
ð6Þ

for all tX0: It is straightforward to show that along the solution of system (3), ’EðtÞ ¼ � ’xTðtÞC ’xðtÞ
for all tX0: Since C is positive semi-definite, it follows that ’EðtÞp0 for all tX0: Thus, t/EðtÞ is a
bounded (non-increasing) function of time; so are t/xðtÞ and t/ ’xðtÞ:

Next, conditions are sought by which the existence or non-existence of residual motion in
system (1) can be established without computing the eigenvalues of the matrix A: Before stating
such conditions, some preliminary results are given.
A non-singular matrix, known as modal matrix, is used in the modal analysis of system (1). Let

UARn�n denote the modal matrix. The columns of U are the eigenvectors of the symmetric
generalized eigenvalue problem

Kuj ¼ o2j Muj ð7Þ

for all j ¼ 1; 2;y; n; where o2j > 0 and ujARn are, respectively, an eigenvalue (undamped natural
frequency squared) and the corresponding eigenvector. The modal matrix is commonly
orthonormalized according to

UTMU ¼ In: ð8Þ

Since Eq. (7) holds, it follows that

UTCU ¼: R; UTKU ¼ diag½o21;o
2
2;y;o2n� ¼: O2; ð9Þ

where the symmetric matrix R ¼ ½rjk� ¼ ½uTj Cuk�ARn�n is known as the modal damping matrix.
Since C is a positive semi-definite matrix, the diagonal elements of R are non-negative.
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In system (1), let

xðtÞ ¼ UqðtÞ ð10Þ

for all tX0; where U is the modal matrix and

qðtÞ ¼ ½q1ðtÞ q2ðtÞy qnðtÞ�TARn ð11Þ

is known as the modal co-ordinates. Using Eqs. (8) and (9), it is concluded that system (1) can be
written as

.qðtÞ þ R ’qðtÞ þ O2qðtÞ ¼ yn; qð0Þ ¼: q0 ¼ UTMx0; ’qð0Þ ¼: ’q0 ¼ UTM ’x0 ð12Þ

for all tX0; where R and O2 are those in Eq. (9). System (12) is the representation of system (1) in
the modal co-ordinates.
An easy-to-check condition for the existence of residual motion in system (1) is now given.

Theorem 2.5. In system (1), let C be a positive semi-definite matrix. If

CM�1K ¼ KM�1C; ð13Þ

then system (1) has residual motion.

Proof. If Eq. (13) holds, then R in Eq. (12) is a diagonal matrix (see, e.g., Ref. [8, p. 144]), where
the diagonal elements are non-negative. Since C is a positive semi-definite matrix, at least one
diagonal element of R; say rll ; is zero. Therefore, qlð	Þ in Eq. (12) satisfies the following second
order equation:

.qlðtÞ þ o2l qlðtÞ ¼ 0; qlð0Þ ¼ q0l
; ’qlð0Þ ¼ ’q0l

ð14Þ

for all tX0: The solution of system (14), t/qlðtÞ; is a non-decaying periodic function of time. This
solution guarantees that xð	Þ in Eq. (10) would not tend to yn as t-0: That is, system (1) has
residual solution. &

It is remarked that the condition in Eq. (13) is restrictive. There are examples where Eq. (13)
does not hold, however, system (1) has residual motion. An example of such a system will be given
later.
Next, a condition is given that guarantees the existence of residual motion for a large class of

systems. In the following, the null space of a matrix L is denoted by NðLÞ:

Theorem 2.6. In system (1), let C be a positive semi-definite matrix. If

ujANðCÞ ð15Þ

for at least one j ¼ 1; 2;y; n; where uj is the eigenvector in Eq. (7), then system (1) has residual

motion.

Proof. Let for a j ¼ l; Eq. (15) hold. Thus, all elements on the lth row and the lth column of R in
Eq. (12) are zero. Therefore, qlð	Þ in Eq. (12) satisfies Eq. (14). The rest of the proof is similar to
that of the proof of Theorem 2.5. &
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In order to apply Theorem 2.6, first the eigenvector uj in Eq. (7) is computed for all j ¼
1; 2;y; n: Then, it is checked whether Cuj ¼ yn (equivalently, uTj Cuj ¼ 0) for a j ¼ 1; 2;y; n:
A result to be used subsequently is as follows.

Lemma 2.7. Let CARn�n be a positive semi-definite matrix. The equality nTCn ¼ 0 for a
nARn holds if and only if nANðCÞ: (Equivalently, the inequality nTCn > 0 holds if and only

if neNðCÞ).

Proof. See Appendix A. &

Next, conditions are given which guarantee the non-existence of residual motion in system (1)
with small damping.

Theorem 2.8. In system (1), let C be a positive semi-definite matrix and let C ¼ e *C; where the real
number 0oe{1: Moreover, let the natural frequencies of the system, oj; where j ¼ 1; 2;y; n; be

distinct. System (1) does not have residual motion if and only if

ujeNð *CÞ ð16Þ

for all j ¼ 1; 2;y; n:

Proof. ð(Þ If system (1) does not have residual motion, then by Theorem 2.6, uj cannot be in the
null space of C (equivalently, *C) for any j ¼ 1; 2;y; n:
ð)Þ In system (12), let xðtÞ ¼ p expðltÞ for all tX0; where the vector pAC

n and scalar lAC:
Then, the resulting eigenvalue problem is

ðl2M þ le *C þ KÞp ¼ yn: ð17Þ

The solution of Eq. (17) is the eigenvalue ljAC and the eigenvector pjACn; where j ¼ 1; 2;y; n:
The eigenvalue lj; for sufficiently small e; satisfies (see Ref. [11])

lj ¼ �1
2
euTj *Cuj þ iðoj þ Oðe2ÞÞ ð18Þ

for all j ¼ 1; 2;y; n; where oj is the undamped natural frequency satisfying Eq. (7) and i ¼
ffiffiffiffiffiffiffi
�1

p
:

The conjugate of lj is obtained by changing þi to �i in Eq. (18). Since Eq. (16) holds, by Lemma
2.7, uTj

*Cuj > 0; and the eigenvalue lj and its conjugate have negative real parts for all j ¼
1; 2;y; n: Thus, xðtÞ-yn as t-N: &

In order to apply Theorem 2.8, first the eigenvector uj in Eq. (7) is computed for all j ¼
1; 2;y; n: Then, it is checked whether *Cujayn (equivalently, uTj

*Cuj > 0) for all j ¼ 1; 2;y; n:

3. Examples

In this section, several examples are given to illustrate the application of results obtained in this
note in deciding the existence or non-existence of residual motion in system (1).
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Example 3.1. This example is chosen from Ref. [7]. In system (1), let

M ¼ I4; C ¼

1 0 0 �1

0 1 �1 0

0 �1 1 0

�1 0 0 1

2
6664

3
7775; K ¼

2 �1 0 0

�1 2 �1 0

0 �1 2 �1

0 0 �1 2

2
6664

3
7775: ð19Þ

The damping matrix C is positive semi-definite, whereas the mass and stiffness matrices are
positive definite. It can be easily verified that Eq. (13) holds. Thus, by Theorem 2.5, system (1) has
residual motion. This fact can be corroborated by computing the eigenvalues of the matrix A in
Eq. (4); the eigenvalues are

70:6180i; 71:6180i; �170:6180i; �171:6180i: ð20Þ

Two pairs of eigenvalues on the imaginary axis of the complex plane imply that the system has
residual motion.

Example 3.2. Consider the system in Fig. 1. In this system, let

m1 ¼ m2 ¼ m3 ¼ 1; c ¼ 2; k1 ¼ 1; k2 ¼ 2; k3 ¼ 3: ð21Þ

The coefficient matrices of this system are

M ¼ I3; C ¼

0 0 0

0 2 0

0 0 0

2
64

3
75; K ¼

3 �2 0

�2 5 �3

0 �3 3

2
64

3
75: ð22Þ

The damping matrix C is positive semi-definite, whereas the mass and stiffness matrices are
positive definite. It can be easily verified that Eq. (13) does not hold. Thus, Theorem 2.5 is not
applicable.
The eigenvectors satisfying Eq. (7) for the system under consideration are

u1 ¼

�0:4415

�0:6053

�0:6623

2
64

3
75; u2 ¼

0:8321

0

�0:5547

2
64

3
75; u3 ¼

0:3358

�0:7960

0:5036

2
64

3
75: ð23Þ

Having Cuj computed for j ¼ 1; 2; 3; it is concluded that u2ANðCÞ: Thus, by Theorem 2.6, the
system in Fig. 1 has residual motion. The eigenvalues of the matrix A in Eq. (4) for this system are

71:7321i; �0:420370:3473i; �0:579772:5283i: ð24Þ

That is, the system has residual motion.
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c

k1 k2 k3

Fig. 1. A group of masses and springs. For parameter values in Eq. (21), the system has residual motion. If, however,

the damping element is connected to the first mass m1 or the last mass m3; then there will be no residual motion.
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Example 3.3. Consider the system in Example 3.1, except that the damping matrix is

C ¼ 0:05

1 �1 0 0

�1 1 0 0

0 0 1 �1

0 0 �1 1

2
6664

3
7775: ð25Þ

The eigenvectors satisfying Eq. (7) for the system under consideration are

u1 ¼

0:3717

0:6015

0:6015

0:3717

2
6664

3
7775; u2 ¼

�0:6015

�0:3717

0:3717

0:6015

2
6664

3
7775; u3 ¼

�0:6015

0:3717

0:3717

�0:6015

2
6664

3
7775; u2 ¼

�0:3717

0:6015

�0:6015

0:3717

2
6664

3
7775: ð26Þ

It can be easily verified that uTj
*Cuj > 0 for all j ¼ 1; 2; 3; 4: Thus, by Theorem 2.8, system (1) does

not have residual motion. The eigenvalues of the matrix A in Eq. (4) for this system are

�0:002670:6181i; �0:002671:1757i; �0:047471:6172i; �0:0474þ 1:9013i ð27Þ

which corroborate the non-existence of residual motion.

4. Conclusions

In this note, linear n-degree-of-freedom dynamical systems, in which the mass and stiffness
matrices are symmetric and positive definite and the damping matrix C is symmetric and positive
semi-definite, are studied. Due to positive semi-definiteness of C; oscillations of the system
components may not decay to zero, in which case the system is said to have residual motion. It
can, however, happen that all components of the system come to rest even when C is positive
semi-definite. The non-existence of residual motion is thus equivalent to the asymptotic stability
of the system. This problem can be solved directly by computing all 2n eigenvalues of the matrix A
in Eq. (4). In this note, conditions are given by which the existence or non-existence of residual
motion is determined without computing the eigenvalues of A: In these conditions a major role is
played by the eigenvectors corresponding to the (undamped) eigenvalue problem in Eq. (7): (1) if
at least one eigenvector satisfying Eq. (7) belongs to the null space of C; then the system has
residual motion; (2) a system with distinct natural frequencies does not have residual motion if
and only if all eigenvectors satisfying Eq. (7) do not belong to the null space of C; and the
elements of C are sufficiently small. It is conjectured that the latter statement is true even when the
elements of C are not small.
The conditions presented in this note can be used to determine a small (or a minimum) number

of damping elements which would constitute a positive semi-definite damping matrix, however,
would render the system asymptotically stable (no residual motion). For instance, in Example 3.2
(see Fig. 1), if the damping element is connected to the first mass m1 or the last mass m3; then there
will be no residual motion in the system.
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Appendix A

Proof of Lemma 2.7. ð)Þ If nANðCÞ; then Cn ¼ yn and nTCn ¼ 0:
ð(Þ Since C is a symmetric matrix, it has a complete set of orthogonal eigenvectors; see, e.g.,

Ref. [12, Theorems 3.1.2 and 3.1.3, p. 107]. Let wjARn; where j ¼ 1; 2;y; n; denote an eigenvector
of C: A vector nARn can be written as

n ¼
Xn

j¼1

ajwj; ðA:1Þ

where ajAR for all j ¼ 1; 2;y; n: Thus,

nTCn ¼
Xn

j¼1

ljðCÞa2j ; ðA:2Þ

where ljðCÞ denotes the eigenvalue of the matrix C for all j ¼ 1; 2;y; n: Since C is a positive semi-
definite matrix, all its eigenvalues are non-negative. If nTCn ¼ 0; then from Eq. (A.2) it follows
that aj ¼ 0 for all j for which ljðCÞ > 0: Therefore,

Cn ¼ C
Xn

j¼1

ajwj ¼
Xn

j¼1

ajljðCÞwj ¼ yn: ðA:3Þ

That is, nANðCÞ: &
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