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1. Introduction

The first work dedicated to the free vibrations of circular isotropic plates was apparently due to
Chladni [1] 200 years ago. The state of the art on this topic was summarized by Leissa [2]. Most
papers are devoted to the axisymmetric vibrations. Kovalenko [3] was apparently the first who
provided the exact solutions for non-axisymmetric vibrations for a single nodal diameter of a
circular plate with linearly varying thickness. No closed-form solutions have been reported for
plates with clamped or simply supported edges until Elishakoff [4] formulated the axisymmetric
vibration frequencies of clamped plates by the semi-inverse method. Here, the apparently first
closed-form solutions are reported for the circular plates in the non-axisymmetric setting.

2. Governing differential equation

In polar co-ordinates (r, ), The equation governing the forced vibration of a circular plate with
loading ¢(r, 0) and flexural rigidity D(r) that varies with the polar radius r is [3]
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where D(r) and the Laplacian in polar co-ordinates, are defined, respectively, as
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Here ¢ is the mass per unit area of the plate and / is the plate thickness both of which we assume
to be a function only of r. The parameters £ and v denote the modulus of elasticity and Poisson
ratio, respectively.

Setting ¢ = 0 and

w = expli(wt + n) W) (n=0,1,2,...) (3)

in Eq. (1), we obtain the following equation on the radial portion of the free vibration mode shape
corresponding to the natural frequency w:
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Note that when n = 0, we recover the equation in Ref. [4] for the axisymmetric case. As in Ref. [4],
we pose to find a stiffness distribution D(r) for a given distribution of density d(r) and postulated
mode shape all of which are polynomials. The results presented below are limited to
considerations of uniform density and the first “angular mode” (n = 1) for the cases of clamped
and simply supported boundary conditions. A closed form expression for the natural frequency is
also given.

3. Clamped edge

If the plate has radius R, the mode shape W must satisfy the boundary conditions
W=dW/dr=0 atr=R (5)
To obtain a candidate mode shape, consider the static deflection of a uniform clamped plate under

the loading ¢ = gy cos 0, where ¢, is constant. Solving Eq. (1) subject to the above boundary
conditions, we find

qo . 2
w(r, 0) = 90Dr r— R)"(2r + R) cos 0. (6)

Thus we take n = 1 and postulate the following mode shape W(r):
W(r) = r(r — R*Qr + R). (7)

The problem proceeds as follows: find density and stiffness distributions so that Eq. (4) is
identically satisfied. We observe that if §(r) is taken as a polynomial of degree 2, then D(r) must
be of degree m + 4.

For a uniform density d(r) = ay, where @y must be positive, setting

4
D(r) =Y bir ®)
i=0



1110 J.A. Storch, I. Elishakoff | Journal of Sound and Vibration 276 (2004) 1108—1114

we obtain the following set of five linear equations on the six unknowns {bg, by, b2, b3, by, *}:

R(v + 3)by — 5hy =0,

48R(v 4 3)by — 24(v + 9)b; + RPayw® = 0,

3R(v+ 3)b; — (2v+ 13)b, = 0,

12(3v + 17)b3 — 48R(v + 3)bs + Ragew?® = 0,

21(4v + 21)bg — agw* = 0. )
From the last equation we have

w* = 21(4v + 21)by/ag, (10)

where b4 is arbitrary but positive.
The remaining coefficients are given by

(v 3)(24v + 874V + 8495y + 21795)R*D,

bo 40(v + 9)2v + 13)3v + 17) ’
by (24v3 + 874v2 + 8495y + 21795)R3by
8(v+9)(2v + 13)3v+17)
by — — 9(v + 3)(4v + 33)R%b4
42y + 13)3v + 17) °
3(4v + 33)Rbs
by =~ (4(3v + 1)7) (D

Fig. 1 depicts the stiffness (D/R*b4) for three values of the Poisson ratio v.

A second solution can be obtained by selecting as the candidate mode shape the static deflection
of a uniform clamped plate under the loading ¢ = ¢,(r/R) cos 0 where ¢, is constant [5]. Solving
Eq. (1) subject to the clamped boundary conditions, we obtain

(r,0) = LS (1) . 2cos@ (12)
MY = 190D\ R R '
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Fig. 1. Variation of the stiffness for a clamped circular plate corresponding to the mode shape W =
r(r — R*(2r + R)cos 0: —, v=10; ---,v=1 ..., v=1
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D(r)

Fig. 2. Variation of the stiffness for a clamped circular plate corresponding to the mode shape W = r(1 — r2/R2)* cos 6:
—v=0;---,v=1 ..., v=1
> B > 2> >

We now take the radial portion of the above expression for W(r) in Eq. (4) with n = 1 and again
assume a constant density ay and undetermined stiffness D(r) = Z?:o b;r'. In this case, we obtain
the following system of six homogeneous equations in the six unknowns {by, by, b>, b3, bs, *}:

b =0, Rlayw?® + 32[R*(v + 3)by — 6bg] = 0,
3R*(v +3)by — (v + 17)by = 0,
R*ay»® — 24[2R*(v + 3)bs — (v + 11)by] = 0,
by =0, 128(v+ 8)bs — ayw?* = 0. (13)
Fortunately, the above system has a non-trivial solution. The natural frequency is given by
»  128(v+8)
W = —-
ap

ba, (14)

where b4 is arbitrary but positive, while the remaining stiffness coefficients are given by
b() = %R“(V + 33)b4, b1 = 0,

by = —LR*b;, by =0. (15)
The corresponding plate stiffness can be expressed in the form
D(r) = IR[9(r/R)* — 30(r/R)* + 33 + v]bs. (16)

Fig. 2 depicts the stiffness (D/R*b4) for three values of the Poisson ratio v.

4. Simply supported edge

The mode shape W must now satisfy the boundary conditions
W=M,=0atr=R, (17)
where the bending moment M, is given by

2 2
8W+ <18W 18W>} (18)

M =-D|Z (- ST
[672 "\For +r2 06>
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To obtain a candidate mode shape, consider the static deflection of a uniform simply supported
plate under the loading ¢ = gy cos 6 where ¢¢ is constant. Solving Eq. (1) subject to the above
boundary conditions we obtain

~qor2(v + 3)r3 — 3R(v + 4)r* + R3(v + 6)]

w(r, 0) = 50D(r 1 3) cos 6. (19)

Thus we take n = 1 and postulate the following mode shape W (r):
W(r) =2(v + 3)* = 3R(v + 4’ + R (v + 6)r. (20)

We proceed to find density and stiffness distributions so that Eq. (4) is identically satisfied.
For a uniform density §(r) = ay, where ap must be positive. Taking D(r) as in Eq. (8), we obtain
the following set of five linear equations on the six unknowns {bq, b, ba, b3, by, *}:

5by — R(v + 4)b; = 0,
24(v + 3)[(v + 9)b1 — 2R(v + 4)br] — R} (v + 6)apw?® = 0,
(2v + 13)b, — 3R(v + 4)b3 = 0,
R(v 4 agw® + 12(v + 3)[(3v + 17)b3 — 4R(v 4 4)by] = 0,
21(4v + 21)by — apw?* = 0. (21)
From the last equation we have
w? = 21(4v + 21)by/ay, (22)

where b4 is arbitrary but positive.
The remaining coefficients are given by

_RYv+ 94" £ 10183 + 1330702 + 67761 + 118890)by

bo 40(v + 3)(v + 9)(2v + 13)3v + 17) :
by R3(24v* + 10183 + 133072 + 67761y + 118890)b4
8(v +3)(v £ 92y + 13)3v + 17) ’
9R(v + 4)*(4v + 33)by4
2T T A3V + 3By £ 17)
by _ 3RO+ D@y £33, 23)

4(v+3)(Bv+17)

Fig. 3 depicts the stiffness (D/R*b,) for three values of the Poisson ratio v. Compared to the
clamped plate, the stiffness is rather insensitive to v.

A second solution can be obtained by selecting as the candidate mode shape the static deflection
w(r, 0) of a uniform simply supported plate under the loading ¢ = ¢;7/R cos 0 where ¢, is constant
[5]:

g1 R* r r? r\2
w(r, 0) = m(ﬁ (1 - ﬁ) [7 -G+ v)(ﬁ) }cos 0. (24)
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Fig. 3. Variation of the stiffness for a simply supported circular plate corresponding to the mode shape
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Fig. 4. Variation of the stiffness for a simply supported circular plate corresponding to the mode shape

W =rR—r)7+v—0C+v?/Rcosl: —, v=0;---,v=
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Fovees V—j.

Proceeding as above, we obtain the following system of six homogeneous equations in the six
unknowns {bg, b1, by, b3, by, »°}:

by =0,

Rtag(v + T)w? + 32(v + 3)[R*(v + 5)by — 6by] = 0,

(v+ 17)by — 3R*(v + 5)b3 = 0,

Rap(v + S)w? + 24(v + 3)(v + 11)by — 48R*(v + 3)(v + 5)by = 0,

by =0,

Fortunately, the above system has a non-trivial solution. The natural frequency is given by

128(v + 8)by — apw® = 0.

1280 +8)

4,
ap

(25)

(26)
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where b4 is arbitrary but positive, while the remaining stiffness coefficients are given by
B RY(v? + 40v + 211)

= b b, =
0 50 +3) 4, b1 =0,
10R?(v + 5)
== - = . 2
b, 013 by =0 (27)

The corresponding plate stiffness can be expressed in the form

RO + 3)(r/R)* — 30(v + 5)(r/R)* + v* + 40v + 211]
bs.
9(v+3)

Fig. 4 depicts the stiffness (D/R*b4) for three values of the Poisson ratio v.

D(r) = (28)

5. Conclusion

It appears remarkable that whereas for the circular plate of constant flexural rigidity the mode
shapes involve Bessel and trigonometric functions, simple polynomial and trigonometric functions
are obtained under a flexural rigidity that varies. The unusual nature of this solution can be
explained by our exploitation of the additional parameters arising due to inhomogeneity. The
reported solutions can serve, for example, as benchmarks for verifying the accuracy of various
numerical techniques.
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