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1. Introduction

Beams on elastic foundations are commonly used in civil engineering problems. They are
typically used for modelling beams resting on soils, but are also used in several other applications
such as railroad tracks, submerged pipes, etc. The Winkler foundation model represents the
simplest form of elastic foundation. In this model, the foundation is treated essentially as an array
of closely spaced but non-interacting springs, each having a spring stiffness that equals the
foundation modulus divided by the spacing between springs. In most practical applications, this
foundation is used to model soil behaviour.

Analyses of beams on foundations have been extensively studied for the linear elastic case.
Little attention, however, has been given to their behaviour in the non-linear range. Timoshenko
and Gere [1] proposed the solution for simply supported uniform beams resting on Winkler-type
foundation. Bowles [2] derived a stiffness matrix for the problem using a conventional beam
element supported on discrete springs only at its ends. Ting and Mockry [3] developed a stiffness
matrix of an elastic beam on lateral support suitable for the displacement method of analysis. The
matrix is determined by deriving the exact solution of the differential equation of the problem. Lai
et al. [4] extended the same work for dynamic cases. Eisenberger and Yankelevsky [5,6] used the
same approach and developed an exact stiffness matrix for beam on elastic foundation including
axial effects. Several researchers have proposed the finite element method using displacement
shape functions [7–9]. The finite element formulation, which takes the shear deformation into
consideration for analyzing the beams on elastic foundation, has been developed by Aydogan [10]
and Dasgupta and Sengupta [11]. Thambiratnam and Zhuge [12] used the same approach to study
the vibration and dynamic behaviour of these types of structures. Kaschiev and Mikhajlov [13]
used the finite element method as a general numerical technique to solve the problem of elastic
beams on tensionless foundations for different loading conditions. Beaufait and Hoadley [14] have
accounted the non-linear Winkler foundation in their beam analysis.
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Regarding the instability analysis, Dube and Dumir [15] presented solutions for ascertaining the
buckling loads of tapered beams on various types of elastic foundation. Naidu and Rao [16,17]
computed the stability parameter of uniform beams resting on a class of two-parameter elastic
foundation by solving linear eigenvalue problems. They extended the approach to compute the
buckling parameter of beams on a non-linear elastic foundation [18]. Rao and Raju [19] proposed
an equivalent Winkler foundation to represent two-parameter elastic foundations. Dutta and Roy
[20] summarized various formulation models employed in the field of structural mechanics.

The dynamic stability of structural elements has been well discussed by Bolotin [21]. The
stability of a uniform cantilever column subjected to a tip-concentrated subtangential follower
force has been analyzed by Kikuchi [22], using a finite element method. Smith and Herrmann [23]
have shown that a uniform cantilever column subjected to a follower end force and having
dynamic instability is neither stabilized nor de-stabilized by the introduction of a uniform elastic
foundation. Shastry and Rao [24] have examined the dynamic stability of Euler columns resting
on an elastic foundation through finite element analysis. Rao and Rao [25] have presented the
stability analysis results of a cantilever column resting on an elastic foundation under a
subtangential follower force at its free end, whereas in Ref. [26], they have presented results for
large-amplitude vibrations of a tapered cantilever beam.

The basic equations for the large deformation of cantilever columns under subtangential
follower forces considering horizontal foundation reaction are presented in Ref. [25]. When the
column is loaded beyond its critical load, it is essential to consider the realistic rotational (normal)
foundation reaction instead of the horizontal foundation reaction as being considered in Ref. [25].
The governing equations for small deformation of cantilever columns are found to be the same for
both the cases of normal and horizontal foundation reactions. Hence, the critical loads of Ref. [25]
are valid for all the subtangential follower forces. The purpose of this article is to present a general
formulation for the problem, which takes into account the realistic normal foundation reaction
and to provide some observations of interest obtained by using the dynamic criterion for the post-
critical behaviour of uniform cantilever columns resting on an elastic foundation under a tip-
concentrated subtangential follower force. Though, the formulation of the problem is general
(which is valid for all subtangential follower forces), the post-critical loads are presented here only
for Euler and Beck columns resting on an elastic foundation.

2. Analysis

The formulation of the problem is mainly based on an important relation of the flexure theory
(i.e., M=EI ¼ 1=r ¼ dy=ds). The quantity 1=r (the curvature of the deflected axis of the column)
characterizes the magnitude of bending deformation, which is proportional to the bending
moment, M; and inversely proportional to the product EI called the flexural rigidity of the
column. The moment–curvature relationship including both the axial and transverse inertia of a
uniform cantilever column resting on an elastic foundation subjected to a tip-concentrated
subtangential follower force (see Fig. 1) can be written as

EI
dy
ds

¼ P cos ðgaÞfY � Yag � P sin ðgaÞfX � Xag þ LJA þ LJT ; ð1Þ
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where

LJA ¼
Z s

0

ku þ m
d2u

dt2

� �
fY ðsÞ � Y ðxÞg dx; ð2Þ

LJT ¼
Z s

0

kv þ m
d2v

dt2

� �
fX ðsÞ � X ðxÞg dx; ð3Þ

u ¼ X � L þ s; ð4Þ

v ¼ Y ; ð5Þ

X ¼
Z L

s

cos y ds; ð6Þ

Y ¼
Z L

s

sin y ds: ð7Þ

E is the Young’s modulus, I is the moment of inertia, k is the foundation modulus, m is the mass
per unit length, L is the length of a column and u and v are the deflections along X - and Y -axis,
respectively. a is the tip-angle ðy ¼ a at s ¼ 0Þ and ga is the angle between the force P and the
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Fig. 1. A cantiliver column on an elastic foundation subjected to a subtangential follower end force. Co-ordinate

transformation: Z ¼ S=L; at location A, Z ¼ 0; at location O, Z ¼ 1 (g ¼ 0; Euler column; g ¼ 1; Beck column).
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vertical direction with g a constant coefficient. At s ¼ 0; Eqs. (6) and (7) give the tip-co-ordinates
ðXa;YaÞ of the column.

Inserting the expressions u ¼ %uðsÞeiOt and v ¼ %vðsÞeiOt in Eqs. (2) and (3) and differentiating
Eqs. (1)–(7) with respect to s; one obtains

EI
d2y
ds2

þ P sin ðy� gaÞ þ ðmO2 � kÞ cos y
Z s

0

Y dxþ sin y
Z s

0

ðL � x� X Þ dx
� �

¼ 0; ð8Þ

dX

ds
þ cos y ¼ 0; ð9Þ

dY

ds
þ sin y ¼ 0; ð10Þ

where i ¼
ffiffiffiffiffiffiffi
�1

p
; and O denotes the circular frequency. The boundary conditions for Eqs. (8)–(10)

are

dy
ds

¼ 0 at s ¼ 0; ð11Þ

y ¼ X ¼ Y ¼ 0 at s ¼ L: ð12Þ

Defining Z ¼ s=L; x ¼ X=L and y ¼ Y=L; one can write Eqs. (8)–(12) in non-dimensional form
as

y00 þ l sin ðy� gaÞ þ ðo2 � KÞfV cos yþ H sin yg ¼ 0; ð13Þ

H 0 � ð1 � Z� xÞ ¼ 0; ð14Þ

V 0 � y ¼ 0; ð15Þ

x0 þ cos y ¼ 0; ð16Þ

y0 þ sin y ¼ 0; ð17Þ

y ¼ a; y0 ¼ H ¼ V ¼ 0 at Z ¼ 0; ð18Þ

y0 ¼ x ¼ y ¼ 0 at Z ¼ 1; ð19Þ

where l ¼ PL2=ðEIÞ is the load parameter; K ¼ kL4=ðEIÞ is the foundation parameter;
o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m=ðEIÞ

p
OL2; is the frequency parameter; H ¼

R Z
0 ð1 � x� xÞ dx; V ¼

R Z
0 y dx; and a

prime denotes differentiation with respect to Z:
In the present analysis, the load versus frequency curve (namely the eigencurve) of the column is

essential for studying the stability of the equilibrium position of the column as well as for the large
deflections (post-buckling) analysis of the column. In general, static stability loads are those loads
at which the eigencurve meets the load axis, whereas the dynamic stability loads are those loads at
which the two branches of the eigencurve coalesce. The two-point boundary value problem
described by Eqs. (13)–(19) is dependent on the load parameter ðlÞ; subtangential parameter ðgÞ;
tip-angle ðaÞ; foundation parameter ðKÞ and the frequency parameter ðoÞ: Following the
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numerical procedure of Ref. [27], the two-point boundary value problem was converted to an
initial value problem by estimating the values of x and y at Z ¼ 0 as

x ¼ xa; y ¼ ya ð20Þ

and the value of o for the specified values of l; a and K in an iterative process, so as to satisfy
the conditions given in Eq. (19). The differential equations were integrated by a fourth order
Runge–Kutta integration scheme with a fixed step size of 0.01.

3. Results and discussion

The post-critical behaviour of a uniform cantilever column resting on an elastic foundation
under a subtangential follower force at its free end is examined here by using the dynamic
criterion. In the present analysis, the subtangential parameter g ¼ 0; represents the Euler column,
whereas, g ¼ 1 represents the Becks column. In the Winkler foundation, the elastic medium below
the structure is represented by independent linear springs. The surface displacement of the elastic
medium at every point is directly proportional to the load applied at that point, and the
foundation is modelled by using only one parameter, the stiffness of the Winkler springs. When
the column is loaded beyond its critical load, the column deforms both in axial and transverse
directions. When the column is resting on an elastic foundation, it is essential to represent the
normal reaction by considering terms ku and kv in Eqs. (2) and (3) for LJA and LJT : In case of
horizontal reaction, the term ku in Eq. (2) is not considered. Some observations of interest
obtained from the present analysis are highlighted below.

3.1. Large-amplitude free vibrations of cantilever columns

For l ¼ 0; the values of o obtained from the present numerical computation represent the
natural frequencies of the unloaded cantilever column. While studying the large-amplitude
vibrations of cantilever beams [26] without elastic foundation ðK ¼ 0Þ; an increase in the
frequency parameter ðoÞ is observed for the specified amplitude, when the contribution of
the axial inertia term ðLJAÞ is not taken into account. In the present analysis, both the axial and
transverse inertia terms are considered while evaluating the natural frequencies of cantilever
columns resting on an elastic foundation. For small values of the tip-angle, a (say, 0:01	), the
solution of the problem yields the linear free vibrations of a uniform cantilever column. Table 1
gives variation of natural frequency parameter ðoÞ with tip-angle ðaÞ of unloaded cantilever
column resting on an elastic foundation. The frequency parameter increases with tip-angle ðaÞ and
also with the foundation parameter ðKÞ: For the specified tip-angle ðaÞ; the variation of natural

frequency with K can be expressed as o ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2ðfor K ¼ 0Þ þ K

p
:

3.2. Post-critical behaviour of Euler columns

In the present analysis, the subtangential parameter g ¼ 0; represents the Euler column. For the
limiting case of small deflections (i.e., a-0), X ¼ L � s; and the displacement (u) along the axis of
the column is negligibly small. Hence, the contribution of LJA in Eq. (1) can be neglected as in
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Ref. [25] for linear stability analysis. Table 2 gives post-critical loads of Euler column ðg ¼ 0Þ
without foundation ðK ¼ 0Þ for the values of the tip-angle, a varying from 10	 to 60	: The post-
critical load parameter ðlcrÞ increases with tip-angle ðaÞ of the column. Table 3 gives the
comparison of post-critical load parameter ðlcrÞ for Euler column ðg ¼ 0Þ resting on an elastic
foundation. For the case of horizontal reaction, the load parameter lcr decreases with a when the
foundation parameter is higher, and this indicates that the columns incline to the post-critical
unstable state (not able to carry more load beyond the critical point) when raising the foundation
parameter. In the case of normal reaction, the post-critical load parameter lcr increases with a and
also with K :

3.3. Post-critical behaviour of Beck columns

In the present analysis, the subtangential parameter g ¼ 1; represents the Becks column. For the
limiting case of small deflections (i.e., a-0), X ¼ L � s; and the displacement ðuÞ along the axis of
the column is negligibly small. Hence, the contribution of LJA in Eq. (1) can be neglected as in
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Table 2

Post-critical loads of Euler column ðg ¼ 0Þ and Beck column ðg ¼ 1Þ without foundation ðK ¼ 0Þ

Tip-angle

a (deg)

Euler column ðg ¼ 0Þ Beck column ðg ¼ 1Þ

lcr xa ya lcr oc xa ya

0.01 2.4675 1.0000 0.0001 20.0522 11.9202 1.0000 0.0001

10 2.4768 0.9924 0.1108 20.1889 11.0203 0.9944 0.0748

20 2.5054 0.9697 0.2194 20.6123 11.0477 0.9776 0.1486

30 2.5540 0.9324 0.3239 21.3529 11.1104 0.9499 0.2203

40 2.6245 0.8812 0.4222 22.4690 11.2094 0.9117 0.2891

50 2.7192 0.8170 0.5126 24.0584 11.3763 0.8635 0.3535

60 2.8418 0.7410 0.5932 26.2815 11.6209 0.8062 0.4129

Table 1

Large-amplitude vibrations of a uniform cantilever column resting on an elastic foundation

a xa ya Frequency parameter, o

(deg) K ¼ 0 K ¼ 1 K ¼ 10 K ¼ 100

0.01 1.0000 0.0001 3.5160 3.6555 4.7289 10.6000

10 0.9907 0.1263 3.5229 3.6621 4.7340 10.6024

20 0.9629 0.2500 3.5437 3.6821 4.7495 10.6093

30 0.9172 0.3683 3.5790 3.7161 4.7759 10.6212

40 0.8545 0.4788 3.6297 3.7649 4.8140 10.6384

50 0.7761 0.5791 3.6970 3.8299 4.8650 10.6615

60 0.6834 0.6670 3.7831 3.9130 4.9307 10.6917
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Ref. [25] for linear stability analysis. The post-critical loads of Beck column ðg ¼ 1Þ without
foundation ðK ¼ 0Þ for the values of the tip-angle a varying from 10	 to 60	 are also presented in
Table 2. The critical load parameter ðlcrÞ increases with tip-angle ðaÞ of the column. Table 4 gives
the comparison of post-critical load parameters ðlcrÞ for Beck column ðg ¼ 1Þ resting on an elastic
foundation. It is very interesting to note that the post-critical load parameter lcr increases with a
for both the cases of horizontal reaction and normal reaction. For the case of horizontal reaction,
lcr decreases with increase in the foundation parameter ðKÞ; whereas there is no change in lcr

values when raising the foundation parameter for the case of normal reaction. Hence, a uniform
cantilever column subjected to a follower force ðg ¼ 1Þ and having dynamic instability is neither
stabilized nor destabilized by the introduction of a uniform elastic foundation for the case of
normal reaction.

4. Conclusions

Post-critical behaviour of Euler and Beck columns resting on an elastic foundation has been
examined by considering the realistic normal foundation reaction. The formulation of the
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Table 3

Comparison of post-critical load parameters ðlcrÞ for Euler column ðg ¼ 0Þ resting on an elastic foundation

Tip-angle

a (deg)

Normal reaction Horizontal reaction

K ¼ 1 K ¼ 10 K ¼ 100 K ¼ 1 K ¼ 10 K ¼ 100

0.01 2.6500 4.1783 11.9966 2.6500 4.1783 11.9966

10 2.6594 4.1886 12.0277 2.6580 4.1779 11.9877

20 2.6880 4.2197 12.1219 2.6827 4.1772 11.9613

30 2.7368 4.2726 12.2806 2.7249 4.1766 11.9165

40 2.8075 4.3490 12.5061 2.7862 4.1773 11.8522

50 2.9025 4.4511 12.8023 2.8694 4.1810 11.7665

60 3.0253 4.5825 13.1746 2.9781 4.1904 11.6568

Table 4

Comparison of post-critical load parameters ðlcrÞ for the Beck column ðg ¼ 1Þ resting on an elastic foundation

Tip-angle Normal reaction Horizontal reaction

a (deg) K ¼ 1; 10, 100 K ¼ 1 K ¼ 10 K ¼ 100

0.01 20.0522 20.0522 20.0521 20.0519

10 20.1888 20.1876 20.1765 20.0667

20 20.6123 20.6073 20.5627 20.1212

30 21.3529 21.3414 21.2385 20.2371

40 22.4690 22.4479 22.2588 20.4532

50 24.0584 24.0238 23.7143 20.8280

60 26.2815 26.2282 25.7538 21.4480
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problem is general (which is valid for all subtangential follower force) and it can be extended
easily for non-uniform cantilever columns.
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