
JOURNAL OF
SOUND AND
VIBRATION

www.elsevier.com/locate/jsvi

Journal of Sound and Vibration 276 (2004) 475–490

Experimental validation of a quasi-steady theory for the
flow through the glottis

C.E. Vilaina, X. Pelorsona,*, C. Fraysseb, M. Devergeb, A. Hirschbergb, J. Willemsb

a INPG, Universite Stendhal, UMR CNRS Q5009, Institut de la Communication Parl!ee, 46 avenue F. Viallet,

Grenoble Cedex 01 F-38031, France
bFluid Dynamics Laboratory, Technical University of Eindhoven, Postbus 513, 5600 MB Eindhoven, The Netherlands

Received 20 January 2003; accepted 28 July 2003

Abstract

In this paper a theoretical description of the flow through the glottis based on a quasi-steady boundary
layer theory is presented. The Thwaites method is used to solve the von K!arm!an equations within the
boundary layers. In practice this makes the theory much easier to use compared to Pohlhausen’s
polynomial approximations. This theoretical description is evaluated on the basis of systematic comparison
with experimental data obtained under steady flow or unsteady (oscillating) flow without and with moving
vocal folds. Results tend to show that the theory reasonably explains the measured data except when
unsteady or viscous terms become predominant. This happens particularly during the collision of the vocal
folds.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Voiced sound production, or phonation, is produced by a modulation of the flow while the
vocal folds are self-oscillating. Typically, the glottis, the narrow passage between the vocal folds,
forms a converging channel when the vocal folds are separating and a diverging channel when the
vocal folds are approaching. It can be shown that the self-sustained oscillation of the vocal folds is
essentially driven by the difference between the hydrodynamic forces exerted on the folds during
the opening and the closing phase of the glottis [1].

While simple theories using ad hoc assumptions such as imposing a flow separation at a fixed
point within the glottis (e.g., Refs. [2–4]) can be justified when the glottis forms a converging
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channel, they remain very crude during the closure of the vocal folds when the glottis forms a
diverging channel.

An empirical prediction was proposed by Liljencrants [5] based on numerical simulations of the
glottal flow. The flow separation is simply predicted to occur at the point where the glottal
diameter exceeds the minimum glottal diameter by a fixed amount (10% or 20%) Lous et al. [6]
have successfully used this criterion coupled to a two-mass model of the vocal folds.

Although attractive in its simplicity, such a criterion has the drawback of being purely
geometrical and thus insensitive to the flow conditions.

Based on steady flow measurements on mechanical replicas of the vocal folds (e.g., Ref. [7]) or
using numerical simulations (e.g., Ref. [8]) Scherer et al. have proposed empirical correction
coefficients to explain the departures from inviscid predictions. Recently, Zhang et al. [9] have
used empirical discharge coefficients coupled with a quasi-steady flow approximation in order to
describe the modulation of the flow induced by an oscillating in vitro model of the glottis. The
present goal is to predict theoretically these empirical coefficients.

In previous works, attempts to describe the flow more accurately were made using a third order
Pohlhausen method [10–12]. This theory was tested against in vitro experiments under steady or
unsteady flow conditions. In particular, the unsteady flow conditions were obtained by using
impulsively started flows generated by opening a mechanical valve. Although comparable, these
flow conditions were quite different from those expected during phonation. Further, it was found
that the theoretical solutions were difficult to obtain numerically due to the non-linearity of the
flow equations [13,14].

Therefore in this paper another theoretical prediction is proposed for the flow within the glottis
based on the Thwaites’ method [13–15]. After a definition of the basic assumptions, this method
will be described. The experimental validation will then be presented based on measurements on
rigid replicas of the vocal folds. The use of rigid replicas allows for an accurate control of the
geometry of the glottis and hence for quantitative measurements. Steady flow conditions are first
considered. Unsteady flow measurements will then be presented using two different set-ups. In the
first one, the unsteadiness is imposed by a siren while the replicas are fixed. In the second set-up,
one vocal fold replica is forced to oscillate using a motor. This latter case allows thus to evaluate
the effects of moving boundaries on the flow.

2. Theory

2.1. Assumptions

In the following the direction of the flow will be considered to follow the x dimension. The
transverse dimension is denoted by y: In Table 1 are presented some typical values for the physical
quantities of importance for this study. These quantities should be understood as average values
observed for a male speaker during normal (conversational) speech. In order to quantify some
necessary assumptions a dimensionless analysis can be carried out on the basis of these typical
values.

The Reynolds number is defined as Reh ¼ vghg=n; where hg is the minimum glottal aperture
(henceforth called the glottal height), vg is the velocity at this point and n the kinematic viscosity
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coefficient. The Reynolds number is usually used as a measure for the importance of the inertial
flow effects with respect to the viscous ones. For the purpose of this study another dimensionless
number, based on the Reynolds number will be used

Rehhg

L
¼

vgh2
g

nL
;

where L is the length (along the x-axis) of the glottis.
The boundary layer theory assumes that all viscous effects can be confined within a thin region

of the flow near the walls. If it is assumed that inertial terms and viscous terms are of the same
magnitude in this thin region [13] one gets an estimation of the boundary layer thickness, d:

d ¼

ffiffiffiffiffiffi
nL
vg

s
:

Therefore,

hg

d

� �2

¼
vghg

n
hg

L
¼ Reh

hg

L
:

In other words, the dimensionless number Rehhg=L provides information about the thickness of
the boundary layer and thus about the validity of the boundary layer concept. Using the values of
Table 1, one has typically Rehhg=L ¼ 500 which justifies the assumption of thin boundary layers.

The Strouhal number is defined by SrL ¼ fL
vg
; where f is the fundamental frequency of oscillation

and vg the flow velocity at hg: The Strouhal number is often referred as a dimensionless frequency
but can also be understood as a measure of the importance of the inertial effects with respect to
the convective ones. More precisely, consider the mean volume flow due to walls movement
ðdhg

dt
LLgÞ and the mean volume flow through the glottis ðvghgLgÞ: Since, in the first approximation,

one has f ¼ 1=hg dhg=dt; it can be easily shown that the Strouhal number can be interpreted as a
measure of the relative importance of the flow induced by wall motion with respect to the flow
induced by the pressure difference across the glottis. Typical Strouhal numbers for phonation,
obtained from Table 1, are of order of 10�2: This justifies not only the use of a quasi-steady flow
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Table 1

Typical values for relevant physical quantities characterizing the glottal flow (from Ref. [16])

Quantities Notations Typical values

Geometrical Vocal folds transversal length Lg 14 mm

Mean glottal height hg 1 mm

Vocal folds longitudinal length L 6 mm

Physical Phonation pressurea Psub 100–1000 Pa

Mean glottal flow velocity vg 15–40 m=s
Fundamental frequency of oscillation f 80–200 Hz

Density of the air P0 1:2 kg=m3

Sound celerity c0 350 m=s
Kinematic viscosity of the air n 1:5� 10�5 m2=s

aPressures are given relative to atmospheric pressure.
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theory but also to neglect the effects of moving walls on the flow. However, this analysis clearly
fails when the glottis closes since hg tends toward 0 and f cannot be estimated by 1=hg dhg=dt
anymore.

The squared value of the Mach number, M ¼ ng=c0; where c0 is the speed of sound, is a measure
for the importance of the compressibility effects [14]. Typical Mach numbers for phonation are of
order of 10�1: Compressibility effects can, in first approximation, be neglected.

At first sight it can seem surprising to describe a sound source, such as the glottis, by means of
incompressible theory since sound is by definition a compressible phenomenon. The key point is
that, as long as the acoustical wavelength, l remains much larger than the flow region, one can
assume a locally incompressible flow. A measure for this is the Helmholtz number He ¼ L=l:
Using values of Table 1, one gets He ¼ 10�3; which means that the glottis can be considered as a
compact source.

Finally, as a last assumption, it is considered that since the width of the glottis, Lg is much
larger than the glottal height, hg a two-dimensional flow can be assumed.

2.2. Prandtl equations

The dimensionless analysis shows that a two-dimensional boundary layer theory can be used to
describe the glottal flow. Thus, the flow through the glottis is divided into two regions: the bulk
flow, considered as one dimensional and inviscid and the two-dimensional boundary layer flow,
where all viscous effects are confined. Let ueðxÞ be the longitudinal velocity in the bulk flow.
Upstream of the separation point, the momentum conservation equation reduces, for the bulk
flow, to

ue
@ue

@x
¼ �

1 @p

r @x
;

@p

@y
¼ 0: ð1Þ

The first equation is often called the Euler equation. Its solution is the Bernoulli equation

pðxÞ þ 1
2
ru2

eðxÞ ¼ constant: ð2Þ

Within the boundary layer, let uðx; yÞ and vðx; yÞ be the longitudinal and transversal components
of the velocity. The momentum conservation equation reduces to [13]

u
@u

@x
þ v

@v

@y
¼ �

1 @p

r @x
þ n

@

@y

� �2

u;

@p

@y
¼ 0: ð3Þ

If one adds the local mass conservation equation

@u

@x
þ

@v

@y
¼ 0;

to the latter system, one gets the so-called Prandtl equations.
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The local mass conservation equation can be integrated over the height hðxÞ of the channel.
Considering that hðxÞ=Lg{1; one can neglect the lateral boundary layers. This yields the relation

Ug ¼ constant; where Ug ¼ Lg

Z hðxÞ

0

uðx; yÞ dy is the volume flow velocity:

Using the definition of the displacement thickness for a symmetric flow

d1ðxÞ ¼
1

2

Z hðxÞ

0

1 �
uðx; yÞ
ueðxÞ

� �
dy;

the mass conservation equation can be rewritten as

Ug ¼ LgðhðxÞ � 2d1ðxÞÞueðxÞ: ð4Þ

Downstream of the point where the flow separates from the walls, a free jet is formed. The
vorticity is convected in the jet and a turbulent mixing regime sets-in. Thus the boundary layer
theory does not apply anymore downstream of the flow separation point. It is here assumed that
the pressure within the jet is constant and equals the supraglottal pressure, Psupra: Let uj be the
velocity within the jet. Neglecting the inlet velocity, ueð0Þ with respect to the jet velocity one
obtains

uj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðPsub � PsupraÞ

r

s
:

The volume flow velocity is thus given by Ug ¼ ujLgðhs � 2d1;sÞ:
The main theoretical difficulty consists in finding the values of hs and d1;s at the flow separation

point.

2.3. A theory based on Thwaites’ method

A way to solve the Prandtl equations is to integrate them along a cross-section of the channel.
This yields the van K!arm!an equation [13]

u2
eðxÞ

dyðxÞ
dx

þ ð2þ HÞyðxÞueðxÞ
dueðxÞ
dx

¼
t0ðxÞ
r

; ð5Þ

where ueðxÞ is the local velocity at the outer edge of the boundary layer and where y is the
momentum thickness, defined by

yðxÞ ¼
1

2

Z h

0

uðx; yÞ
ueðxÞ

1 �
uðx; yÞ
ueðxÞ

� �
dy;

H is a shape factor defined by

H ¼
d1

y
;

and t0 is the shearing stress at the wall

t0ðxÞ ¼ rn
@uðx; yÞ

@y

����
y¼0

:
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Among the different methods to solve the von K!arm!an equation, the semi-empirical method
developed by Thwaites [13–16] will be developed. This method consists in a rewriting of the von
K!arm!an equation (5) using the following shape factors:

lðxÞ ¼
y2ðxÞ
n

dueðxÞ
dx

;

SðxÞ ¼
t0ðxÞyðxÞ
rnueðxÞ

F ðxÞ ¼ 2
ueðxÞyðxÞ

n
dyðxÞ
dx

: ð6a–cÞ

The von K!arm!an equation can be rewritten as follows [15]:

F ¼ 2½S � lð2þ HÞ�: ð7Þ

In practice, one assumes that F is given by a linear relationship with l:

F ðlÞ ¼ 0:45� 6:0l:

By integrating this expression along x; one gets the Thwaites’ equation

y2ðxÞu6
eðxÞ � y2ð0Þu6

eð0Þ ¼ 0:45n
Z x

0

u5
eðxÞ dx: ð8Þ

Together with the Bernoulli equation (2) and the integral mass conservation equation (4),
Thwaites’ equation (8) provides a set of three equations which fully characterize the flow upstream
of the separation point. These equations are summarized as follows:

y2ðxÞu6
eðxÞ � y2ð0Þu6

eð0Þ ¼ 0:45n
Z x

0

u5
eðxÞ dx;

Lg½hðxÞ � 2HðlÞyðxÞ�ueðxÞ ¼ Ug;

pðxÞ þ 1
2
ru2

eðxÞ ¼ Psupra þ 1
2
ru2

j ¼ Psub: ð9a–cÞ

Eq. (9c) is obtained using the Bernoulli equation for a steady incompressible frictionless flow. It is
implicitly assumed that downstream of the flow separation point the pressure Psupra is uniform.

Flow separation is predicted to occur when the parameter l—defined in (6a)—reaches a critical
value, ls [13]. Based on empirical data, the original Thwaites’ method uses a critical value ls ¼
�0:09: Pelorson et al. [10] used an analytical value for ls obtained by assuming a third order
polynomial law for the velocity within the boundary layer. This critical value ls ¼ �0:0992 will be
used in the following.

In practice, the numerical solution of Eqs. (9) is carried out in the following way. The volume
flow velocity Ug is guessed and the two equations (9a,9b) are solved step by step until the flow
separation point is reached. Then, for a given transglottal pressure ðPsub � PsupraÞ; uj can be
calculated using Eq. (9c). This allows to get a new estimation for the volume flow velocity, Ug:

This process is repeated until a stable value for Ug is found. Once Ug; hs and d1;s are known the
pressure distribution within the whole glottal channel can be calculated using Eq. (9c).
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3. Experimental validation

In order to validate the theory, different glottal configurations were used as presented in Fig. 1.
All glottal configurations have a length, L of 20 mm and a width, Lg of 30 mm: Considering the
typical dimensions presented in Table 1, this corresponds to a glottis scaled-up by a factor 3. At a
given Reynolds and Strouhal numbers this implies that the oscillation frequency of the mechanical
replicas is a factor 9 lower than those expected within the (human) glottis. The experimental
glottis are made of metal (brass or aluminum).

Two mechanical replicas, SC1 and SC2 represent a uniform glottis with a rounded entrance and
a sharp edged outlet. The radius of curvature of the inlet of replica SC1 was 10 mm while SC2 has
a much smaller radius of curvature: 2 mm: The last mechanical replica, RC approximates the
glottis as the channel formed between two half cylinders.

The pressure inside the mechanical replicas could be measured using pressure taps located at the
throat of the channel. Pressure taps have a diameter of 0:4 mm: All experiments were performed
in a 5 � 5 � 3 m3 room.

3.1. Steady flow measurements

3.1.1. Set-up
The experimental set-up used in this section is described in details by Hofmans et al. [12].

It consists of a very large pressure reservoir (103 m3) connected to the glottal replicas
via a 0.7 long cylindrical pipe with a diameter of 3 cm: The steady pressure upstream the
replicas, Psupra and within the replicas, Pg were measured using Betz water manometer with an
accuracy of 0:5 Pa:
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Fig. 1. Geometry of the vocal folds replicas. From left to right: straight channel 1 (SC1), straight channel 2 (SC2) and

rounded channel (RC).

C.E. Vilain et al. / Journal of Sound and Vibration 276 (2004) 475–490 481



3.1.2. Results
In Fig. 2 results are presented concerning the uniform glottal geometry SC1 with a glottal

height hg of 0:99 mm: In such a case it is theoretically assumed that flow separation occurs at the
sharp edged exit, x ¼ L of the glottal replica. The agreement between the measured pressure
difference Pg � Psupra; at x ¼ 3L=4 and the theoretical predictions is good (within 15%). Similar
comparison for Pg � Psupra; at x ¼ L=2 in the rounded replica, RC is presented in Fig. 3. As for
the previous replica, the channel height hg is 0:99 mm:

Although the agreement between the experimental data and the theory is less satisfying than for
the uniform geometry case, the discrepancies still remain within 30%. In Figs. 2 and 3 are also
presented the theoretical predictions obtained using the Pohlhausen theory as described by
Hofmans [11]. Since the predictions are very close, this tends to prove that the present theory is a
valid alternative to the computationally expensive Pohlhausen theory.

Lastly, it must be noted that the predicted glottal pressures are always higher than the measured
ones. Hofmans [11] explained this systematic discrepancy as the possible effect of a pressure
recovery in the flow downstream of the separation point.

3.2. Unsteady flow conditions

3.2.1. Rigid vocal folds
3.2.1.1. Set-up. The experimental set-up is presented in Fig. 4. The air supply is provided by a
ventilator (ventola 613380, Aug. Laukhuff Orgelteile) connected to a siren. This allows one to
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Fig. 2. Uniform glottal geometry (SC1) with hg ¼ 0:99 mm: comparison between experimental and theoretical pressure

ratio ðPg � PsupraÞ=ðPsub � PsupraÞ for different transglottal pressure Psub � Psupra: Crosses, experimental values; solid

line, theoretical values computed by Thwaites equations; dashed line, theoretical values computed by Pohlhausen

equations.
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generate oscillating flows with a fundamental frequency ranging from a few Hertz up to a few
hundred Hertz. The siren is connected to the glottal replica via a 1:77 m long pipe with a diameter
of 30 mm: The pressure upstream of the replica, Psub � Psupra and within the replica, Pg � Psupra
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Fig. 3. Rounded glottal geometry (RC) with hg ¼ 0:99 mm: comparison between experimental and theoretical pressure

ratio as a function of the transglottal pressure, Psub � Psupra: Crosses, experimental values; solid line, theoretical values

computed by Thwaites equations; dashed line, theoretical values computed by Pohlhausen equations.

Fig. 4. Global view of the experimental set-up. A, ventilator; B, siren; C, pressure transducers; D, vocal folds replicas;

E, acquisition system.
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are measured using Kulite XCS-093 pressure transducer and sampled at 10 kHz: The Kulite
transducers were calibrated by means of a Betz water manometer with an accuracy of 0:5 Pa:

3.2.1.2. Results. In Fig. 5 is presented an example of measurement of the pressure difference
Pg � Psupra performed on the uniform glottal replica SC1. The glottal height hg is 1 mm and the
fundamental frequency of the pulsated flow is 30 Hz: This corresponds thus to a Strouhal number
SrL ¼ 0:02 and a dimensionless number Rehhg=L ¼ 100: The agreement between the experimental
data and the theory appears to be within the same order of magnitude as for the steady flow case
(within 20%).

A more systematic comparison is presented for the case of the rounded replica RC in Fig. 6. In
this case the glottal height was hg ¼ 2 mm and the fundamental frequency of the oscillating flow
was varying from 38 up to 540 Hz: This corresponds to Strouhal number varying from SrL ¼ 0:03
up to 0.4 and to a dimensionless number Rehhg=L ¼ 400:

As one could have expected the adequacy of the quasi-steady theory decreases as the
unsteadiness of the flow increases. For a fundamental frequency of 38 Hz; the agreement between
the theory and the experimental data is comparable to the one observed during the steady flow
measurements (within 30%). Up to 239 Hz the order of magnitude of the glottal pressure appears
to be reasonably predicted by the theory. The major discrepancy occurs due the presence of a
phase shift between the theoretical predictions and the experimental data. The case of a 540 Hz
pulsated flow gave the worst results, however the flow conditions imposed during these

ARTICLE IN PRESS

Fig. 5. Straight channel glottal geometry (SC1) with hg ¼ 1 mm: Comparison between the measurements and the

theoretical predictions for Rehhg=L ¼ 100 and SrL ¼ 0:03: Dashed line, experimental values of transglottal pressures

ðPsub � PsupraÞ; thinner solid line, experimental values of ðPg � PsupraÞ; thicker solid line; theoretical values of

ðPg � PsupraÞ computed with Thwaites equations.
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measurements are extreme and are not expected to be relevant for normal phonation. Indeed, as
explained in Section 2.1, this in vitro condition would correspond, in real life, to a fundamental
frequency of order of 5 kHz:

3.2.2. Oscillating vocal folds

So far, only rigid non-moving vocal folds replicas were considered. In order to evaluate the
unsteadiness generated by the motion of the vocal folds walls, another set-up including an
oscillating replica is developed.
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Fig. 6. Rounded glottal channel (RC) with hg ¼ 2 mm: Comparison between the measurements and the theoretical

predictions for a fixed dimensionless number Rehhg=L ¼ 400 and various fundamental frequencies. Top left, f0 ¼
38 Hz; top right, f0 ¼ 102 Hz; bottom left, f0 ¼ 239 Hz; bottom right, f0 ¼ 540 Hz: Dashed lines, experimental values

of transglottal pressures ðPsub � PsupraÞ; thinner solid line; experimental values of ðPg � PsupraÞ; thicker solid line,

theoretical values of ðPg � PsupraÞ computed with Thwaites equations.
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3.2.2.1. Set-up. The experimental set-up depicted in Fig. 7 is inspired by the work of Mongeau
et al. [17] and Barney et al. [18]. A constant flow alimentation from an 8 bar air supply was
provided using a sonic valve to a large reservoir ð0:5 m3Þ: The reservoir was filled with acoustical
foam in order to prevent acoustical resonances and was connected to the glottal replica using a
300 mm long, 30 mm diameter, pipe. It appeared that, under these conditions, the reservoir
pressure fluctuations were only of order of 10% of Psub � Psupra: One mechanical vocal fold replica
was kept fixed while the other one was forced to move using an eccentric motor type Maxon
RE40. Stable oscillations were obtained up to 35 Hz: At constant Reynolds and Strouhal numbers
this would correspond to a fundamental frequency of 300 Hz for a human glottis. Although the
minimum glottal height could be adjusted, all results presented here correspond to oscillations
were the vocal folds never collide together, in other words, the glottal replica is never closing
completely. An optical sensor (OPTEK OPB700) allows for the measurement of the instantaneous
position of the moving fold and thus for the measurement of hgðtÞ: As in Section 2.2.1 the pressure
upstream of the replica and within the replica (on the rigid vocal fold) were measured using Kulite
XCS-093 pressure transducers and sampled at 10 kHz:

3.2.2.2. Results. An example of result for the uniform replica SC2 is presented in Fig. 8. The
fundamental frequency imposed on one fold is 35 Hz: This corresponds to a Strouhal number
averaged over a period, SrL ¼ 0:02 and a dimensionless number averaged over a period,
Rehhg=L ¼ 50: The agreement between the theoretical prediction and the experimental data
appears to be very good again (within 20%).

In Fig. 9 is presented an example of results for the rounded geometry RC. In this case, the
fundamental frequency was chosen as 35 Hz and the minimum glottal height was 0:35 mm:
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Fig. 7. Experimental set-up including moving vocal fold replica. A, Pressure reservoir; B, eccentric motor; C, vocal fold

replicas: fixed replica (C1) and moving replica (C2), D, optical sensor; E, pressure transducers; F, acquisition system.
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Average characteristics of the flow are thus a Strouhal number averaged over a period, SrL ¼ 0:02
and a dimensionless number Rehhg=L averaged over a period, Rehhg=L ¼ 80: While the measured
pressure difference Pg � Psub agrees within 30% with the theoretical predictions, a significant
phase shift in the oscillating component of the signal can be observed.

In Fig. 10, another example is presented using the same rounded geometry, RC and a
fundamental frequency of 35 Hz but with a much smaller minimum glottal height: 0:08 mm: In
such a case the mechanical glottis is almost completely closing. While a 30% agreement can be
observed between the theory and the measured data for most of one period of oscillation, large
discrepancies appear when hgðtÞ becomes smaller than 0:2 mm: During this period of time, typical
Strouhal numbers are of order of 0.2 and dimensionless numbers Rehhg=L are of order of 5. These
values are in contradiction not only with the quasi-steady assumption but also with the
assumption of thin boundary layers (see Section 2.1). It is therefore not surprising that such large
theoretical errors are observed.

4. Conclusion

As an alternative to simple ad hoc [5] or empirical [8,9] descriptions, a theoretical description of
the flow through the glottis has been proposed. This theory is based on Thwaites’ method to solve

ARTICLE IN PRESS

Fig. 8. Straight channel (SC1) of variable glottal height. Top, glottal height hg; middle, transglottal pressure

Psub � Psupra; bottom, measured glottal pressure, Pg � Psupra (thinner solid line) versus theoretical predictions (thicker

solid line).
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Fig. 9. Rounded channel (RC) of variable glottal height. Top, glottal height, hg; on middle, transglottal pressure,

Psub � Psupra; bottom, measured glottal pressure (thinner solid line) versus theoretical predictions (thicker solid line).

Fig. 10. Rounded channel (RC) of variable glottal height. Top, glottal height, hg; middle, transglottal pressure;

Psub � Psupra; bottom, measured glottal pressure, Pg � Psupra (thinner solid line) versus theoretical predictions (thicker

solid line).
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the Prandtl equations. Compared with the Pohlhausen one described by Hofmans [11], the
Thwaites’ method appears to be much simpler to implement numerically.

Under steady flow conditions the agreement between this theory and the measurements appears
to be satisfactory since discrepancies for the glottal pressure remained within 30% at the most. In
term of volume flow velocity this would correspond to an agreement within 15%.

Under unsteady flow conditions, it was found that same order of agreement could be observed.
The theory fails for Strouhal numbers of the order of SR ¼ Oð0:1Þ: In such a case the quasi-steady
assumption does not stand any longer. However, such Strouhal numbers are not expected during
normal voicing but could occur during singing of for some pathological voices.

Another, more problematic, limitation of the theory occurs during the collision of the vocal
folds. In such a case, a double limit is faced. The Strouhal number is not a measure for the
unsteadiness of the flow anymore and viscous effects are obviously dominant when the glottis is
almost closed. Alternative theories to predict the flow during the closure of the glottis are then
obviously needed.
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