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Abstract

Recent years have witnessed a successful model of unsteady vortex lattice to predict the limit cycle
oscillations of an airfoil section. The aerodynamic model is usually in the form of discrete time, and hence,
is not convenient for the analysis of non-linear aeroelastic systems. In this paper, the aerodynamic model of
unsteady vortex lattice is formulated in continuous time domain and expressed in a dimensionless form.
The order of aerodynamic model is greatly reduced in terms of a few aerodynamic eigenmodes to describe
the unsteady vortex. Meanwhile, a static correction is included in the modal reduction to take the effects of
truncated higher aerodynamic modes into account. The accuracy of the reduced-order model of
aerodynamics is compared with Theodorsen’s model. Using the modified aerodynamic model, the
aeroelastic analysis of a two-dimensional airfoil section with combined non-linearity of freeplay and cubic
stiffening in pitch is made. The numerical results indicate that the modified aerodynamic model is capable
of predicting the flow about airfoil accurately and detecting the complex non-linear aeroelastic behaviors.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

More and more airfoil models include non-linear features coming from either the structural
configuration or aerodynamics. The aerodynamic non-linearities may arise from high wing angles
of attack or shock waves in the transonic speed regime. The most prevalent non-linearities in
structures are the cubic stiffening and the freeplay in control surface. The freeplay usually occurs
in the actuated degrees of freedom, i.e., in the control surfaces with loose joints or in an advanced
generic missile pin which is foldable at its settled position [1], whereas the cubic stiffening mainly
comes from the large amplitude oscillation of flexible wings. Experimental data [2] of a glider
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showed that the combined non-linearity, of both freeplay and cubic stiffening, exists in the
relation between hinge moment and pitch angle. However, few literatures deal with the aeroelastic
system with this type of non-linearity. Previous studies, say [3], indicated that an airfoil section
with non-linearities exhibits one of four types of motions such as the flutter, the divergence, the
limit cycle oscillation and chaotic motion. The limit cycle oscillation and the chaotic motion
usually occur at a flow speed much lower than the divergent flutter speed. Hence, it becomes
important to know the characteristics of those non-linear oscillations in the design phase of a
flight vehicle.
To authors’ knowledge, Woolston and his colleagues were the first who made an attempt to

study the effects of concentrated structural non-linearities by using an analog computer [4].
Recent studies on the aeroelasticity of fixed wings have focused on the identification of limit cycle
oscillations in non-linear system with freeplay or cubic non-linearity. Much of this work has
concentrated on the numerical or analytic algorithms to solve the non-linear aeroelastic
equations, such as the point transformation method [5], the numerical continuation algorithm [6],
the center manifold method [7] and the incremental harmonic balance method [8]. For the
aerodynamic model used for non-linear analysis, the most prevalent one is Theodorsen’s model of
quasi-steady aerodynamics [8,9]. This model is based on an assumption of harmonic motion for
airfoil section, and is not appropriate to predict the non-linear behavior of an aeroelastic system.
Usually, the unsteady aerodynamic forces are evaluated by using Wagner’s function [5,10] or
Peters’s finite state aerodynamic theory [11,12]. Recently, the aerodynamic model of unsteady
vortex lattice, initially proposed by Hall [13], has been used to analyze the limit cycle oscillations
of a cantilevered wing in low subsonic flow [14]. The model of unsteady vortex lattice does not rely
on the assumption of harmonic motion for airfoil section, and describes the unsteady
aerodynamic forces in time domain. Besides, it can be accurately constructed by using relatively
fewer eigenmodes, and can be used to analyze non-linear aeroelastic problems.
The aeroelastic analysis of a wing relies on an accurate model of the unsteady aerodynamic

forces. Because the analysis has to cope with the coupling of unsteady aerodynamic forces with
structural response, the model must be in a convenient computational form. The current
aerodynamic model of unsteady vortex lattice is expressed in discrete time domain so that the
corresponding structural model has to be formulated in discrete time form. Such an aerodynamic
model, hence, is not convenient for modelling and analysis of non-linear aeroelastic systems. In
this paper, the aerodynamic model of unsteady vortex lattice is formulated in continuous time
domain and expressed in a dimensionless form. A reduced-order model of aerodynamics is
achieved by using modal reduction and verified by the classical Theodorsen theory of
aerodynamics. For the structural non-linearities discussed above, only the combined non-
linearity is considered in this paper. The non-linear aeroelastic behavior of a two-dimensional
airfoil section with this type of non-linearity in pitch is investigated to illustrate the effectiveness of
the modified aeroelastic model.

2. Non-linear structural equations

Fig. 1 shows a two-dimensional airfoil section of two degrees of freedom described by the
plunge and the pitch. The plunge deflection h is measured at the elastic axis, positive in the
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downward direction, whereas the pitch angle a is measured from the x-axis, positive in the nose-
up rotation. In addition, ab represents the distance from the elastic axis to midchord, where a is
the dimensionless distance between the elastic axis and the midchord, b is the semichord of the
airfoil section. The mass center of the airfoil section is located at a distance xa from the elastic
axis. kh represents the plunge stiffness, ka and kna the linear and non-linear stiffness of the cubic
non-linear torsion spring, as the freeplay magnitude, UN the flowstream velocity. The combined
non-linearity and the freeplay non-linearity are shown in Fig. 2 for comparison.
The non-linear moments fnðaÞ and flðaÞ can be written as

fnðaÞ ¼

kaða� asÞ þ knaða� asÞ
3; a > as;

0; �aspapas;

kaðaþ asÞ þ knaðaþ asÞ
3; ao� as;

8><
>: ð1Þ
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Fig. 1. Typical section of a two-dimensional airfoil with combined non-linearity.
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Fig. 2. Non-linear pitch stiffness: (a) combined non-linearity; (b) freeplay non-linearity.
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flðaÞ ¼

kaða� asÞ; a > as;

0; �aspapas;

kaðaþ asÞ; ao� as:

8><
>: ð2Þ

By using the Lagrange’s equation, the equations of motion of the airfoil section with combined
non-linearity can be expressed as

mh00 þ mxaa00 þ khh ¼ �L; ð3Þ

mxah
00 þ mr2aa

00 þ faðaÞa ¼ Mea � fbðaÞ � fcðaÞ; ð4Þ

where the prime represents the derivative with respect to time t; m the airfoil mass per unit span, ra
the radius of gyration about elastic axis, L and Mea the unsteady aerodynamic lift and moment,
respectively. faðaÞ; fbðaÞ and fcðaÞ are given by

faðaÞ ¼

ka;

0;

ka;

8><
>: fbðaÞ ¼

�kaas;

0;

kaas;

8><
>: fcðaÞ ¼

knaða� asÞ
3; a > as;

0; �aspapas;

knaðaþ asÞ
3; ao� as:

8><
>: ð5Þ

To simplify the analysis, a set of dimensionless parameters is introduced as following o2
h ¼ kh=m;

o2
a ¼ ka=ðmr2aÞ; %xa ¼ xa=b; %ra ¼ ra=b; %h ¼ h=b; %Zo ¼ oh=oa; %Zk ¼ kna=ka and t ¼ oat: Now,

Eqs. (3) and (4) can be recast in a dimensionless form

1=%r2a %xa=%r2a
%xa 1

" #
.%h

.a

( )
þ

%Z2o 0

0 %faðaÞ

" #
%h

a

( )
¼

�Lb=ka

Mea=ka

( )
�

0

%fbðaÞ

( )
�

0

%fcðaÞ

( )
; ð6Þ

where

%faðaÞ ¼

1;

0;

1;

8><
>: %fbðaÞ ¼

�as;

0;

as;

8><
>: %fcðaÞ ¼

%Zkða� asÞ
3; a > as;

0; �aspapas;

%Zkðaþ asÞ
3; ao� as

8><
>: ð7Þ

and the dot represents the derivative with respect to dimensionless time t: The non-linear
aeroelastic equation (6) can be written in a compact matrix form

%M.uðtÞ þ %KuðtÞ ¼ %FðtÞ � %FbðuðtÞÞ � %FcðuðtÞÞ; ð8Þ

where

%M ¼
1=%r2a %xa=%r2a
%xa 1

" #
; %K ¼

%Z2o=%r
2
a 0

0 %faðaÞ

" #
; %FðtÞ ¼

�Lb=ka

Mea=ka

( )
;

%FbðuðtÞÞ ¼
0

%fbðaÞ

( )
; %FcðuðtÞÞ ¼

0

%fcðaÞ

( )
; uðtÞ ¼

%hðtÞ

aðtÞ

( )
: ð9Þ
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3. Aerodynamic equations

3.1. Model of unsteady vortex lattice

In this section, the model of unsteady vortex lattice in a dimensionless form will be developed
and formulated in continuous time domain. The flow about the airfoil section is assumed to be
incompressible, inviscid and irrotational. A typical discrete model of vortex lattice for a two-
dimensional airfoil section is shown in Fig. 3, where the airfoil and the wake are divided into a
number of elements. The elements are all of equal size Dx in the streamwise direction. Point
vortices are placed on the airfoil and the wake at the quarter chord of the elements. The airfoil
section is divided into M elements representing the bound vortices, and the wake is divided into
N � M elements representing free vortices. The total number of vortices on both the airfoil and
the wake is N: In Fig. 3, xi is the location of the ith vortex, i.e., the quarter chord of each element,
and xið3=4Þ is the location of the ith collocation point, i.e., the three-quarter chord of each airfoil
element. Gi is the strength of the ith vortex.
The dimensionless downwash induced by the discrete vortices can be expressed as

%W3=4 ¼ ½ %Ka %Kw�
%Ca

%Cw

" #
; ð10Þ

where the M 	 1 vector %W3=4 represents the dimensionless downwash at the three-quarter points
of vortex elements on the airfoil section, and W3=4 represents a downwash vector such that
%W3=4 ¼ W3=4=ðoabÞ holds. The M 	 1 vector %Ca is the dimensionless strength of the bound
vortices on the airfoil section, and Ca is a vector of the strength of the bound vortices yielding
%Ca ¼ Ca=ðoab

2Þ: %Cw ¼ Cw=ðoab
2Þ; and Cw is the vector of the strength of the free vortices. The

kernel functions in Ref. [13] can be transformed into a dimensionless form

½ %Ka�i; j ¼
1

2pð %xið3=4Þ � %xjÞ
ð1pipM; 1pjpMÞ; ð11Þ

½ %Kw�i; j ¼
1

2pð %xið3=4Þ � %xjÞ
ð1pipM;M þ 1pjpNÞ; ð12Þ

where %xið3=4Þ ¼ xið3=4Þ=b is the dimensionless location of the ith collocation point, and %xj ¼ xj=b the
dimensionless location of the jth vortex. The vortex equations in the discrete time domain in
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Fig. 3. Discrete model of vortex lattice for a two-dimensional airfoil section.
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Refs. [13,14] can be cast in the following dimensionless form:

%Cnþ1
a ¼ � %K�1

a
%Kw %Cnþ1

w þ %K�1
a

%Wnþ1
3=4 ; ð13aÞ

%Cn
a ¼ � %K�1

a
%Kw %Cn

w þ %K�1
a

%Wn
3=4; ð13bÞ

%Cnþ1
Mþ1 þ %Cn

Mþ1 ¼ �2
XM
i¼1

ð %Cnþ1
i � %Cn

i Þ; ð13cÞ

%Cnþ1
i E %Cn

i�1 ði ¼ M þ 2;y;N � 1Þ; ð13dÞ

%Cnþ1
N E %Cn

N�1 þ w %Cn
N ; ð0:95owo1Þ; ð13eÞ

where the superscripts n and n þ 1 represent two moments at discrete time domain. The relaxation
factor w in Eq. (13e) plays a role in preventing a sudden change in the induced downwash due to
the finite length of the wake vortex sheet. From Eq: ð13Þ; the aerodynamic governing equations
can be written as

Ad %C
nþ1
w ¼ Bd %C

n
w þ Cd

’%Wnþ1
3=4 ; ð14Þ

where

Ad ¼
�2S

0

" #
%K�1

a
%Kw þ IN�M ; Bd ¼

�2S

0

" #
%K�1

a
%Kw þ Cw; Cd ¼

�2S

0

" #
%K�1

a Dt;

S ¼ ½1 1 ? 1�1	M ; Cw ¼

�1 0 0 ? 0

1 0 0 ? 0

0 1 0 ? 0

? ? ? ? ?

0 0 0 1 w

2
6666664

3
7777775
ðN�MÞ	ðN�MÞ

: ð15Þ

In continuous time domain, the vortex relations can be established as follows:

½�S� ’%Ca ¼
%GMþ1

D %x
U ; ð16aÞ

’%GiE� U
%Gi�1 � %Giþ1

2D %x
ði ¼ M þ 2;y;N � 2Þ; ð16bÞ

’%GN�1E� U
%GN�2 � %GN�1

D %x
; ’%GNE� U

%GN�1 � ðw � 1Þ %GN

D %x
; ð16cÞ

where U ¼ UN=ðoabÞ is the reduced velocity, D %x ¼ Dx=b ¼ UDt the dimensionless size of each
vortex element in the streamwise direction. It should be noted that Eq. (16a) can be derived from
the conservation of vorticity. Using the finite difference equations given above, the aerodynamic
governing equations can be converted into the following form in continuous time domain:

Ac
’%Cw ¼

U

D %x
Bc %Cw þ Cc

’%W3=4; ð17Þ
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where

Ac ¼
S

0

" #
%K�1

a
%Kw þ

0 0

0 IN�M�1

" #
; Cc ¼

S

0

" #
%K�1

a : ð18Þ

Now, attention is paid to the expression of matrix Bc: Because the discrete model describes the
behavior of trailing wake adequately, it is recommended that the discrete model be converted to a
continuous one in the following manner. Note that the downwash vector ’%W3=4 in Eq. (17) serves
as an input to the vortex system. The homogeneous part of continuous model in Eq. (17) yields

’%Cw ¼
U

D %x
A�1

c Bc %Cw: ð19Þ

By integrating Eq. (19) from tn to tnþ1; one can relate the discrete model to the continuous model
as

%Cnþ1
w ¼ A�1

d Bd %C
n
w ¼ exp

1

Dt
A�1

c Bc

� �
Dt

� �
%Cn

w; ð20Þ

whereby one obtains

Bc ¼ Ac lnðA
�1
d Bd Þ: ð21Þ

Once matrix Bc is determined from Eq. (21), the unsteady lift L and the moment Mea can be
derived from the Bernoulli’s equation given by

L ¼ rUN

XM
j¼1

Gj þ r
XM
j¼1

Xj

k¼1

G0
kDx; ð22aÞ

Mea ¼ �rUN

XM
j¼1

ðxj � abÞGj � r
XM
j¼1

ðxj � abÞ
Xj

k¼1

G0
kDx; ð22bÞ

where r is the air density and the prime represents the derivative with respect to time t:

3.2. Reduced-order model

In structural dynamics, the dynamic model of a complex structure is often reduced to a simple
one of a few degrees of freedom by using modal reduction. Recently, this procedure has been
applied to simplifying the models of unsteady aerodynamics [11–13]. On the basis of the reduced-
order model, it may be possible to predict the unsteady aerodynamic response of a complex
system over a wide frequency range. In this section, the modal reduction, which can extract the
most important aerodynamic modes, is used to reduce the order of the aerodynamic equations.
Because some eigenvalues of the aerodynamic system governed by Eq. (19) may be complex, a

modal reduction is used to transform the aerodynamic matrix into a canonical form first so as to
make all entries in the matrix equation real. The aerodynamic system described by Eq. (19) with
factor U=D %x being unit can be assumed to have m real eigenvalues �lðiÞ ð1pipmÞ with
corresponding right eigenvector clðiÞ; and n pairs of complex eigenvalues sðkÞ;s�ðkÞ ¼
�oRðkÞ7joIðkÞ ð1pkpnÞ with corresponding right eigenvector csðkÞ;c

�
sðkÞ: Thus, the aerodynamic

matrix can be transformed into a canonical form, where a pair of complex conjugate eigenvalues
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appears in a 2	 2 block on the diagonal, and m real eigenvalues show up on the diagonal. Hence,
the linear transform of concern can be performed as follows:

K ¼ UTðA�1
c BcÞW; UTW ¼ IN�M ; ð23Þ

where U is a matrix composed of normalized left eigenvectors of the aerodynamic governing
equations, and matrices K and W are given by

K ¼ Block diagð�lð1Þ;�lð2Þ;y;�lðmÞ;Xð1Þ;Oð2Þ;y;XðnÞÞ; XðiÞ ¼
�oRðiÞ oIðiÞ

�oIðiÞ �oRðiÞ

" #
;

W ¼ ½clð1Þ;clð2Þ;y;clðmÞ;Reðcsð1ÞÞ; Imðcsð1ÞÞ;y;ReðcsðnÞÞ; ImðcsðnÞÞ�: ð24Þ

Now, one is in the position to establish the modal transform. To take the static effect of
truncated higher modes on the system dynamics into account, a static correction is included in the
modal reduction such that the modal transform is of the following form:

%Cw ¼ WRqþ %Cs; ð25Þ

where WR is a ðN � MÞ 	 R matrix whose columns are the R columns of W corresponding to the
first R eigenvalues most close to the origin, q the new generalized co-ordinate vector, %Cs the static
correction part, similar to that in the mode acceleration method for structural dynamics, so as to
take the effects of truncated higher modes into account. Furthermore, the static correction can be
expressed in the form

%Cs ¼ %Cws � WRqs; ð26Þ

where %Cws is the solution of the following equation:

U

D %x
Bc %Cws þ Cc

’%W3=4 ¼ 0; ð27Þ

whereas the quasi-static solution qs can be written as

qs ¼ �
D %x

U
K�1

R UT
RA

�1
c Cc

’%W3=4; ð28Þ

where KR is an R 	 R sub-matrix whose non-zero entries are those of K corresponding to the R
retained eigenvalues, and UR is a matrix whose columns are the R columns of U corresponding to
the first R eigenvalues most close to the origin. Substituting Eqs. (27) and (28) into Eq. (26), one
obtains the static correction part %Cs as follows:

%Cs ¼
D %x

U
ð�B�1

c þ WRK�1
R UT

RA
�1
c ÞCc

’%W3=4: ð29Þ

4. Aeroelastic equations

In order to establish the aeroelastic equations, the unsteady lift L and the moment Mea obtained
in Section 3.1 are recast into the following form:

L ¼ ro2
ab

3 U
XM
j¼1

%Gj þ
XM
j¼1

Xj

k¼1

’%GkD %x

 !
; ð30aÞ
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Mea ¼ �ro2
ab

4 U
XM
j¼1

ð%xj � aÞ %Gj þ
XM
j¼1

ð%xj � aÞ
Xj

k¼1

’%GkD %x

 !
: ð30bÞ

On the basis of Eqs. (8) and (30), the aeroelastic equations of motion for the two-dimensional
airfoil section can be written as

%M.uðtÞ þ %KuðtÞ ¼ U %Q1 %Ca þ %Q2
’%Ca � %FbðuÞ � %FcðuÞ; ð31Þ

where

%Q1 ¼
1

pmr2a

�F1

G1

" #
; %Q2 ¼

1

pmr2a

�F2

G2

" #
;

F1 ¼ ½1 1 ? 1�1	M ; F2 ¼ D %x½M M � 1 ? 1�1	M ;

G1 ¼ �½ð%x1 � aÞ ð%x2 � aÞ ? ð%xM � aÞ�; G2 ¼ �D %x½ %h1
%h2? %hM �;

%hk ¼
XM
j¼k

%xj � ðM � k þ 1Þa ð1pkpMÞ; ð32Þ

and m ¼ m=ðprb2Þ is the mass ratio.
At each collocation point of vortex element, the velocity induced by the discrete vortices should

be equal to the downwash arising from the unsteady motion of the airfoil. The dimensionless
downwash related to the motion of airfoil section can be written as

%W3=4 ¼ E1 ’uðtÞ þ UE2uðtÞ; ð33Þ

where

E1 ¼ ½ST D�; E2 ¼ ½0M	1 ST�;

D ¼ ½ð %xð1Þ3=4 � aÞð %xð2Þ3=4 � aÞ?ð %xðMÞ3=4 � aÞ�T: ð34Þ

Combining Eqs. (10), (17), (31) with (33), eliminating %Ca and applying the modal transform in
Eq. (25), one arrives at the aeroelastic equation of two-dimensional airfoil section in the state
space as follows:

%AðUÞ’yðtÞ ¼ %BðUÞyðtÞ � %HbðyðtÞÞ � %HcðyðtÞÞ; ð35Þ

where

%AðUÞ ¼

IR	R U %Ac12 %Ac13

02	R I2	2 02	2

%Ac31 U %Ac32 %Ac33

2
64

3
75; %BðUÞ ¼

ðU=D %xÞKR 0R	2 U %Bc13

02	R 02	2 I2	2

U %Bc31 � %Kþ U2 %Bc32 U %Bc33

2
64

3
75;

%HbðyðtÞÞ ¼

0R	1

02	1

%FbðuðtÞÞ

8><
>:

9>=
>;; %HcðyðtÞÞ ¼

0R	1

02	1

%FcðuðtÞÞ

8><
>:

9>=
>;; yðtÞ ¼

qðtÞ

uðtÞ

’uðtÞ

8><
>:

9>=
>;: ð36Þ

The entries in matrix %AðUÞ and %BðUÞ are listed in Appendix A. As the dimensions of the
aeroelastic equations of motion are ðR þ 4Þ; and %AðUÞ; %BðUÞ are functions of the reduced
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velocity U ; it is convenient to take reduced velocity U as a bifurcation parameter for non-linear
analysis.

5. Comparison with Theodorsen’s theory

To verify the modified aerodynamic model developed in previous sections, the classical
Theodorsen’s theory is used herein for comparison. For this purpose, another dimensionless time
t0 ¼ UNt=b is introduced for convenience. The unsteady lift coefficient derived from Theodorsen’s
theory is given in Appendix B. For the reduced-order model of aerodynamics developed in
previous sections, the unsteady lift coefficient can be written as

CL ¼ F1 %CQ þ F2
’%CQ; ð37Þ

where

%CQ ¼ � %K�1
a

%KwWRqþ %K�1
a E1

’%h

’a

( )
þ E2

%h

a

( ) !
; ð38aÞ

’q ¼
1

D %x
UT

RA
�1
c BcWRqþ UT

RA
�1
c Cc E1

.%h

.a

( )
þ E2

’%h

’a

( ) !
: ð38bÞ

Here, the static correction part is neglected for simplicity, and the dot represents the derivative
with respect to the dimensionless time t0: In Eqs. (37) and (38), if %h ¼ %h0e

ikt0 and a ¼ 0 are
assumed, Ch can be obtained. Similarly, a ¼ a0eikt

0
and %h ¼ 0 result in the expression of Ca:

6. Numerical results

6.1. Model verification

This section presents a numerical study on the aeroelastic problem a two-dimensional airfoil
section, where a set of dimensionless parameters are taken as those in Refs. [5,10]. Note that the
procedures discussed in the previous sections do not depend on the choice of parameters. The
mass ratio m is 100, the dimensionless distance a between midchord and elastic axis is �0:5; the
dimensionless distance %xa between mass center and elastic axis is 0.25, the radius of gyration %ra is
0.5, and the frequency ratio %Zo is 0.2. The aeroelastic simulation is implemented by MATLAB
platform.
Fig. 4 shows the discrete time eigenvalues and continuous time eigenvalues for the typical

section. For this analysis, the airfoil and the wake were modelled through the use of 40 and 200
vortex elements, respectively. The length of the wake was taken to be 5 chord lengths, and the
vortex relaxation factor w to be 0.996. As shown in Fig. 4(a), the magnitudes of all the discrete
time eigenvalues are less than 1. These eigenvalues are mapped onto the left half plane
corresponding to the continuous time domain so that the eigenvalues become two branches that
emanate from the origin and go up and down on the left half plane. Moreover, the real parts of
the branches asymptotically approach to a limit value. The real part of each eigenvalue is
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indicative of the damping and the imaginary part is the damped frequency of each fluid
eigenmode, which means that the aeroelastic system is asymptotically stable.
The classical Theodorsen’s theory was used to verify the aerodynamic model. Based on the

formula given in Section 5, the unsteady lift coefficients derived from the model of unsteady
vortex lattice were computed for reduced frequency k ¼ 0:5 and 1.0, respectively. Here, a total of
20 aerodynamic modes with the eigenvalues most closed to the origin, were used. Fig. 5 shows the
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unsteady lift response of the aerodynamic system to the cosine input. Obviously, the unsteady lift
response predicted by the model of vortex lattice is almost the same as that predicted by
Theodorsen’s aerodynamics. The comparison shows that the model of unsteady vortex lattice is
able to capture the unsteady flow field quite accurately, and consequently, leads to accurate
prediction of the aerodynamic forces.
In order to determine the stability of the linear aeroelastic model (i.e. as ¼ 0; %Zk ¼ 0), the

reduced-order model of aerodynamics was constructed by using a total of 20 eigenmodes. As
shown in Fig. 6, the root locus method was used to predict flutter speed. For comparison, the
results of the classical V–g method using Theodorsen’s model were also plotted. The value g in
V–g method represents the damping required for the harmonic motion, however, the frequency
and g in V–g method do not have any physical meaning except at the flutter speed. The flutter
speed computed by using the V–g method is ULE6:29; which is in good agreement with that
obtained from the root locus method. These results demonstrate that the modified aerodynamic
model works well.
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6.2. Non-linear aeroelastic analysis

This subsection presents the analysis of non-linear aeroelastic response of the two-dimensional
airfoil section which combine non-linearity by means of a standard Runge–Kutta algorithm in
conjunction with the reduced-order model of aerodynamics in Eq. (35). In the computation, the
freeplay magnitude as was taken to be 0:5�; the stiffness ratio %Zk to be 3.0, and the number of
retained aerodynamic modes to be 20. The other parameters were taken as the same as those given
in Section 6.1. Now, a comparison is made in Fig. 7 by using different number of the retained
aerodynamic modes. At U=UL ¼ 0:3; the limit cycle response using 20 retained aerodynamic
modes is almost identical with that using 30 retained aerodynamic modes. Therefore, the higher
order model of aerodynamics makes very little contribution to the system response.
A numerical simulation over a wide range of reduced velocity ratio U=UL was performed. The

initial condition used for simulation was að0Þ ¼ 3�; and the other state variables in Eq. (35) were
set to be zero. To demonstrate the complex non-linear behaviors of the system, a number of
bifurcation diagrams were constructed from the response amplitude as shown in Fig. 8, where the
transient responses had been damped out prior to the construction of these bifurcation diagrams.
For 0oU=ULo0:143; the solution converges to an equilibrium position due to aerodynamic
damping. A Hopf bifurcation can be identified at U=ULE0:143; with the limit cycle bifurcating
from the equilibrium position via a subcritical Hopf bifurcation as shown in Fig. 9. For U=UL >
0:143; the types of motion may be periodic, quasi-periodic or chaotic. As indicated in Fig. 8, there
exist some amplitude jumps of plunge and pitch motions. For instance, at U=UL ¼ 0:303; 0.467,
0.550 and 0.649, the jumps of vibration amplitude appear. As illustrated in Fig. 10, the amplitude
jumps are usually accompanied by the symmetric changes of phase trajectories. When
0:340oU=ULo0:385; the type of motion is quasi-periodic as shown in Fig. 11. The chaotic
motions occur in three velocity regions, i.e., 0:235oU=ULo0:285; 0:385oU=ULo0:450 and
0:485oU=ULo0:530: Fig. 12 shows a chaotic motion at reduced velocity ratio U=UL ¼ 0:5:
For the aeroelastic system with freeplay non-linearity (i.e. asa0; %Zk ¼ 0), flutter is divergent at

any reduced velocity above the linear flutter boundary. However, for the case of combined non-
linearity (i.e., asa0; %Zka0), as shown in Fig. 13, the flutter amplitude is bounded. The amplitude
and frequency of pitch motion increase with an increase of reduced velocity ratio, and decrease
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with an increase of stiffness ratio for a given reduced velocity ratio. From these results, it is
possible to conclude that the modified aerodynamic model is effective and capable of predicting
the complex non-linear behaviors of aeroelastic problems of two-dimensional airfoil sections.
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Fig. 8. Bifurcation diagrams: (a) bifurcation of plunge; (b) bifurcation of pitch.
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Fig. 10. Limit cycle oscillations showing symmetric trajectories: (a) U=UL ¼ 0:302; (b) U=UL ¼ 0:304; (c) U=UL ¼
0:466; (d) U=UL ¼ 0:468; (e) U=UL ¼ 0:549; (f) U=UL ¼ 0:551; (g) U=UL ¼ 0:648; (h) U=UL ¼ 0:650: - - - -, plunge;
——–, pitch.
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Fig. 11. Quasi-periodic motion, U=UL ¼ 0:35: (a), (b) time histories; (c), (d) phase trajectories.

Fig. 12. Chaotic motions, U=UL ¼ 0:5: (a), (b) phase trajectories; (c), (d) strange attractors on the Poncar!e section.
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7. Conclusions

The aerodynamic model of unsteady vortex lattice is developed in continuous time domain to
describe the unsteady flow about an airfoil and the corresponding wake. The accuracy of the
modified aerodynamic model is examined by using the classical Theodorsen’s theory. The
aeroelastic analysis is made for a two-dimensional airfoil section with combined non-linearity of
freeplay and cubic stiffening on the basis of the modified aerodynamic model in conjunction with
numerical integration. Periodic, quasi-periodic and chaotic motions are observed in numerical
examples. The results demonstrate that the modified aerodynamic model can accurately describe
the unsteady flow about the airfoil and capture the non-linear behaviors of the aeroelastic system
with non-smooth non-linearity. Because the reduced-order model of aeroelasticity is established in
continuous time domain, the formulas can also be conveniently used for aeroelastic control.
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Appendix A. Elements in matrices %AðUÞ and %BðUÞ

%Ac12 ¼ UT
RA

�1
c Ac12; %Ac13 ¼ UT

RðA
�1
c Ac13 þ A�1

c BcKsAc13 � D %xKsAc12Þ; ðA:1Þ

%Ac31 ¼ Ac31WR; %Ac32 ¼ Ac32; %Ac33 ¼ Ac33 � D %xðAc31KsAc12 � Bc31KsAc13Þ; ðA:2Þ

%Bc13 ¼ �UT
RA

�1
c BcKsAc12; %Bc31 ¼ Bc31WR; %Bc32 ¼ Bc32;

%Bc33 ¼ Bc33 � D %xðBc31KsAc12Þ; ðA:3Þ

where

Ks ¼ �B�1
c þ WRK�1

R UT
RA

�1
c ; ðA:4Þ

Ac12 ¼
�S

0

" #
%K�1

a E2; Ac13 ¼
�S

0

" #
%K�1

a E1; Ac31 ¼ %Q2 %K
�1
1

%K2; ðA:5Þ

Ac32 ¼ � %Q2 %K
�1
1 E2; Ac33 ¼ %M� %Q2 %K

�1
1 E1; Bc31 ¼ � %Q1 %K

�1
1

%K2; ðA:6Þ

Bc32 ¼ %Q1 %K
�1
1 E2; Bc33 ¼ %Q1 %K

�1
1 E1: ðA:7Þ

Appendix B. Unsteady lift coefficients based on Theodorsen’s theory

In Theodorsen’s theory, the harmonic plunge and pitch should be assumed, that is, %h ¼ %h0e
ikt0

and a ¼ a0eikt
0
; where k ¼ ob=UN is the reduced frequency. Now, the unsteady lift L can be

written as

L ¼ prbU2
N

k2 a 1
2 þ a
� �

Lh � La

� �
� %hLh

� �
; ðB:1Þ

where

Lh ¼ 1� i2CðkÞ
1

k
; La ¼ 1

2
� i

1þ 2CðkÞ
k

�
2CðkÞ

k2
; ðB:2Þ

and CðkÞ is Theodorsen’s function. The unsteady lift coefficients Ch due to the harmonic plunge
input can be easily obtained

Ch ¼ �pk2Lh
%h0e

ikt0 : ðB:3Þ

The unsteady lift coefficients Ca due to the harmonic pitch input is given by

Ca ¼ pk2 1
2
þ a

� �
Lh � La

� �
a0eikt

0
: ðB:4Þ

Appendix C. Nomenclature

a dimensionless distance
b midchord of the airfoil section
CðkÞ Theodorsen’s function
Ch lift coefficient due to the harmonic motion of plunge
CL lift coefficient obtained by using the model of unsteady vortex lattice
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Ca lift coefficient due to the harmonic motion of pitch
h plunge displacement at the elastic axis, positive in the downward direction
%h dimensionless plunge displacement ð¼ h=bÞ
k reduced frequency ð¼ ob=UNÞ
kh translational spring stiffness
ka; kna coefficients of linear and cubic stiffness of torsion spring
%Ka; %Kw matrices composed of kernel functions
L unsteady aerodynamic lift
m airfoil mass per unit span
M number of elements representing the bound vortices
Mea unsteady aerodynamic moment
%M; %K matrices of mass and stiffness

N total number of vortices on both the airfoil and the wake
q generalized co-ordinate vector used in modal transform
ra radius of gyration about elastic axis

%ra dimensionless radius of gyration about elastic axis ð¼ ra=bÞ
R number of the retained aerodynamic modes
t time
U reduced velocity ð¼ UN=ðoabÞÞ
UL linear flutter speed
UN freestream velocity
w relaxation factor ð0:95pwp1Þ
W3=4 downwash vector
%W3=4 dimensionless downwash vector ð¼ W3=4=ðoabÞÞ

xið3=4Þ location of the ith collocation point
Dx size of the vortex elements in the streamwise direction ð¼ 2b=MÞ
xa distance between the mass center of airfoil and the elastic axis

%xið3=4Þ dimensionless location of the ith collocation point ð¼ xið3=4Þ=bÞ
%xa dimensionless distance between the mass center of airfoil and the elastic axis ð¼ xa=bÞ
a pitch angle, positive in the nose-up rotation
as freeplay magnitude
r air density
m mass ratio ð¼ m=ðprb2ÞÞ
xi location of the ith vortex
%xj dimensionless location of the jth vortex ð¼ xj=bÞ
oh uncoupled plunge natural frequency ð¼ ðkh=mÞ1=2Þ
oa uncoupled pitch natural frequency ð¼ ðka=ðmr2aÞÞ

1=2Þ
%Zk stiffness ratio (¼ kna=kaÞ
%Zo frequency ratio ð¼ oh=oaÞ
t dimensionless time used for non-linear analysis ð¼ oatÞ
t0 dimensionless time used for model verification ð¼ UNt=bÞ
Gi strength of the ith vortex
Ca;Cw vectors representing the strength of the bound vortices on the airfoil and free

vortices on the wake, respectively

ARTICLE IN PRESS

Y.H. Zhao, H.Y. Hu / Journal of Sound and Vibration 276 (2004) 491–510 509



%Ca vector representing the dimensionless strength of the bound vortices
ð¼ Ca=ðoab

2ÞÞ
%Cw vector representing the dimensionless strength of the free vortices

ð¼ Cw=ðoab
2ÞÞ

%Cs static correction part in modal transform
U; W left modal matrix, right modal matrix
UR; WR modal matrices composed of R retained modes
K eigenvalue matrix
KR R 	 R sub-matrix of K corresponding to the R retained eigenvalues

Superscripts
‘‘.’’ derivative with respect to the dimensionless time t or t0

‘‘ . ’’ derivative with respect to time t
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