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Abstract

Laminated beams with internal viscoelastic layers are known to exhibit potentially high damping of
flexural vibration in the direction normal to the plane of lamination. In this paper, a model is developed for
vibration parallel to the plane of lamination of a symmetric five-layer elastic–viscoelastic sandwich beam.
The model is used to study the resonant frequencies and damping ratios of the lowest several modes of
beams with various boundary conditions and inertia and stiffness properties as the shear stiffnesses of the
viscoelastic layers are varied. Experimental results for free–free beams with contiguous and segmented
constraining layers are in reasonable agreement with the predictions of the model.

Significant damping can be attained in the lowest several modes in the plane of lamination of a sandwich
beam if the boundary conditions on the principal and constraining layers differ. For the particular example
of a partially covered cantilever with a square box-beam cross-section, it is found that a constrained-layer
damping treatment whose mass is approximately 15% of the mass of the cantilever can produce loss factors
larger than 0.07 in the first mode of vibration in both the direction normal to and the direction parallel to
lamination.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that a sandwich beam consisting of alternating elastic and viscoelastic layers
can be designed to exhibit large damping of flexural vibration in the direction normal to the plane
of lamination (the xy plane in Fig. 1). The potential of this so-called constrained-layer damping
was recognized more than 40 years ago by Plass [1] and Kerwin [2]. The theoretical foundation
for much of the work that followed was laid by Ross et al. [3] who analyzed the vibration of a
three-layer sandwich beam under sinusoidal deflections. Since then, various researchers have
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extended the theory to include various boundary conditions [4–6], segmented and multiple
constrained layers [7], and a host of other geometries as summarized in the review by Torvik [8].
The theory has also been extended to account for higher order effects such as rotary inertia and

shear deformation (e.g., Refs. [9,10]). Other researchers have presented simplified analyses for
design along with fabrication methods for internal shear dampers [11,12]. In recent years, a
number of studies have focused on the construction of damped sandwich structures with
anisotropic layers (e.g., Ref. [13]) or active layers (e.g., Ref. [14]). Sattinger [15] designed
constrained-layer damping treatments for non-planar local and global vibration of structures
made up of thin-walled circular tubes. Demoret [16] further optimized the shape of the
constraining layers on circular tubes to damp torsional vibration.
In this paper, we develop a model for vibration of a symmetric five-layer elastic–viscoelastic beam

in the plane of lamination (the xy plane in Fig. 1). A qualitative study of the nature of the vibration
leads to a set of modelling assumptions that are employed to write a simple set of equations governing
coupled vibration of the principal and constraining layers of the beam. For a beam with each layer
simply supported, we write exact solutions and study the behavior of the beam as the shear stiffness of
the viscoelastic layers is varied. Other boundary conditions are most readily studied using numerical
solutions; we discretize the governing equations using the finite-element method and present results for
beams with mixed boundary conditions and segmented constraining layers.
We show that significant damping can be obtained if the bending stiffness, inertia, and

boundary conditions of the constraining layers differ from those of the principal layer of the
beam. Experimental results are given for a few examples, and are in reasonable agreement with
predictions based on the model. Finally, for the example of a partially covered cantilever box
beam, we design a constrained-layer damping treatment to damp the first mode of vibration in
both the direction normal to and the direction parallel to the plane of lamination. The numerical
results indicate that it is practical in some cases to use a single set of constraining layers to damp
non-planar flexural vibration.

2. Modelling

When a sandwich beam, such as the one shown in Fig. 1, vibrates in its plane of lamination, the
elastic layers need not deflect together and significant strains can be induced in the viscoelastic
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Fig. 1. Sketch of a five-layer symmetric sandwich beam.
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layers, resulting in potentially high damping. In this section, we develop a picture of the
deformations and stresses that arise in such motion and obtain estimates of their relative
magnitudes.

2.1. Lumped-parameter analogy

A lumped-parameter analogy for vibration in the plane of lamination of a sandwich beam such
as that shown in Fig. 1 can be obtained by lumping the mass and stiffness of each layer as shown
in Fig. 2.
The effective mass and flexural stiffness of the principal layer are lumped into m2 and k2:

Likewise, we model the first constraining layer as an effective mass m1 and flexural stiffness k1 and
the second as m3 and k3: Although the viscoelastic layers have negligible mass, they act as springs
k12 and k23 that couple the elastic layers.
For a symmetric laminate such as that shown in Fig. 1, we have k1 ¼ k3; m1 ¼ m3; and k12 ¼

k23; and the mode shapes of the structure will be either symmetric or antisymmetric. If for the
moment we consider k12 to be real, the mode shapes can be visualized as in Fig. 3.
The mode shape labelled (d) consists of antisymmetric motion of the constraining layers while

the principal layer is still. In (c) the principal layer and constraining layers move in opposite phase.
Now consider the case where the viscoelastic layers are reasonably stiff and moderately lossy (so
that the mode shapes change little). Both modes (c) and (d) impart a great deal of strain energy
into the viscoelastic layer and hence correspond to high-frequency, well-damped modes. The
mode shape in (b), on the other hand, corresponds to a relatively low-frequency resonance with
somewhat less damping. Here, the largest displacement belongs to the principal layer and hence
we refer to such modes as ‘‘principal modes.’’ It is our primary goal to develop an accurate model
of these modes.

2.2. Coupling of bending and twist

In general the elastic layers that make up a beam like that shown in Fig. 1 do not bend together
in the xy plane, and their relative motion produces a shearing stress in the viscoelastic layers.
These shearing stresses act in such a way as to produce a twisting moment on the elastic layers, in
effect coupling bending and twist of the composite beam. In the following, we estimate the angle
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Fig. 2. Lumped-parameter model for vibration in the plane of lamination of a five-layer beam: The principal layer with

effective mass m2 is coupled via the viscoelastic layers with effective stiffnesses k12 and k23 to the constraining layers

with effective masses m1 and m3:
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of twist that results from displacement of one elastic layer relative to another and establish
conditions under which the coupling between bending and twist can be ignored.
For symmetric modes, the principal layer will not twist at all, and we are concerned with

rotation of the constraining layers relative to the principal layer. If we neglect the torsional
stiffness of the constraining layers, we can treat the constraining layer as a rigid block on a
compliant sheet as shown in Fig. 4. In response to a force applied at a distance a from the base of
the viscoelastic material, we find that the displacement v scales with the rotation c according to

hc
v
B
3Gð1� 2nÞð1þ nÞ

Eð1� nÞ
a

h

� �
; ð1Þ

where G; E; and n are, respectively, the shear modulus, elongational modulus, and the Poisson
ratio of the viscoelastic layer. In our problem, the distance a is the distance from the center of
mass of the constraining layer to its base, and the quantity hc is the magnitude of the vertical
deflection at the edge of the constraining layer. Hence, as long as a{h; the deflection hc due to
twist is much smaller than the horizontal deflection v; and rotation of the constraining layer can be
neglected. Even if this condition is not satisfied, we may still neglect rotation of the constraining
layer if nE1

2
; as is often the case for rubber-like viscoelastic materials.

2.3. Deformation in a viscoelastic layer

Assuming steady harmonic motion at an angular frequency %o; we let the transverse
displacement in the y direction of the ith layer in Fig. 5 be ReðviðxÞej %otÞ; where j is the imaginary
unit and viðxÞ is a complex-valued function whose magnitude and phase correspond to the
magnitude and phase of motion. For pure bending about the z-axis, if plane sections of the elastic
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Fig. 3. Mode shapes from the lumped-parameter model of a symmetric five-layer laminate oscillating in its plane of

lamination: (a) static configuration, (b) primary mode, (c) high-frequency symmetric mode, and (d) antisymmetric

mode.

y

z

Fig. 4. Coupling of bending and twist in symmetric modes: A horizontal force applied at the centroid of a constraining

layer results in the deflection v and rotation c relative to the principal layer.
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layers remain plane and normal to the neutral axis and the neutral axis does not extend, then the
(harmonic) longitudinal deflection of a point in the elastic layer will be

uiðx; yÞ ¼ �y
@viðxÞ
@x

: ð2Þ

Then assuming that the shear strains do not vary through the thickness of a viscoelastic layer, they
are given by

gxyðx; yÞ ¼ 0; ð3Þ

gxzðx; yÞ ¼
y

tv

@viðxÞ
@x

�
@viþ1ðxÞ

@x

� �
; ð4Þ

gyzðx; yÞ ¼
viþ1ðxÞ � viðxÞ

tv

: ð5Þ

We model the viscoelastic material as hysteretically damped without frequency dependence. This
‘‘ideal’’ hysteretic damping model is valid only for steady harmonic motion (e.g., Ref. [17]) and
can be represented in the frequency domain by a complex stiffness. Hence, we introduce the
complex shear modulus G ¼ Gvð1þ jZv sgn %oÞ and the harmonically varying shear stresses in the
viscoelastic layer are given by txz ¼ Ggxz and tyz ¼ Ggyz:

2.4. Summary of modelling assumptions

1. The principal and constraining layers are perfectly elastic, and the viscoelastic layers are
frequency-independent hysteretic.

2. The principal and constraining layers obey the Euler–Bernoulli beam model; that is,
rotary inertia as well as all components of shear deformation are neglected in the elastic
layers.
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Fig. 5. Cross-sectional view of a sandwich beam showing the notation used in the analysis: the elastic layers are

numbered sequentially from top to bottom, the width of the laminated section is 2h; and each of the viscoelastic layers is

of thickness tv:
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3. The inertia of the viscoelastic layers is negligible. This is usually a safe assumption because the
mass density of most damping materials is low in comparison with that of structural materials
and most designs employ relatively thin viscoelastic layers.

4. The shear strain is constant through the thickness of a viscoelastic layer.
5. The normal stresses in the viscoelastic layers are negligible in comparison to the normal stresses

in the principal and constraining layers. This assumption follows from the viscoelastic layers
being subject to normal strains comparable to those in the elastic layers but having much lower
elongational moduli.

6. The angle of twist is negligible in each layer of the composite beam.

2.5. Equations of motion

We now set forth equations of motion for a symmetric N-layer sandwich beam of width 2h and
where all of the viscoelastic layers are of thickness tv as shown in Fig. 5.
The ith elastic layer is characterized by flexural stiffness EiIi and mass per unit length riAi:

Denoting its harmonic deflection as viðxÞ; we obtain an equation of motion in the form

� %o2riAivi þ EiIi

@4vi

@x4
þ QiðxÞ �

@RiðxÞ
@x

¼ 0; ð6Þ

where QiðxÞ and RiðxÞ represent, respectively, the distributed force and moment exerted on the
layer by adjoining viscoelastic layers. Integrating the shear-stress distribution given in Eqs. (3)–(5)
over the width of the laminate, we obtain the net force per unit length,

QiðxÞ ¼ �
2Gh

tv

ðvi � viþ1Þ �
2Gh

tv

ðvi � vi�1Þ; ð7Þ

and bending moment per unit length,

RiðxÞ ¼
2Gh3

3tv

@vi

@x
�

@viþ1

@x

� �
þ

2Gh3

3tv

@vi

@x
�

@vi�1

@x

� �
: ð8Þ

At the ends of each layer of the beam, we must specify four boundary conditions involving the
displacement vi; slope @vi=@x; bending moment EiIi@2vi=@x2; and shear force

Vi ¼ Ri � EiIi
@3vi

@x3
: ð9Þ

2.6. Dimensionless parameters

Designating the pth layer to be the principal layer, we define for the ith layer the mass and
stiffness ratios

mi ¼
riAi

rpAp

and ki ¼
EiIi

EpIp

ð10Þ

and rewrite Eqs. (6)–(8) in terms of dimensionless parameters as

�o2mivi þ kiv
iv
i ¼ �gvð2vi � viþ1 � vi�1Þ þ gmð2v00i � v00i�1 � v00iþ1Þ; ð11Þ
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where the primes denote partial differentiation with respect to x ¼ x=L and L is the length of the
beam. The dimensionless frequency o is obtained by normalization of the frequency of motion %o
by a characteristic of the resonant frequencies of the principal layer in the absence of any other
layers according to

%o ¼
o
L2

ffiffiffiffiffiffiffiffiffiffi
EpIp

rpAp

s
: ð12Þ

The stiffness of the coupling among adjacent elastic layers is characterized by a displacement
coupling parameter

gv ¼
2GhL4

tvEpIp

ð13Þ

which is the dimensionless restoring force per unit length developed in a viscoelastic layer when
the adjoining elastic layers undergo a unit relative deflection, and a rotation coupling parameter

gm ¼
2Gh3L2

3tvEpIp

¼
h2

3L2
gv ð14Þ

which is the dimensionless restoring moment per unit length developed in a viscoelastic layer when
the adjoining elastic layers undergo a unit relative rotation.

3. Solution techniques

Our task now is to solve the eigenvalue problem posed by Eq. (11) along with appropriate
boundary conditions. Exact analytical solutions are easily attained for only the simplest of
boundary conditions, and we in general resort to either approximate analytical solutions or
numerical methods.

3.1. Direct solution

The governing equations (11) constitute a set of constant-coefficient, linear, homogeneous
equations of order 4N; where N is the number of elastic layers. Therefore, unless an eigenvalue
and eigenvector are repeated, the vi will be of the form Aie

lx; where the Ai and l are complex
constants. If we substitute this form of solution into Eq. (11), we obtain the set of homogeneous
algebraic equations

ðgv � l2gmÞAi�1 þ ðkil
4 � mio2 þ 2gv � 2l2gmÞAi þ ðgv � l2gmÞAiþ1 ¼ 0 ð15Þ

which can be assembled into a matrix equation of the form

½D1ðo2; lÞ�½Ai� ¼ 0; ð16Þ

where the coefficient matrix D1ðo2; lÞ yields a determinant of order 4N in the eigenvalue l; so that
for a given value of o we can solve for the 4N values of l that satisfy Eq. (11) and determine the
eigenvectors Ai corresponding to each eigenvalue.
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Denoting now the 4N eigenvalues and eigenvectors as lk and Aik for k ¼ 1; 2;y; 4N; we can
write the displacement viðxÞ in the form

viðxÞ ¼
X4N

k¼1

VkAike
lkx; ð17Þ

where the Vk are complex constants. These displacements are required to satisfy 4N boundary
conditions, which usually involve the viðxÞ and their derivatives evaluated at the ends of the beam.
If the boundary conditions are homogeneous, we can assemble them into the form

½D2ðl1; l2;y; l4NÞ�½Vk� ¼ 0; ð18Þ

where the dependence of D2 on the lk is usually transcendental. Our task then is to find the value
of o and corresponding lk and Aik for which the determinants of the matrices D1 and D2 are zero.
Direct solution of such equations can be carried out with careful programming (e.g., Ref. [6]), but
is especially difficult for many of the examples which we will consider in this paper because the
eigenvalues coalesce for some parameter values.

3.2. Finite-element discretization

When developing approximate solutions to the eigenvalue problem posed by Eq. (11) with
appropriate boundary conditions, we find it convenient to work from a variational formulation.
Multiplying Eq. (11) by the virtual displacement %vi; integrating over the length of the beam, and
summing over i; we obtainX

i

Z 1

0
%viðkiv

iv
i � o2miviÞ dx

¼
X

i

Z 1

0
%vi½gmð2v00i � v00iþ1 � v00i�1Þ � gvð2vi � viþ1 � vi�1Þ� dx: ð19Þ

For general boundary conditions, it is difficult to guess a set of global trial functions which give
rapid convergence; we therefore discretize locally by the finite-element method. We treat the
sandwich beam of Eqs. (19) as one element of a longer beam and approximate the deflection of the
ith layer of this element as a cubic polynomial of the form

viðxÞ ¼ %viðxÞ ¼
X4
r¼1

frðxÞqir; ð20Þ

where qir is the rth element of the vector qi ¼ ½við0Þ; v0ið0Þ; við1Þ; v0ið1Þ�
T and the interpolation

functions frðxÞ are given by

f1ðxÞ ¼ 1� 3x2 þ 2x3; f2ðxÞ ¼ x� 2x2 þ x3; ð21; 22Þ

f3ðxÞ ¼ 3x2 � 2x3; f4ðxÞ ¼ �x2 þ x3: ð23; 24Þ

Substituting the expansion given by Eq. (20) into the variational Eq. (19), integrating by
parts, and requiring that the resulting expression be stationary with respect to the qns; we obtain

ARTICLE IN PRESS

S.A. Nayfeh / Journal of Sound and Vibration 276 (2004) 689–711696



the set of equations

� o2mn

X4
r¼1

/fr;fsSqnr þ kn

X4
r¼1

/f00
r ;c

00
sSqnr

¼ �
X4
r¼1

ðgv/fr;fsS� gm/f0
r;f

0
sSÞð2qnr � qðnþ1Þr � qðn�1ÞrÞ; ð25Þ

where /f ðxÞ; gðxÞS ¼
R 1

0 f ðxÞgðxÞ dx: This equation can be written in matrix form as

ðKn � o2Mn þ 2Gv � 2GmÞqn � ðGv � GmÞðqnþ1 þ qn�1Þ ¼ 0; ð26Þ

where the elements of the component matrices are defined as

ðMnÞij ¼ mn/fi;fjS; ðKnÞij ¼ kn/f00
i ;f

00
j S; ð27; 28Þ

ðGvÞij ¼ gv/fi;fjS; ðGmÞij ¼ gm/f0
i;f

0
jS: ð29; 30Þ

The mass matrix Mn and stiffness matrix Kn are identical to the standard beam-element matrices
found in many textbooks.

4. Examples

The boundary conditions imposed on motion in the plane of lamination of the sandwich beam
can vary from layer to layer. Consider a simply supported beam to which are attached a pair of
constrained-layer dampers. The ends of the constraining layers may be attached to the supports in
the same manner as the principal layer, so that they too are simply supported in the plane of
lamination. If instead the ends of the constraining layers are not attached to the supports at all,
the boundary conditions imposed on the constraining layers are those of a free–free beam. We
study these configurations and several others in the following examples.

4.1. Simple supports

In this section, we examine the dynamics of the sandwich beam for the particular case of a
symmetric five-layer laminate where each of the principal and constraining layers is simply
supported in the plane of lamination. Designating the second elastic layer to be the principal layer,
we have m2 ¼ k2 ¼ 1: Because the laminate is symmetric, m1 ¼ m3 ¼ m and k1 ¼ k3 ¼ k: For
these boundary conditions, we can obtain exact solutions in the form

viðxÞ ¼ air sin rpx: ð31Þ

Substitution of this expression into Eq. (11) for i ¼ 1; 2; 3 yields

�o2
r ma1r þ kðrpÞ4a1r ¼ �Gða1r � a2rÞ; ð32Þ

�o2
r a2r þ ðrpÞ4a2r ¼ �Gð2a2r � a1r � a3rÞ; ð33Þ

�o2
r ma3r þ kðrpÞ4a3r ¼ �Gða3r � a2rÞ; ð34Þ
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where

G ¼ gv þ gmðrpÞ
2: ð35Þ

Thus, corresponding to the rth mode of a decoupled simply supported beam, we have three modes
of the composite beam, for which each layer deflects in the shape of the rth mode of a simply
supported uniform beam.
Hence, for a given value of r; the motion of a composite beam on simple supports can be

modelled using the lumped parameter model shown in Fig. 2. In Eqs. (32)–(34), the effective
stiffness of the viscoelastic layers is measured by the parameter G; which we see from Eq. (35) is
made up of a combination of the displacement-coupling parameter gv and the slope-coupling
parameter gm: Recalling from Eq. (14) that gm ¼ gvðh2=3L2Þ; we see that gm can often be neglected
for low values of r:
The eigenvalue problem given by Eqs. (32)–(34) is symmetric and hence admits two types of

solution: antisymmetric modes with a1r ¼ �a3r and a2r ¼ 0 that satisfy

o2
r ¼

Gþ kðrpÞ4

m
ð36Þ

and symmetric modes with a1r ¼ a3r that satisfy

mo4
r � ½Gð1þ 2mÞ þ ðrpÞ4ðk þ mÞ�o2

r þ ½GðrpÞ4ð1þ 2kÞ þ kðrpÞ8� ¼ 0 ð37Þ

and

½Gþ kðrpÞ4 � mo2
r �a1r ¼ Ga3r: ð38Þ

Modelling the behavior of the viscoelastic material as frequency-independent hysteretic, we set its
complex shear modulus to G ¼ Gvð1þ jZvÞ; where Zv is the loss factor of the viscoelastic material.
Since G is proportional to G; we can write

G ¼ Grð1þ jZvÞ: ð39Þ

For non-zero Zv; the resonant frequencies or are complex valued, and the loss factor Z of the
composite beam is given by the ratio of the imaginary and real parts of the square of or:

Z ¼
Imðo2

r Þ
Reðo2

r Þ
: ð40Þ

In the following, we will discuss the effects of varying Gr and k for composite beams with lossy
viscoelastic ðZv ¼ 1Þ and constraining layers each with one-tenth the mass of the principal layer
ðm ¼ 0:1Þ:
For the case where k=m ¼ 1 (where the natural frequencies of the decoupled principal and

constraining layers are equal), the resonant frequencies are

o2
r ¼ ðrpÞ4; ðrpÞ4 þ

G
m
; ðrpÞ4 þ

G
m
ð1þ 2mÞ

� 

ð41Þ

from which we see that the first resonant frequency of the composite beam is equal to that of the
individual layers and has Z ¼ 0: The principal mode in this case involves synchronous motion of
the elastic layers of the beam. The two higher resonances are well damped for large Zv and G:
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Next, we consider the case where k=m > 1 so that the natural frequencies of the decoupled
constraining layers are higher than those of the principal layer. The resonant frequencies and loss
factors are plotted as a function of Gr in Fig. 6. The two higher resonances are well damped for all
but very low values of Gr: One of these resonances involves antisymmetric motion of the
constraining layers and no motion of the principal layer, while the other involves symmetric
motion of the constraining layers and relatively little motion of the principal layer.
Of greater practical interest is the first resonance, which involves large motion of the principal

layer. The damping follows a trend similar to that observed for the planar shear damping
mechanism: For small Gr; the principal and constraining layers are weakly coupled and large
shear strains but little strain energy is imparted to the viscoelastic layers. For large Gr; the
constraining layers are entrained to the principal layer and little shear strain occurs in the
viscoelastic layers. Between these extremes, there exists a range of Gr over which significant
damping (Z as high as 0.09) can be obtained.
When k=mo1; the natural frequencies of the decoupled constraining layers are lower than

those of the principal layer. Consequently, as Gr is increased from a very low value (assuming
mo0:5), the two resonances given by Eq. (37) cross over as shown in Fig. 7. Near this crossover
region, the behavior resembles that of a tuned-mass damper and loss factors greater than 0.2 can
be obtained for all three resonances.

4.2. Pinned and free ends

Now consider vibration in the plane of lamination of a five-layer symmetric sandwich beam
whose principal layer is simply supported but whose constraining layers are free. As in Section 4.1,
we consider a beam whose two constraining layers are each one-tenth the mass of the principal
layer and whose viscoelastic layers have a loss factor Zv ¼ 1: We are concerned with only the
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Fig. 6. Resonant frequencies (b) and composite loss factors (a) for k=m ¼ 4 as a function of the real part of G for

vibration in the plane of lamination of a five-layer symmetric laminate for r ¼ 1; Zv ¼ 1:0; and m ¼ 0:1: principal mode

(solid line), higher symmetric mode (short dashes), and asymmetric mode (long dashes). All layers of the beam are

simply supported.
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lowest few modes of the beam and hence we neglect the slope coupling gm and plot the resonant
frequencies and loss factors as functions of the real part of the displacement coupling parameter
gv:Moreover, because the antisymmetric modes of the laminate involve no motion of the principal
layer, we solve for only its symmetric modes.
Let us first consider the case where the constraining layers have a higher stiffness per unit mass

than the principal layer. The resonant frequencies and loss factors of the first six symmetric modes
of the laminate vary with ReðgvÞ as shown in Fig. 8. The behavior of the solutions on these plots is
not simple, especially where two or more branches come together. Hence we do not connect them
by lines, but rather plot each solution individually and label the various branches of the solutions
so that the correspondence between the resonant frequencies and loss factors can be seen.
For very small gv the principal and constraining layers of the beam behave as if they are

decoupled: the resonant frequencies correspond to those of the individual layers, and the loss
factors approach zero. The solutions along the branches labelled a and b in Fig. 8 correspond,
respectively, to rigid-body translation and rotation of the constraining layers. Branches c; d; and f
correspond to the first three modes of the simply supported principal layer. Branch e represents
the first flexural mode of the constraining layers.
For very large gv; the principal and constraining layers behave as if they are rigidly coupled. The

resonant frequencies are those of a simply supported beam with normalized flexural stiffness
1þ 2k and mass per unit length 1þ 2m: Thus, branches g through l correspond to the first six
flexural modes of a simply supported beam.
Consider the principal mode, which at low gv corresponds to branch c: As gv is increased from

roughly 1–7, the resonant frequency increases very slowly but the loss factor goes from less than
10�3 to greater than 0.3. At gvE7; this eigenvalue coalesces with that of the rigid-body mode of
branch a and the branches g and m are born. On the plot of log joj versus log gv; the branch m lies
approximately on a straight line along which the frequency increases rapidly with gv and the loss
factor approaches unity. At gvE700 branch m ends and gives rise to branch i:
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Fig. 7. Resonant frequencies (b) and composite loss factors (a) for k=m ¼ 0:25 as a function of the real part of G for

vibration in the plane of lamination of a five-layer symmetric laminate for r ¼ 1; Zv ¼ 1:0; and m ¼ 0:1: principal mode

(solid line), higher symmetric mode (short dashes), and asymmetric mode (long dashes). All layers of the beam are

simply supported.
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The response to a low-frequency disturbance is determined primarily by the resonant frequency
and loss factor along the branches c and g: The highest damping is obtained at their intersection
(at ReðgvÞE7) where ZE0:3 and jojE10: However, the damping near this intersection is very
sensitive to changes in gv and the damping along branch d is very light. It may therefore be
advantageous to choose designs with ReðgvÞ between 50 and 200, where the loss factors along both
branches g and d are both greater than 0.1.
Next, consider the case where the constraining layers have lower stiffness per unit mass than the

principal layer. The resonant frequencies and loss factors obtained from the finite-element model
for the case k=m ¼ 0:25 are plotted in Fig. 9.
The maximum damping of the principal mode in this case is comparable to that shown in Fig. 8

for the case k=m ¼ 4; but it is attainable over a very narrow range of gv: Moreover, whereas for
k=m ¼ 4 loss factors greater than 0.1 can be obtained along the branch g for values of ReðgvÞ
between 7 and 200, the loss factor in this case falls to below 0.1 at ReðgvÞ ¼ 11:
We have seen in Section 4.1 that, when each elastic layer of the beam is simply supported,

significant damping of the principal modes can be obtained only if the principal and constraining
layers are detuned. But if the boundary conditions differ, then the principal modes are well
damped (for appropriately chosen gv) even for perfectly tuned principal and constraining layers.
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Fig. 8. Resonant frequencies (b) and loss factors (a) of the first six symmetric modes of vibration in the plane of

lamination of a symmetric five-layer laminate: The principal layer is simply supported and the constraining layers are

free, m ¼ 0:1; k=m ¼ 4; Zv ¼ 1; and gm ¼ 0:
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In Fig. 10, we plot the first six resonant frequencies and loss factors of a ‘‘perfectly tuned’’
ðk=m ¼ 1Þ laminate whose principal layer is simply supported but whose constraining layers are
free. The damping behavior in this case is comparable to that found for the case k=m ¼ 0:25:

4.3. Free ends

Let us now consider free–free vibration in the plane of lamination of the ceramic-viscoelastic
beam with the cross-section shown in Fig. 11.
The principal layer is a box beam composed of 96% alumina ceramic with Young’s modulus

E1 ¼ 311 GPa and the constraining layers are 99.5% aluminum oxide with E2 ¼ 372 GPa: The
viscoelastic layers are each 0:25 mm thick and composed of EAR-C1002 [18], which at 2000 Hz
and room temperature has complex modulus Gv ¼ 13:9ð1þ j0:95Þ MPa: The beam was suspended
using light surgical tubing at points approximately one quarter of the beam length from each end.
An impact hammer (PCB 086B03) provided an excitation close to the same end of the beam that
an accelerometer (PCB 356B08) was mounted. Fifteen averages were collected using an
HP365670A dynamic signal analyzer. The endpoint receptance measured in the y direction of
the composite beam is plotted in Fig. 12.
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Fig. 9. Resonant frequencies (b) and loss factors (a) of the first six symmetric modes of vibration in the plane of

lamination of a symmetric five-layer laminate: The principal layer is simply supported and the constraining layers are

free, m ¼ 0:1; k=m ¼ 0:25; Zv ¼ 1; and gm ¼ 0:
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Fig. 10. Resonant frequencies (b) and loss factors (a) of the first six symmetric modes of vibration in the plane of

lamination of a symmetric five-layer laminate: The principal layer is simply supported and the constraining layers are

free, m ¼ 0:1; k=m ¼ 1; Zv ¼ 1; and gm ¼ 0:

Fig. 11. Cross-section of a ceramic box beam with constrained viscoelastic layers: The beam is 0:914 m long and is

composed of a principal layer with E1 ¼ 311 GPa; constraining layers with E2 ¼ 372 GPa; and viscoelastic layers with

Gv ¼ 13:9ð1þ j0:95Þ MPa and thickness 0:25 mm: Dimensions are in cm.
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In terms of our non-dimensional parameters, the ceramic laminate has m ¼ 0:25; k ¼ 0:055;
Zv ¼ 0:95; and gv ¼ 2160ð1þ j0:95Þ: The slope coupling gm in this case is equal to gv=2000
and can be safely ignored for the lowest several modes of the beam. The results of a finite-
element calculation with these parameter values compare to the measured data as shown in
Table 1.
The considerable error in the prediction of the loss factor of the first and third modes is

probably due to the variation of the viscoelastic material properties with frequency. We use the
material properties corresponding for 2000 Hz in our calculations although the shear modulus of
the viscoelastic material (EAR C-1002) more than doubles as the frequency increases from 1000 to
3000 Hz: Moreover, according to Eq. (1), the displacement-normalized twist between elastic
layers under symmetric motion scales with a=h; where a is half the thickness of the constraining
layer and h is half its width. For the beam under consideration a=h ¼ 0:36 so we cannot expect the
model to predict the damping very accurately with such thick constraining layers.
It is perhaps interesting to see what damping (according to the model) would be achievable by

adjusting gv: In Fig. 13, we plot the resonant frequencies and loss factors of the beam as a function
of the real part of gv: From the plot, it is apparent that loss factors of better than 0.3 for any one
mode could be achieved with proper selection of gv; and that the current design with gv ¼
2160ð1þ j0:95Þ is probably most effective for damping the third and fourth modes. A more
compliant viscoelastic layer would yield better damping of the first two modes.
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Fig. 12. Measured endpoint receptance in the plane of lamination of the ceramic beam of Fig. 11.

Table 1

Comparison of measured and predicted resonant frequencies and damping for the ceramic box beam of Fig. 11

Frequency (Hz) Loss factor

Measured Predicted Measured Predicted

808 795 0.007 0.004

2065 2103 0.036 0.034

3730 3800 0.103 0.141
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4.4. Free ends with segmented layers

Next, consider a free–free beam with the cross-section shown in Fig. 14, where the principal and
constraining layers are solid aluminum bars. The stiffnesses per unit mass in the principal and
constraining layers are equal so that k=m ¼ 1 and we expect to obtain very little damping of the
principal modes. The measured receptance (obtained using the same procedure as described in the
previous section) is shown using a dotted line in Fig. 15; a least-squares curve fit to the resonant
peaks indicates that Z is less than 0.001 for the first two modes. Next, we segmented the
constraining layers by making a transverse cut at the midpoint of the beam and repeated the
measurement. The result is plotted with a solid line in Fig. 15, from which we see that
segmentation of the constraining layers has caused a dramatic increase in the damping. In
addition, we see that whereas the resonant frequency of the first mode has dropped, that of the
second mode has increased.
Using a finite-element model with 10 elements, we obtain the plot of resonant frequency

and loss factor as a function of gvr shown in Fig. 16. The viscoelastic layer in the sample
is composed of EAR-C3102 damping foam, which at room temperature and 500 Hz;
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Fig. 13. Resonant frequencies (b) and loss factors (a) of the first six symmetric modes of vibration in the plane of

lamination of the ceramic laminate of Fig. 11. The principal layer constraining layers have free ends, m ¼ 0:25;
k=m ¼ 0:22; Zv ¼ 0:95; and gm ¼ 0:
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has Gv ¼ 0:1ð1þ j1:0Þ MPa: Each viscoelastic layer is 0.25 inches thick; hence for our sample we
have gv ¼ 60ð1þ j1:0Þ: The results of the computation compare to curve-fitted experimental data
as shown in Table 2. The agreement between the predicted and measured values is about as good
as can be expected without taking into account the variation of the properties of the viscoelastic
material with frequency.

4.5. Partially covered cantilever

We have seen that it is possible to obtain significant damping of low order modes of vibration in
the plane of lamination of a sandwich beam. In this section, for the example of a cantilever box
beam, we examine the possibility of designing a constrained-layer damping treatment to damp
vibration in both the directions normal to and parallel to the plane of lamination.
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Fig. 15. Comparison of measured receptances for the sandwich beam of Fig. 14 with contiguous (dashed line) and

segmented (solid line) constraining layers.

Fig. 14. Cross-section of an aluminum sandwich beam: The beam is 0:914 m long, and made up of solid aluminum bars

bonded with a thin layer of epoxy to the intervening layers of EAR C-3102 damping foam. Dimensions are in cm.
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According to the basic model, damping of vibration in the plane normal to lamination is
governed by two dimensionless parameters (e.g., Ref. [5]). The ‘‘geometric parameter’’ Y is
defined as

Y ¼
2c2EclAcl

EpIp þ 2EclIcl

; ð42Þ

where c is the distance from the neutral axis of the principal layer to the center of mass of the
constraining layers, EclAcl is the longitudinal stiffness of the constraining layers, EpIp and EclIcl

are the bending stiffnesses in the z direction of the principal and constraining layers, respectively.
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Table 2

Comparison of measured and predicted results

Frequency (Hz) Loss factor

Measured Predicted Measured Predicted

170 175 0.092 0.103

547 550 0.040 0.035

Fig. 16. Resonant frequency (b) and loss factor (a) for the first several symmetric modes of vibration in the plane of

lamination of a symmetric five-layer laminate: The constraining layers are segmented at the midpoint of the beam, all

ends are free, m ¼ 0:1; k=m ¼ 1; Zv ¼ 1; and gm ¼ 0:
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The ‘‘coupling parameter’’ gc is a measure of the shear stiffness of the viscoelastic layers compared
to the longitudinal stiffness EclAcl of the constraining layers. For a symmetric five-layer laminate,
it is given by

gc ¼
GhL2

tvEclAcl

: ð43Þ

The governing equations are of sixth order, and are discretized using the finite-element method in
a manner similar to that given in Section 3.2 (see Ref. [19]).
An aluminum cantilever beam with a square box-beam cross-section is shown in Fig. 17. We

make use of constraining layers that extend over only the base quarter of the cantilever to damp
the first mode of vibration in both the x and y directions. A first attempt at such a design is
sketched in Fig. 17(a), where the constraining layers are made of aluminum plate with a thickness
of 12:5 mm: In Fig. 18, the loss factor of the first mode in each of the x and y directions is plotted
as a function of the real part of the shear parameter gc associated with constrained layer damping
of the column as defined in Eq. (43).
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z

(a) (b)

Fig. 17. Cross-section of a cantilever square box beam with internal constrained viscoelastic layers: the box has a length

of 1:60 m; a width of 0:26 m; and a wall thickness of 12:5 mm: The constraining layers are (a) aluminum plates, and

(b) steel channels.

Fig. 18. Loss factor of the first mode in the x (solid line) and y (dashed line) directions of the partially covered

cantilever with cross-section shown in Fig. 17(a) as a function of the real part of the coupling parameter gc:
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We see that while loss factors as high as 0.05 can be obtained in the x direction, the highest loss
factor in the y direction is 0.02. Moreover, these maximum loss factors occur at different values of
gc; so we cannot simultaneously damp vibration in both directions. This damper performs so
poorly because the constraining layers stiffen the beam only slightly in the y direction.
Let us consider as an alternative the use of steel channels (US standard C9
 13:4) for the

constraining layers as shown in Fig. 17(b). We obtain in this case the damping behavior shown in
Fig. 19 with loss factors in both directions of about 0.07 for ReðgcÞ ¼ 10: These constraining
layers weigh approximately 25% more than those shown in Fig. 17(a) but yield three times greater
damping in the plane of lamination.

5. Conclusions

In this paper, experimental evidence was presented that significant damping can be induced in
low order modes of vibration in the plane of lamination of elastic–viscoelastic sandwich beams. A
simple model for this vibration was developed, and its predictions are in reasonable agreement
with the measurements. The model is based on the assumption that the angle of twist in each of
the elastic layers is negligible, and hence is most accurate for beams with thin constraining layers
mounted on opposing faces of a principal layer. According to the model, the damping in the
composite beam depends on the ratio of the masses and stiffnesses of the constraining layers to the
mass and stiffness of the principal layer, the coupling parameters gv and gm; and the boundary
conditions on the various layers. For the lowest several modes of a slender beam, the slope
coupling gm can be neglected in comparison to gv:
If the boundary conditions on the elastic layers are identical, the system behavior can be

adequately modelled using a lumped parameter model such as shown in Fig. 2, and the behavior
can be divided into three cases according to the tuning between the elastic layers: If the principal
and constraining layers have the same stiffness per unit length, the principal mode is essentially
undamped for any value of gv: If the constraining layers have a higher stiffness to mass ratio than
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Fig. 19. Loss factor of the first mode in the x (solid line) and y (dashed line) directions of the partially covered

cantilever with cross-section shown in Fig. 17(b) as a function of the real part of the coupling parameter gc:
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the principal layer, their inertia plays only a small role in the dynamics, and the behavior as gv is
varied follows a trend like that of constrained-layer damping in the plane normal to the plane of
lamination. On the other hand, if the constraining layers have a lower stiffness to mass ratio than
the principal layer, the constraining layers can act as distributed tuned-mass dampers for some
range of gv:
If the boundary conditions on the principal and constraining layers differ, the variation of the

resonant frequencies and damping ratios with changes in gv are somewhat more complicated than
can be captured with a lumped-parameter model. Because the mode shapes of the decoupled
principal and constraining layers differ, the coupling forces are not distributed over the length of a
layer in proportion to its decoupled mode shape, and the constraining layers can present to the
principal layer a distributed impedance far higher than its lumped stiffness. Hence the potential
exists for significantly higher damping than in beams where the boundary conditions on the
principal and constraining layers are identical.
The behavior described in this paper is analogous to that attainable in the plane normal to

lamination if transverse compression of the constrained layers plays an important role. The
significance of transverse strains was first reported by Douglas and Yang [20] and later studied in
more detail by Douglas [21], Miles and Reinhall [22], Sylwan [23], and Sisemore and Davernnes
[24]. Because the viscoelastic materials incorporated in constrained-layer dampers are often nearly
incompressible, relative motion parallel to the plane of lamination usually becomes important at
lower frequencies than relative motion in the plane normal to lamination. Moreover, the bending
stiffness of the constraining layers is often relatively large in the plane parallel to lamination,
further enhancing the potential for damping of vibration in the plane of lamination.
For the particular example of a cantilever box beam, we have seen that a pair of constraining

layers can produce high damping in both the directions normal to and parallel to the plane
of lamination. This design requires significantly less mass than would be required if a pair of
constraining layers is employed to damp vibration in each plane. Such configurations may also be
useful when packaging constraints make it impossible to mount constraining layers on the
surfaces normal to the plane of vibration.
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