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Abstract

A meshfree method based on the reproducing kernel particle approximate is employed for the free
vibration and buckling analyses of shear-deformable plates. In this approach, the first order Mindlin/
Reissner plate theory (FSDT) is used, and the displacement shape functions are constructed using the
reproducing kernel approximation satisfying the consistency condition. The essential boundary conditions
are enforced by a transformation method. Numerical examples considering various aspect ratios, skew
angles and boundary conditions are demonstrated to show the validity of the proposed method, and
satisfactory results were obtained when comparisons are made with the exact and other available numerical
results existing in the literature.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of the free vibration of plates started at the early 1800s via studying the free
vibration of a square plate with free edges. Subsequently, Rayleigh [1] introduced his general
solution method to obtain the natural frequencies of vibration of structures. Later in 1909, Ritz
developed Rayleigh’s method by assuming a series of admissible trial functions with independent
amplitude coefficients. After this came the well-known Rayleigh–Ritz method, which is one of the
most commonly used approximate methods for the vibration analysis of structures. Since then,
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many investigations have been undertaken into the vibration analysis of plates with various
shapes, boundary conditions and loadings. In the early period, most of the reports concentrated
on thin plates, for which the transverse shear influences were not considered. The classical plate
theories based on the Kirchhoff hypothesis, are often used for thin plates. However, these classical
theories are inadequate to predict the gross response characteristics of moderately thick laminated
composite plates as well as plates with high anisotropy. Usually in thicker plates, the vibration
solutions are unconservatively high. The inaccuracy is caused by ignoring the transverse shear and
normal strains in the plates. Thus, many shear-deformation plate theories were developed to
improve the analysis of the vibration of plates, and this has led to more accurate results. Among
the theories, the Mindlin-type first order shear-deformation plate theory (FSDT) was most
commonly used. The FSDT assumes constant transverse shear strains along the thickness
direction, and requires shear correction factors to modify the transverse shear stiffness for the
analysis of plates. Usually, FSDT is sufficient and quite accurate for the natural frequencies of
moderately thick plates.

There are several excellent review papers concerning the vibration analysis of plates using
various plate theories, including higher order deformation plate theories and the three-
dimensional elasticity theory. One can find more detailed information about the studies of plate
vibrations from these review papers, viz. Liew et al. [2], Noor [3], Reddy [4] and Tessler et al. [5].

The buckling analysis of plates is another class of eigenvalue problem. As is well known, a plate
may lose its ability to withstand the external loadings, when the in-plane strain reaches a critical
level. This phenomenon is the buckling of the plate, and the corresponding critical load at which
the plate starts to become unstable, is termed the buckling load.

To analyze the buckling behavior of a thin plate, the classical plate theory (CPT) is often used.
However, similar to the vibration of plates, when the thickness of the plate increases, the
transverse shear-deformation effects will significantly influence the results of the buckling analysis.
Thus the CPT is not applicable, and shear deformable plate theories are often resorted to.
Furthermore, the use of CPT may result in a different buckling mode shape compared with those
of other plate theories, such as 3D elasticity theory, FSDT or higher order shear-deformation
theory (HSDT).

Many methodologies have been implemented for various plate buckling and free vibration
problems. These methods include analytical and numerical techniques, such as the Ritz method
[6–16], differential quadrature method [17,18], finite strip methods [19] and the finite element
method [20,21], etc. Some reviews of the literature on buckling analysis of laminated composite
plates may be found from Leissa [22,23] and Kapania et al. [24].

In this paper, a meshfree method based on the reproducing kernel particle approximation
is employed for the buckling and free vibration analyses of shear-deformable plates. The
first order Mindlin/Reissner shear-deformation theory is adopted to incorporate the
shear-deformation effects. For numerical implementation, the essential boundary conditions
are enforced by a transformation so as to ease the treatment of the boundaries in the source code
programming. Numerical results obtained for the free vibration analysis of rectangular and
circular plates with various thickness ratios and boundary conditions, and buckling analysis of
rectangular and skew plates subjected to different boundary conditions show that the present
method is effective and accurate for the free vibration and buckling analysis of shear-deformable
plates.
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2. Formulations for free vibration and buckling

2.1. Variational formulation of Mindlin plates

A typical Mindlin/Reissner plate with notations shown in Fig. 1 is considered here. For an
initially flat isotropic thick plate, the membrane deformations are not accounted for since they are
uncoupled from the bending and shear deformations. Hence, the basic assumptions for
displacement behavior [20,25] are

uðx; y; zÞ ¼

uðx; y; zÞ

vðx; y; zÞ

wðx; y; zÞ

8><
>:

9>=
>; ¼

zyxðx; yÞ

zyyðx; yÞ

wðx; yÞ

8><
>:

9>=
>;; ð1Þ

where uðx; y; zÞ; vðx; y; zÞ and wðx; y; zÞ are the components of displacement at a general point,
whilst wðx; yÞ is the transverse deflection at the middle surface. The quantities yxðx; yÞ and yyðx; yÞ
are the rotations in the x and y directions, respectively. Incorporating the fundamental Mindlin/
Reissner plate theory, the bending and shear strains are taken as
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The free vibration analysis of a Mindlin/Reissner plate may start from the dynamic version of
energy principle of virtual displacement incorporating the first order shear-deformation plate
theory: ZZ
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Fig. 1. Geometry notation of a typical Mindlin/Reissner plate.
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In Eqs. (3) and (4), the coefficient matrices are defined as

#r0 ¼
s0

x t0xy

t0xy s0
y

" #
; Db ¼

Et3

12ð1 � n2Þ

1 n 0

n 1 0

0 0 ð1� nÞ=2

2
64

3
75; ð5aÞ
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2ð1 þ nÞ
1 0

0 1

" #
; Bm ¼ r

t 0 0

t3=12 0

sym: t3=12

2
64

3
75; ð5bÞ

where E is Young’s modulus, n the Poisson ratio, r the plate density, and k2 the transverse shear
correction factor.

2.2. Reproducing kernel approximation form

In the reproducing kernel equation, a function uðxÞ in the domain Ox; is reproduced through the
following kernel transformation [26]:

uaðxÞ ¼
Z
Ox

kðx;x� yÞuðyÞ dy; ð6Þ

in which, uaðxÞ is the reproduced function and kðx; x� yÞ is the reproducing kernel function
defined as

kðx;x� yÞ ¼ Uaðx� yÞCðx;x� yÞ; ð7Þ

where Uaðx; x� yÞ is the kernel function or window function with compact support and
Cðx; x� yÞ is the correction function solved by satisfying reproducing conditions. The
reproducing conditions require the approximated functions and their derivatives to be exactly
reproduced over the entire domain.

To solve a partial differential problem, one can discretize the domain Ox into NP scattered
particles/nodes ðx1; x2;y; xNPÞ; then write the kernel approximate as

uaðxÞD
XNP

I¼1

kðx; x� xI ÞuðxI ÞDVI �
XNP

I¼1

Na
I ðxÞuI ; ð8Þ

in which, DVI is the volume associated with the particle xI and can be simply set to unity, and
Na

I ðxÞ and uðxI Þ are the shape function and the corresponding nodal parameters of the
reproducing kernel approximation, respectively.

Using the methodology laid out in the preceding section on the variational form of Eqs. (3) and
(4), the following expansions in terms of the approximation shape functions, Na

I ; and its
derivatives can be written as
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where

d ¼ ½w yx yy�T; dI ¼ ½wI yxI yyI �T ð10Þ

and
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: ð11cÞ

Hence, the RKPM formulation for free vibration of a Mindlin/Reissner plate can be written in
matrix form as

ðK� o2
IMÞdI ¼ 0; I ¼ 1; 2;y;Nf ; ð12Þ

where K is the global stiffness matrix, M is the global mass matrix, the column vector dI contains
the vibration mode shapes, Nf is the total number of vibration modes, which is also the total
number of the degrees of freedom, and oI is the Ith natural frequency. And the buckling equation
is obtained as

ðK� lKGÞd ¼ 0; ð13Þ

in which K is the same as in Eq. (12), and KG is the geometrical stiffness matrix, and l is a scalar
by which the chosen in-plane loads must be multiplied by in order to cause buckling. By
substituting Eq. (9) into Eqs. (3)–(4) and differentiating the principle potential energy, the stiffness
matrices can be obtained as

K ¼
Z
O
BT

bDbBb dOþ
Z
O
BT

s DsBs dO; ð14aÞ

KG ¼ t

Z
O
GT

b #r0Gb dOþ
t3

12

Z
O
GT

s1 #r0Gs1 dOþ
t3

12

Z
O
GT

s2 #r0Gs2 dO: ð14bÞ

In the RKPM approximation, the shape functions describing the variation of the acceleration
field over the domain of influence of each particle are the same as those for the displacement
variation. The related mass matrix is known as the so-called consistent mass matrix as in FEM
implementation. This type of mass matrix takes into consideration the effects of rotary inertia.
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The mass matrix in RKPM implementation is computed as

MIJ ¼
Z
O

NT
I NJ dO

� �
Bm: ð15Þ

2.3. Enforcement of essential boundary conditions via transformation

Due to the lack of Kronecker delta properties in the reproducing kernel particle approximate,
the essential boundary conditions can be attained but not without additional complications.
Many methods, such as the Lagrange multiplier method, penalty method, boundary singular
kernel method [26,27], etc., have been developed for the enforcement of essential boundary
conditions. Here the transformation method, which was proposed by Chen et al. [26], is employed
to impose the essential boundary conditions. This method was chosen because of its ease of
coding, however, it may lead to a change in the sparse property of the stiffness matrices and result
in higher computation expense. In this implementation, the stiffnesses K; KG; the mass matrix M;
and the nodal parameter d are transformed by using a transformation matrix, then the final free
vibration and buckling equations are obtained as

ð #K� #o2
I
#MÞ#dI ¼ 0; ð16aÞ

ð #K� l #KGÞ#d ¼ 0: ð16bÞ

Consequently, the essential boundary conditions are imposed simply by following FEM
methodology [20]. The transformed matrices are given as

#K ¼ K�1KK�T; #KG ¼ K�1KGK�T; #d ¼ Kd; #M ¼ K�1MK�T ð17Þ

and the transformation matrix is computed as KIJ ¼ Na
I ðxJÞI; where I is a 3 	 3 identity matrix.

3. Numerical results and discussions

3.1. Numerical implementation

The reproducing kernel shape functions are computed by imposing the reproducing conditions
on the kernel function values of a set of particles in the discretized solution domain. In this study,
the cubic B-spline window function U; given below, is used to construct the kernel function
Uaðx� xI Þ as

UaðsI Þ ¼
1
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U
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where sI ¼ jx � xI j and aI is the dilation parameter to measure the domain of influence
of the particle xI : In the numerical implementation of the kernel approximate, the
dilation parameter a is defined as aI ¼ rDI where r is a scaling factor, and DI is
the larger distance to xI ; its nearest neighbor in a one-dimensional case. In this two-dimensional
analysis, the domains of influence are set as rectangular shapes, and the dilation parameters
become axI and ayI in the ðx; yÞ co-ordinate system. And the kernel function values Uaðx� xI Þ are
computed as

Uaðx� xI Þ ¼
1

axI

U
x � xI

axI

� �
1

ayI

U
y � yI

ayI

� �
; ð19Þ

where axI ¼ rxDxI and ayI ¼ ryDyI ; in which the scaling factors rx and ry are adjustable to control
the size of domains of influence, and DxI and DyI are defined as the average distances between the
adjacent particles along the x and y directions in a regular discretization. In this study, rx ¼
ryE3:5:

In the Gaussian integration for the stiffness matrices, unless otherwise indicated, the integration
order of 4 	 4 is used in this paper. The integration uses a 2-D regular background mesh. When
the particles are uniformly distributed, the intersection points of the background meshes are
coincident with the discrete particles. When the particles are randomly distributed within the
domain, the same integration background mesh is used. In the following analysis of free vibration
of rectangular plates, a uniform 17	 17 particle distribution is adopted for all the cases
considered.

3.2. Free vibration of plates

3.2.1. Square isotropic Mindlin/Reissner plates

The effectiveness of the RKPM for vibration analysis of Mindlin/Reissner plates are
demonstrated by examples of square Mindlin/Reissner plates with different boundary conditions.
The geometry of the plates is as shown as in Fig. 1. The length of each edge is a; and two
thickness-to-side ratios t=a ¼ 0:01 and 0:1 are considered. The effects of shear deformation are
considered and the shear correction factors are employed accordingly, so as to compare with the
corresponding results from other analyses.

A non-dimensional frequency parameter is defined as

Omn ¼ omna

ffiffiffiffi
r
G

r
; ð20Þ

where omn is the frequency, a is the plate side length, r is the mass density per unit volume, G is
the shear modulus and G ¼ E=2ð1 þ nÞ; E Young’s modulus and n the Poisson ratio. The
subscripts m and n are the number of half-waves in the modal shapes in the x and y directions,
respectively.

Firstly, two fully clamped Mindlin/Reissner square plates (CCCC) with different
thickness-to-edge ratios are considered. The plates are clamped at all the boundary edges.
The first thirteen modes of vibration for both the plates are calculated. In this boundary
condition case, the shear correction factor is taken as k2 ¼ 0:8601: Two cases of thickness-
to-edge ratios are considered, i.e., t=a ¼ 0:1 and 0.01. The comparison of frequency parameters
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with the Rayleigh–Ritz solutions [16] for each plate is listed in Tables 1 and 2. Excellent
agreement is obtained. In Fig. 2, some of the modal shapes of the CCCC plate ðt=a ¼ 0:1Þ are also
presented.

Secondly, fully simply supported Mindlin/Reissner square plates with different thickness-to-
edge ratios are considered. The first thirteen modes of vibration have been calculated. The
frequency parameters for two cases of thickness-to-edge ratios t=a ¼ 0:1 and 0.01, are listed in
Tables 3 and 4. Comparison with 3-D elasticity and Mindlin closed form solutions [20] showed
excellent agreement.
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Table 1

Frequency parameters Omn for a CCCC square Mindlin/Reissner plate with t=a ¼ 0:1; k2 ¼ 0:8601; n ¼ 0:3

Mode no. m n Rayleigh–Ritz [16] Present (Meshfree)

1 1 1 1.594 1.5582

2 2 1 3.039 3.0182

3 1 2 3.039 3.0182

4 2 2 4.265 4.1711

5 3 1 5.035 5.1218

6 1 3 5.078 5.1594

7 3 2 — 6.0178

8 2 3 — 6.0178

9 4 1 — 7.5169

10 1 4 — 7.5169

11 3 3 — 7.7288

12 4 2 — 8.3985

13 2 4 — 8.3985

Table 2

Frequency parameters Omn for a CCCC square Mindlin/Reissner plate with t=a ¼ 0:01; k2 ¼ 0:8601; n ¼ 0:3

Mode no. m n Rayleigh–Ritz [16] Present (Meshfree)

1 1 1 0.1754 0.1743

2 2 1 0.3576 0.3576

3 1 2 0.3576 0.3576

4 2 2 0.5274 0.5240

5 3 1 0.6402 0.6465

6 1 3 0.6432 0.6505

7 3 2 — 0.8015

8 2 3 — 0.8015

9 4 1 — 1.0426

10 1 4 — 1.0426

11 3 3 — 1.0628

12 4 2 — 1.1823

13 2 4 — 1.1823
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3.2.2. Circular Mindlin/Reissner plates

In this example, the free vibration of a clamped circular plate is studied. The whole plate is
modelled with almost uniformly distributed particles as shown in Fig. 3. The plate has Young’s
modulus E; thickness t; the Poisson ratio n; mass density r and radius R; and the non-dimensional
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Fig. 2. The free vibration modal shapes of a CCCC square isotropic Mindlin/Reissner plate. (a) 1st Mode ðm ¼ 1;
n ¼ 1Þ; (b) 3rd Mode ðm ¼ 1; n ¼ 2Þ; (c) 4th Mode ðm ¼ 2; n ¼ 2Þ; (d) 5th Mode ðm ¼ 3; n ¼ 1Þ; (e) 6th Mode ðm ¼
1; n ¼ 3Þ; (f) 7th Mode ðm ¼ 3; n ¼ 2Þ; (g) 10th Mode ðm ¼ 4; n ¼ 1Þ; (h) 11th Mode ðm ¼ 3; n ¼ 3Þ; (i) 12th Mode

ðm ¼ 4; n ¼ 2Þ; (j) 13th Mode ðm ¼ 2; n ¼ 4Þ:
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frequency parameter is defined as

lf ¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffi
r t=D

p
; ð21Þ

where D is the flexural rigidity defined as D ¼ Et3=½12ð1 � n2Þ�: The frequency parameters for
plates with thickness-to-edge ratios t=R ¼ 0:1 and 0.01 are presented in Tables 5 and 6.
Comparisons with results of Liew et al. [28] and Hinton [20] show excellent agreement. Fig. 4
presents the lower order vibration modal shapes.
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Table 3

Frequency parameters Omn for an SSSS Mindlin/Reissner plate with t=a ¼ 0:1; k2 ¼ 0:833; n ¼ 0:3

Mode no. m n 3D closed form Mindlin closed form Meshfree

1 1 1 0.932 0.930 0.922

2 2 1 2.226 2.219 2.205

3 1 2 2.226 2.219 2.205

4 2 2 3.421 3.406 3.377

5 3 1 4.171 4.149 4.139

6 1 3 4.171 4.149 4.139

7 3 2 5.239 5.206 5.170

8 2 3 5.239 5.206 5.170

9 4 1 — 6.520 6.524

10 1 4 — 6.520 6.524

11 3 3 6.889 6.834 6.779

12 4 2 7.511 7.446 7.416

13 2 4 7.511 7.446 7.416

Table 4

Frequency parameters Omn for an SSSS square Mindlin/Reissner plate with t=a ¼ 0:01; h2 ¼ 0:833; n ¼ 0:3

Mode no. m n Mindlin closed form Present (Meshfree)

1 1 1 0.09629 0.0961

2 2 1 0.2406 0.2419

3 1 2 0.2406 0.2419

4 2 2 0.3848 0.3860

5 3 1 0.4809 0.4898

6 1 3 0.4809 0.4898

7 3 2 0.6249 0.6315

8 2 3 0.6249 0.6315

9 4 1 0.8167 0.8447

10 1 4 0.8167 0.8447

11 3 3 0.8647 0.8726

12 4 2 0.9605 0.9822

13 2 4 0.9605 0.9822
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Fig. 3. Full model of the circular plate.

Table 5

Frequency parameters lf ð¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= %D

p
Þ for a clamped circular Mindlin/Reissner plate with thickness to radius ratio:

t=R ¼ 0:1

n s Exact [28] Present (Meshfree)

0 1 9.941 9.931

2 36.479 36.665

3 75.664 76.531

4 123.32 122.46

1 1 20.232 20.194

2 53.890 54.257

3 97.907 99.207

2 0 32.406 32.353

1 72.368 72.669

2 120.55 121.94

3 0 46.178 45.827

1 91.712 92.267

4 0 61.272 60.6595

1 111.74 110.68

5 0 77.454 76.5343

6 0 94.527 93.285
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3.3. Buckling of plates

In the following examples, the non-dimensional buckling load intensity factor is defined as

Kb ¼ b2Ncr=ðp2DÞ; ð22Þ

where b is the edge length of the plate, Ncr the critical buckling load, and D the flexural rigidity.

3.3.1. Simply supported rectangular plates subjected to uniaxial compression
The rectangular isotropic plate under consideration is simply supported on each edge, see

Fig. 5(a). The plate is modelled with uniform particles, as well as with randomly distributed
particles. When generating the random particles, the generator code controls the distances
among the particles to avoid extremely closed particles so as to ensure the stiffness matrices
non-singular. The particles on the edges are still uniformly built as Fig. 5(b) shows. In Fig. 5(b),
the plate is discretized by 17	 17 random particles, where we mentioned 17	 17 because
each edge has 17 uniform particles and the total number of the particles are equal to that
of a uniform 17	 17 discretization. Also DxI and DyI are the same as those in a regular
discretization. Three different thickness-to-width ratios, t=b ¼ 0:05; 0.1, 0.2, and five width-to-
length ratios, a=b ¼ 0:5; 1, 1.5, 2, 2.5 are considered. Present results are compared with those of
the pb-2 Ritz method presented by Kitipornchai et al. [6] and details tabulated in Table 7. It is
observed that the present predictions are very close to the pb-2 Ritz results for both cases of
uniform and randomly distributed particles. Fig. 6 is a plot of the critical buckling load factor
against the length-to-width ratio, a=b: Further, the buckling mode shapes for different length-to-
width ratios are shown in Fig. 7.
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Table 6

Frequency parameters lf ð¼ oR2
ffiffiffiffiffiffiffiffiffiffiffiffi
rh= %D

p
Þ for a clamped circular Mindlin/Reissner plate with the thickness to radius

ratio: t=R ¼ 0:01

n s Finite element [20] Present (Meshfree)

0 1 10.2158 10.2661

2 39.771 40.2905

1 1 21.26 21.4488

2 60.82 62.1455

2 0 34.88 35.2556

1 84.58 86.3649

3 0 51.04 51.6626

1 111.01 113.594

4 0 69.6659 70.4145

1 140.108 142.119
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3.3.2. Compression buckling behavior of skew plates
This example has also been considered by Kitipornchai et al. [6] and Wang et al. [29] using the

p-version Ritz function method. Skew plates, as shown in Fig. 8, with skew angle, a; thickness-to-
width ratio, t=b; and different combinations of edge support conditions, are examined. The plate
is modelled with 17	 17 distributed particles, and 4 	 4 integration rules is employed, see Fig. 9.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 4. Free vibration modal shapes of a clamped circular Mindlin/Reissner plate. (a) 1st Mode; (b) 2nd Mode; (c) 4th

Mode; (d) 6th Mode; (e) 7th Mode; (f) 9th Mode; (g) 11th Mode; (h) 13th Mode; (i) 15th Mode; (j) 17th Mode.
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Table 7

Critical buckling load intensity factors, Kb; of simply-supported rectangular plates with different length-to-width ratios,

a=b; and thickness-to-width ratios, t=b; subjected to uniaxial compression

a=b t=b Present (Meshfree) Kitipornchai et al. [6] (pb-2 Ritz)

Regular particles Irregular particles

0.5 0.05 6.0405 5.9624 6.0372

0.1 5.3116 5.2084 5.4777

0.2 3.7157 3.6933 3.9963

1 0.05 3.9293 3.9610 3.9444

0.1 3.7270 3.6760 3.7865

0.2 3.1471 3.0750 3.2637

1.5 0.05 4.2116 4.2849 4.2570

0.1 3.8982 3.8761 4.0250

0.2 3.1032 3.0505 3.3048

2 0.05 3.8657 4.0511 3.9444

0.1 3.6797 3.6714 3.7865

0.2 3.0783 3.1040 3.2637

2.5 0.05 3.9600 4.1423 4.0645

0.1 3.7311 3.6985 3.8683

0.2 3.0306 2.9520 3.2421

a

b

Nx

y

x

Nx

(a) 

(b) 

Fig. 5. Rectangular plate subjected to in-plane compression loading.
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Fig. 7. Buckling mode of simply-supported rectangular plates at various length-to-width ratios, t=b ¼ 0:01: (I) a=b ¼
0:5; (II) a=b ¼ 1; (III) a=b ¼ 1:5; (IV) a=b ¼ 2; (V) a=b ¼ 2:5:
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Fig. 6. Critical buckling load intensity factors, Kb; of simply-supported rectangular plates under uniaxial compression

at various length-to-width and thickness-to-width ratios.
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Numerical results for thick plates with thickness-to-width ratios, t=b ¼ 0:05; 0.1, skew angles,
a ¼ 0�; 15�; 30�; 45�; and various boundary conditions of SSSS, CCCC and FCFC, are compared
with those of Kitipornchai et al. [6] and presented in Table 8. In Table 8, S, C and F denote simply
supported, clamped and free boundary conditions, respectively. Based on the favorable
comparisons observed in Table 8, it can be concluded that the plate buckling load intensity
factors are well approximated by the meshfree method.

Figs. 10 and 11 show the variation of the buckling load intensity factor with different
skew angles at t=b ¼ 0:05 and 0.1, respectively. As expected, the shear-deformation effect
becomes more important as the plate thickness-to-width ratio, t=b; increases. It is observed
from these two figures that the buckling load intensity factor decreases with increasing thickness-
to-width ratio, t=b: This decrease in the buckling load intensity factor occurs most significantly for
the CCCC case. Also, the buckling load intensity factor is observed to increase with increasing
skew angles, a:

3.3.3. Rectangular plate in shear

We now consider the shear load buckling analysis of rectangular plates with simply supported
boundary conditions, see Fig. 12. The plate configurations considered here have a thickness-to-
width ratio of t=b ¼ 0:01 and with the length-to-width ratios of a=b ¼ 1; 2, 3, 4. Numerical results
compared with the exact solution [30] are presented in Table 9. The local shear buckling
coefficients, Ks; are non-dimensionalized in similar fashion to Kb in Eq. (22). Fig. 13 shows the
variation of the shear buckling load intensity factors with the length-to-width ratio. Fig. 14 plots
the local shear buckling modes for different length-to-width aspect ratios. It is observed
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b α

y

x

Nx
Nx

Fig. 8. Skew plate under uniaxial in-plane loading.

Particles

Gauss Points

Fig. 9. Particles and integration points for the skew plate.
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simultaneously from Table 9 and Fig. 13 that the critical shear load intensity factors decrease
rapidly as the plate aspect ratio a=b is increased from 1 to 4. Also it can be observed from Figs. 7
and 14 that the local shear buckling modes are clearly distinct from the axial compression
buckling modes.

4. Conclusions

A meshfree method based upon the reproducing kernel particle approximation, for the free
vibration and buckling analyses of thick plates, has been described. The approach discretizes the
domain in terms of particles and does not rely on the connectivity of elements as in the finite
element method. It can alleviate the difficulties of meshing or remeshing. However, a background
mesh is still used for Gauss integration. During numerical implementations, a generic particle is
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Table 8

Critical buckling load factors, Kb; for skew plates with various boundary conditions and under uniaxial loads

Boundary condition t=b Skew angle Present (Meshfree) Kitipornchai et al. [6] (pb-2 Ritz)

SSSS 0.1 0� 3.7270 3.7870

15� 4.0472 4.1412

30� 4.8534 4.9324

45� 7.6106 7.7236

0.05 0� 3.9293 3.9444

15� 4.3260 4.3280

30� 5.3874 5.4182

45� 8.6926 8.7382

CCCC 0.1 0� 8.1849 8.2917

15� 8.7560 8.7741

30� 10.3273 10.3760

45� 13.2881 13.6909

0.05 0� 9.5418 9.5588

15� 10.2123 10.2312

30� 12.5225 12.5711

45� 17.8211 17.9652

FCFC 0.1 0� 3.5063 3.5077

15� 3.7684 3.7937

30� 4.7773 4.8043

45� 6.3092 6.3311

0.05 0� 3.7984 3.8007

15� 4.1310 4.1387

30� 5.3510 5.3660

45� 7.3658 7.4670
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influenced by others within its domain of influence, and usually the numbers should be large
enough to avoid singularity of the stiffness matrices. This causes the computing cost to be higher
than that of the FEM.

In this paper, the transverse shear effect is accounted for using the first order shear-deformation
theory of the Mindlin/Reissner type. As cubic and quadratic kernel functions were adopted in the
computation, no shear and membrane locking was observed. Transformation algorithms have
been used to impose the essential boundary conditions. Consequently, the essential boundary
conditions are imposed in a manner reminiscent of the FEM method. Numerical free vibration
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Fig. 11. Variation of critical buckling load, Kb; with skew angle, a; (a=b ¼ 1 and t=b ¼ 0:05).
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Fig. 10. Variation of critical buckling load factor, Kb; with skew angle, a; (a=b ¼ 1 and t=b ¼ 0:1).
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solutions for plates with different geometrical shapes and boundary conditions, and buckling
solutions with various aspect ratios, skew angles and boundary conditions subjected to uniaxial
compression and pure shear loading show that the present approach is an accurate and effective
tool for this class of problems.
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Fig. 12. A rectangular plate subjected to pure shear.

Table 9

Shear buckling factors, Ks; of simply supported rectangular plates at various length-to-width ratios. The thickness-to-

width ratio is taken to be t=b ¼ 0:01

a=b Present (Meshfree) Azhari et al. [30] (Exact)

1 9.3962 9.34

2 6.3741 6.34

3 5.7232 5.784

4 5.4367 5.59
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Fig. 13. Variation of critical local shear buckling load intensity factor, Ks; with length-to-width ratio for simply-

supported rectangular plates, t=b ¼ 0:01:
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