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Abstract

Stability of the parametrically excited torsional vibrations of shafts connected to mechanisms with
position-dependent inertia is studied via a version of Bolotin’s method. The shafts are considered to be
torsionally elastic, distributed parameter systems and discretized through a finite element scheme. The
mechanisms are modelled by a linearized Eksergian equation of motion. A general method of analysis is
described and applied to examples with slider–crank and Scotch-yoke mechanisms.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The torsional vibrations of a shaft connected to a mechanism with position-dependent inertia,
such as a linkage or cam mechanism, fall into the class of parametrically excited vibrations and, as
such, have a multitude of otherwise unexpected resonance conditions. These are generally
classified into two categories as parametric and combination resonances and the important
problem of determining their occurrence conditions is referred to as dynamic stability analysis.
More specifically, a stability analysis that deals only with parametric resonances is called
parametric stability analysis in contrast to complete stability analysis where both parametric and
combination resonances are considered.
Meyer zur Capellen [1] seems to be the first to give a comprehensive treatment of the problem.

He considered a four bar mechanism with torsionally elastic input and output shafts, modelled the
shafts as massless torsional springs carrying heavy flywheels, linearized the equation of motion of
the mechanism and has shown that the motion of the system is governed by a system of Hill’s
equations. Along with other results, he presented those of a parametric stability analysis based on
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analog computer calculations. Later, Pasricha and Carnegie [2,3] considered the torsional
vibrations of the crankshafts of reciprocating engines. They gave the linearized equations of
motion of multi-cylinder engines [3] and presented a parametric stability analysis for the special
case of a single-cylinder engine [2]. Zadoks and Midha [4,5] and Weyh and Kostyra [6,7] revisited
the dynamic stability analysis problem of crank-shafts to provide (not only parametric, but)
complete stability analyses via new and interesting methods. A single-cylinder engine was
considered in Refs. [4,5] and up to six-cylinder engines were considered in Refs. [6,7]. The
mathematical models used in Refs. [2–7] were similar to that described in Ref. [1]. Specifically, the
crankshaft portions were always represented by massless torsional springs.
Unlike others, Koser and Pasin [8,9] considered the continuous model of a shaft driving a

mechanism with position-dependent inertia and gave perturbation solutions for the forced
torsional vibrations. A stability analysis could, however, not be performed due to the lack of a
counterpart of Floquet theory in the area of partial differential equations.
The purpose of the present work is to introduce distributed parameter modelling of the shaft in

the stability analysis of its torsional vibrations. To this end, a continuous shaft, carrying a heavy
flywheel at one end, and connected to a mechanism with position dependent inertia at an arbitrary
station is considered. A finite element discretization is then applied to the shaft, and the
mechanism’s non-linear Eksergian equation of motion is linearized about a non-oscillating
nominal rotational motion. Application of a generalized Bolotin method given by Turhan [10] is
described for complete stability analysis of the resulting multi-degrees-of-freedom discrete model.
Numerical examples are given for shafts connected to slider–crank and Scotch-yoke mechanisms.
But as the over-dimensionality of the problem prevented a complete stability analysis from being
performed to an adequate degree of approximation, the numerical part of the study essentially
remained in the framework of parametric stability analysis.

2. Formulation of the problem

Consider a torsionally elastic, circular cross-section shaft with mass density r; shear modulus G;
polar area moment of inertia Jp and length c; attached at one end to a flywheel with mass moment
of inertia I0 and connected, at a station k; to a mechanism whose generalized inertia can be
expressed as

IðjkÞ ¼ %I þ a *IðjkÞ; ð1Þ

where *IðjkÞ is a 2p periodic function of its argument (Fig. 1). Although it may also be interesting
to study the effect of the flywheel inertia on the dynamics of the system, it will be assumed in this
study that I0 is large enough so that the left end of the shaft rotates at constant rate O0: Whence
j0 ¼ %j0 þ O0t; where %j0 is an initial angular displacement.
Let a synthetical approach be adopted in the formulation of the equations of motion and,

accordingly, consider first the mechanism and the shaft separately. Under the assumption that no
force is acting on the mechanism, except the reaction torque—T of the shaft, the mechanism’s
equation of motion can be written as

IðjkÞ � .jk þ
1

2
I 0ðjkÞ � ’j

2
k ¼ �T ; ð2Þ
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where overdots denote differentiation with respect to time and primes denote differentiation with
respect to jk: This equation, which is known in dynamics of machinery circles as the Eksergian
equation of motion [11], is strongly non-linear. In order to linearize it, let one first introduce
torsional co-ordinates y to replace the rotational co-ordinates j; so that for any ith station of the
shaft

ji ¼ j0 þ yi ¼ %j0 þ O0t þ yi; ’ji ¼ O0 þ ’yi; .ji ¼ .yi; ð3Þ

and assume that the time origin is so chosen that when t ¼ 0 and yk ¼ 0 the mechanism is at its
reference position jk ¼ 0: Whence %j0 ¼ 0: Then insert Eq. (3) into Eq. (2) whose left side thus
becomes a function of the arguments yk; ’yk and .yk: Expand this function into a McLaurin series of
its arguments and retain only linear terms (small torsional displacements assumption) to obtain

IðO0tÞ � .yk þ I 0ðO0tÞ � O0 � ’yk þ
1

2
� I 00ðO0tÞ � O20 � yk þ

1

2
� I 0ðO0tÞ � O20 ¼ �T ; ð4Þ

as the linearized equation of motion of the mechanism.
Next, consider the elastic shaft and let a discrete model of it be obtained via finite element

method. Thus, divide the shaft into N elements with equal lengths, each possessing three nodes
(one of which is an internal node placed at the middle), adopt a quadratic interpolation scheme,
assume that the attachment point of the mechanism coincides with the kth node, introduce
Rayleigh damping and obtain

rJpc �M � .h þ ðcK � Kþ cM �MÞ � ’h þ
GJp

c
� K � h ¼ ek � T ; ð5Þ
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as the equation of the torsional vibrations of the shaft. In Eq. (5), cK and cM are damping
proportionality coefficients, h ¼ fy1; y2;y; y2Ng

T is the ð2N 
 1Þ nodal co-ordinates matrix, ek is
the kth 2N-dimensional unit vector such as e3 ¼ f0; 0; 1; 0; 0;y; 0gT for example, and rJpc �M
and ðGJp=cÞ � K are ð2N 
 2NÞ consistent, global mass and stiffness matrices obtained by taking
into account the fact that y0 ¼ 0: The structures of the matricesM and K are given in Appendix A.
The equations of motion of the system can be obtained by substituting for T from Eq. (4) with

yk ¼ eTk � h into Eq. (5). Introducing the change of variable t ¼ O0t ð¼ j0Þ and evoking Eq. (1)
this yields, with Oa0

½Mþ ½bþ l *IðtÞ� � eke
T
k � � h

00 þ
2z
O
ðKþ gMÞ þ l *I0ðtÞ � eke

T
k

� �
� h0

þ
1

O2
� Kþ

1

2
l *I00ðtÞ � eke

T
k

� �
� h ¼ �

1

2
l *I0ðtÞ � ek; ð6Þ

where primes denote differentiation with respect to t; and the dimensionless parameters

O ¼
O0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k�=m�p ; b ¼
%I

m�; l ¼
a

m�; z ¼
cK

2
ffiffiffiffiffiffiffiffiffiffiffiffi
k�m�

p ; g ¼
cM

cK

;

k� ¼
GJp

c
; m� ¼ rJpc ð7Þ

are used.

3. Stability analysis

Eq. (6) constitutes a system of 2N Hill’s equations with 2p periodic coefficients. A stability
analysis can be carried out on its homogeneous part. To this end, let one first rearrange the
equation by multiplying it from the left by the inverse of the coefficients’ matrix of h00; which
according to Sherman–Morrison formula [12] can be written as

½Mþ ½bþ l � *IðtÞ� � eke
T
k �

�1 ¼ M�1 �
bþ l � *IðtÞ

1þ mkk � ½bþ l � *IðtÞ�
�M�1 � eke

T
k �M�1

� �
; ð8Þ

where mkk ¼ M�1
k;k; i.e. the kth row, kth column element of the inverse of M. The result is

h00 þ PðtÞ þ
1

O
�QðtÞ

� �
� h0 þ RðtÞ þ

1

O2
� SðtÞ

� �
� h ¼ 0; ð9Þ

where

PðtÞ ¼ lA � ½I� A � f ðtÞ� � *I0ðtÞ; QðtÞ ¼ 2z½I� A � f ðtÞ� � ½Bþ gI�;

RðtÞ ¼
1

2
lA � ½I� A � f ðtÞ� � *I00ðtÞ; SðtÞ ¼ ½I� A � f ðtÞ� � B; ð10Þ

with

A ¼ M�1 � eke
T
k ; B ¼ M�1K; f ðtÞ ¼

bþ l *IðtÞ
1þ mkk½bþ l *IðtÞ�

: ð11Þ
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Note that the use of Sherman–Morrison formula allowed the variable terms to be kept apart in
the formulation. This feature is of great utility in numerical calculations.
The stability of the solutions of Eq. (9) will be studied via the Generalized Bolotin Method

described in Ref. [10]. This method is based on the Floquet theory and gives the stability
boundaries on a two-dimensional parameter space. Thus, evoke first the Floquet theory according
to which a solution of Eq. (9) can be written as a product of an exponential part and a 2p periodic
part. Representing the periodic part by its complex Fourier series expansion, this solution can be
written as

hðtÞ ¼ ert
XN

r¼�N

Dre
irt; ð12Þ

where r represents the Floquet (or characteristic) exponent and Dr’s are unknown 2N 
 1
complex Fourier coefficients’ matrices. Inserting solution (12) into Eq. (9), representing the 2p
periodic matrices PðtÞ; QðtÞ; RðtÞ and SðtÞ by their complex Fourier series expansions up to the
mth harmonic, and collecting equal powers of eit; Eq. (9) gives

ðrþ irÞ2Dr þ
Xm

p¼�m

ðrþ iqÞðPp þ
1

O
QpÞ þ ðRp þ

1

O2
SpÞ

� �
Dq ¼ 0;

r ¼ y;�2;�1; 0; 1; 2;y; q ¼ r � p; ð13Þ

where Pp; Qp; Rp and Sp are the pth complex Fourier coefficients’ matrices of the related matrices.
Eq. (13) constitutes an infinite system of homogeneous algebraic equations for the unknown
vectors Dr: This system may conveniently be written in a hyper-matrix/vector form as

r2Iþ r E0 þ
1

O
E1

� �
þ F0 þ

1

O
F1 þ

1

O2
F2

� �� �
D ¼ 0; ð14Þ

where D is an infinite hyper-vector defined as D ¼ fy;DT
�2;D

T
�1;D

T
0 ;D

T
1 ;D

T
2 ;ygT; I is the

infinite-dimensional unit matrix and Ei; Fi’s are infinite-dimensional hyper-matrices made up of
2N 
 2N sub-matrices given by

E
r;q
0 ¼ Pp þ 2irIdrq; E

r;q
1 ¼ Qp;

F
r;q
0 ¼ Rp þ iqPp � r2Idrq; F

r;q
1 ¼ iqQp; F

r;q
2 ¼ Sp; ð15Þ

where drq is the Kronecker delta and the superscripts r and q refer to the hyper-row and column
indices. In order for Eq. (9) to admit a non-trivial solution of form (12), the determinant of the
coefficients’ matrix of Eq. (14) must vanish:

det r2Iþ r E0 þ
1

O
E1

� �
þ F0 þ

1

O
F1 þ

1

O2
F2

� �� �
¼ 0: ð16Þ

This equation can be used to calculate the O values corresponding to stability boundaries
on a parameter space, which has O as one of its components, provided that the value
of the Floquet exponent r on those boundaries is known. In fact, it is known that on
harmonic and sub-harmonic parametric resonance boundaries a certain sth exponent takes,
respectively, the values

rs ¼ 0; ð17Þ
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and

rs ¼
i

2
: ð18Þ

Furthermore, it can be shown [10] that for a non-canonical system such as the one considered
here, on a combination resonance boundary a certain pair ðrs;rtÞ; sat of Floquet exponents take
values so that

rs þ rt ¼ 0: ð19Þ

Whence, putting r ¼ 0 from Eq. (17) into Eq. (16), one has for harmonic parametric resonance
boundaries

det F0 þ
1

O
F1 þ

1

O2
F2

� �
¼ 0; ð20Þ

and putting r ¼ i=2 from Eq. (18) into Eq. (16) one has for sub-harmonic parametric resonance
boundaries

det F0 þ
i

2
E0 �

1

4
I

� �
þ
1

O
F1 þ

i

2
E1

� �
þ
1

O2
F2

� �
¼ 0; ð21Þ

while for combination resonance boundaries, first linearize the matrix polynomial of Eq. (16),
which is a monic matrix polynomial of second degree in r; to obtain the Hill’s determinant of the
problem

det U0 þ
1

O
U1 þ

1

O2
U2

� �
� rI

� �
¼ 0; ð22Þ

where

U0 ¼
�E0 �F0

I 0

" #
; U1 ¼

�E1 �F1

0 0

" #
; U2 ¼

0 �F2

0 0

" #
: ð23Þ

Then introduce the bi-alternate sum matrices BðUiÞ of the matrices Ui; which have the property of
having as eigenvalues, the sums of the eigenvalues of the argument matrix taken in pairs [13] (see
Refs. [10] or [13] for the construction of these matrices) and write in view of Eqs. (19) and (22)

det BðU0Þ þ
1

O
BðU1Þ þ

1

O2
BðU2Þ

� �
¼ 0; ð24Þ

for combination resonance boundaries. O values corresponding to stability boundaries can be
calculated from Eqs. (20), (21) and (24) by solving an eigenvalue analysis problem. To this end,
note that all the three equations are of the form

det M0 þ
1

O
M1 þ

1

O2
M2

� �
¼ 0; ð25Þ

thus, involving matrix polynomials of second degree in 1=O: Multiplying by O2 and linearizing,
one may write

det
�M�1

0 M1 �M�1
0 M2

I 0

" #
� OI

" #
¼ 0; ð26Þ
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whenever M0 is invertible. When this is not the case, first put 1=O ¼ 1= %Oþ 1=d (where 1=d is a
scalar not equalling a proper value of the matrix polynomial in question) into Eq. (25) and solve
Eq. (26) with

%M0 ¼ M0 þ
1

d
M1 þ

1

d2
M2; %M1 ¼ M1 þ

1

2d
M2; %M2 ¼ M2; ð27Þ

for %O; and then calculate O as O ¼ d %O=ðdþ %OÞ:
Now, a few words on the implementation of the above-described method are in order. First, let

one note that, if the Fourier series of the solution given in equation (12) is truncated at the Rth
harmonic (meaning that approximations for up to the Rth order instability regions will be
obtained, the last ones being the least reliable), the order of the eigenvalue analysis problem of
Eqs. (20) and (21) is Z1 ¼ 4Nð2R þ 1Þ and that of the Eq. (24) is Z2 ¼ Z1ðZ1 � 1Þ; where N is the
finite element number used in modelling the shaft. Notice that these dimensions may grow
prohibitive for large values of N and R: Second, one should realize that all the O values calculated
through Eqs. (20), (21) and (24) are not admissible. One has to eliminate (a) those O values that
are not real numbers, and (b) those corresponding to unconverged ðrs; rtÞ pairs or to pairs whose
imaginary parts violate the inequality �1

2
oImðrs;tÞo1

2
: Condition (a) that follows from obvious

physical considerations applies to any of problems (20), (21) and (26), and its implementation
does require no additional effort. Condition (b) is ultimately related to the redundant and periodic
(i periodic in r ) nature of the Hill’s determinant of Eq. (22). As a result of this, an Z1th order
segment of it, gives Rth order approximations to the 4N Floquet exponents r; �1

2pImðrÞp1
2 of

the problem, and diminishing order approximations to their congruents r7ri; r ¼ 1; 2;y;R: A
calculated Floquet exponent can be qualified as converged if it satisfies the above-mentioned
inequality and its first congruent also appear to within a prescribed tolerance. Thus, condition (b)
applies only to problem (26) and its implementation requires the corresponding r values be
calculated through Eq. (22).

4. Applications

The above-described method has been applied to two different examples, in the first of which
the shaft is connected to a slider–crank mechanism and in the second to a Scotch-yoke
mechanism. The calculations are performed by means of a special FORTRAN code developed for
implementing the proposed method.

4.1. Shaft connected to a slider–crank mechanism

Let the shaft be connected to a centric slider–crank mechanism attached to its right end so that
the attachment station number is k ¼ 2N: Although an exact analysis is also possible, let the
generalized inertia IðtÞ of the mechanism be determined in an approximate sense. To this end,
consider the slider–crank mechanism depicted in Fig. 2 and introduce the following assumptions:
(i) assume that the connecting rod is designed so that cAðc� cAÞ ¼ i2S3 where iS3 is the centroidal
radius of gyration. Under this assumption, which is at least approximately true for most high-
speed slider–crank mechanisms, the slider-connecting rod sub-system is dynamically equivalent to
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the point masses

mA ¼ 1�
cA

c

� 	
� m3; mB ¼

cA

c
� m3 þ m4; ð28Þ

placed at the joints A and B; respectively. (ii) Assume that the ratio m ¼ r=c is small enough (It is
at the order of 14

1
5 in most practical slider–crank mechanisms.), so that the slider position whose

exact expression is xðtÞ ¼ r cos tþ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2 sin2 t

q
can be approximated by

xðtÞ ¼ r cos tþ c 1�
1

2
m2 sin2t

� 	
; ð29Þ

obtained by expanding the exact expression into a binomial series and neglecting higher than the
second order terms in m: Under these assumptions, one obtains, after necessary calculations

%I ¼ m2i
2
0 þ mA þ

mB

2
1þ

m2

4

� 	� �
� r2; a ¼

1

2
mBr2;

*IðtÞ ¼ m cos t� cos 2t� m cos 3t�
m2

4
cos 4t; ð30Þ

where i0 is the crank arm’s radius of gyration with respect to the fixed pivot O.
Prior to the stability analysis, the dimensionless natural frequencies %oi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
rc2=G

q
� oi; i ¼

1; 2;y of a shaft fixed at one end and carrying a disk of constant moment of inertia %I at the other
are calculated through FEM for different values of element number N and of moment of inertia
ratio b: These results are compared on Table 1 to those obtained by solving the exact frequency
equation

cos %o� b %o sin %o ¼ 0: ð31Þ
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Inspection of this table shows that even N ¼ 2 may be enough for accurate prediction of the
fundamental frequency but in order to have a first few natural frequencies accurately predicted
one has to use at least N ¼ 5 elements. This implies that no less than 5 elements should be used in
a stability analysis where the effects of higher modes are to be considered.
Stability analysis results will be presented in the form of stability charts constructed on a O–l

parameter plane. The frequencies given in Table 1 will also be useful in predicting the locations of
the resonance regions on these charts. To this end it suffices to recall that, in the absence of
damping, the kth order harmonic and sub-harmonic parametric resonance regions of the ith mode
will emanate, respectively, from the points

OHik ¼
%oi

k
; OSik ¼

2 %oi

ð2k � 1Þ
; k ¼ 1; 2;y;R; ð32Þ

of the O axis, while the kth order sum and difference type combination resonance regions of the i
and jth modes will emanate from

OC7
ijk ¼

%oj7 %oi

k
; j > i: ð33Þ

For stability analysis, a numerical example with m ¼ 0:25; b ¼ 1; z ¼ 0:0001; g ¼ 1 is
considered. m ¼ 4 is set in Eq. (13) in consistency with Eq. (30) where a four harmonics
approximation is adopted for *IðtÞ: The elements of the complex Fourier coefficients’ matrices Pp;
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Table 1

Comparison of FEM and exact natural frequency calculations

$1 $2 $3 $4 $6 $8 $10

b ¼ 0

N ¼ 2 1.571199 4.790216 8.778561 14.096046 — — —

N ¼ 5 1.570807 4.714858 7.883466 11.138199 18.717519 28.364020 38.107046

N ¼ 10 1.570797 4.712549 7.855993 11.006081 17.371554 23.951078 30.702345

N ¼ 20 1.570796 4.712399 7.854110 10.996261 17.285195 23.591362 29.937389

Exact 1.570796 4.712389 7.853982 10.995574 17.278760 23.561945 29.845130

b ¼ 1

N ¼ 2 0.860354 3.444298 6.487839 11.436766 — — —

N ¼ 5 0.860334 3.426133 6.448698 9.603700 15.878412 25.697553 36.405206

N ¼ 10 0.860334 3.425651 6.438051 9.534555 15.831526 22.325413 29.128519

N ¼ 20 0.860334 3.425621 6.437346 9.529672 15.775389 22.057731 28.381250

Exact 0.860334 3.425618 6.437298 9.529334 15.771285 22.036497 28.309643

b ¼ 5

N ¼ 2 0.432841 3.217025 6.357470 11.364069 — — —

N ¼ 5 0.432841 3.204303 6.325174 9.516738 15.824612 25.664293 36.396098

N ¼ 10 0.432841 3.203958 6.315530 9.450941 15.779908 22.286220 29.090290

N ¼ 20 0.432841 3.203936 6.314889 9.446271 15.724723 22.021296 28.352641

Exact 0.432841 3.203935 6.314846 9.445948 15.720685 22.000239 28.281406
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Qp; Rp and Sp; p ¼ �4;�3;y; 0;y; 3; 4 are calculated through numerical integration by using
Simpson’s rule.
First, O values corresponding to parametric resonance boundaries are calculated from Eqs. (20)

and (21) for given l values and with different values of element number N and truncation number R

of the Fourier series of Eq. (12). After a number of trials it has been seen that parametric stability
analysis results converge, in a broad range of the parameters O and l; when these values are set to
N ¼ 20 and R ¼ 10: Figs. 3(a)–(c) depict stability charts obtained with three different combinations
of N and R: The charts contain velocity ranges at the order of the fundamental resonance frequency
$1 ¼ 0:860334 (see Table 1, b ¼ 1). An inspection of these figures shows that the combination
N ¼ 5; R ¼ 10 (Fig. 3(b)) is adequate in the considered parameter range, in the sense that in that
range its results closely simulate those obtained with N ¼ 20; R ¼ 10 (Fig. 3(a)). It may also be seen
that the combination N ¼ 2; R ¼ 3 (Fig. 3(c)) is satisfactory in predicting the fundamental
harmonic resonance region but not elsewhere. These results are in accordance with those obtained
by inspecting Table 1 and imply that at least N ¼ 5; R ¼ 10 should be used in the analysis. But,
matrix dimensions are then Z1 ¼ 420 in parametric stability analysis (Eqs. (20) and (21)) and Z2 ¼
175980 in the determination of the boundaries of combination resonance regions (Eq. (24)). As the
value of Z2 is beyond acceptable limits, the determination problem of the combination resonance
regions could, unfortunately, not be solved at that level of approximation. It has been decided,
therefore, to give for each problem, a relatively accurate parametric stability chart obtained with
N ¼ 5; R ¼ 10 accompanied with a coarse approximation complete stability chart obtained with
N ¼ 2; R ¼ 3 ðZ1 ¼ 56; Z2 ¼ 3080Þ: Though not of desired accuracy, this latter will give an idea on
the combination resonances, which will prove to be effective in the considered problem class.
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Fig. 3. Parametric stability charts with different N and R values. (a) N ¼ 20;R ¼ 10; (b) N ¼ 5;R ¼ 10; (c) N ¼
2;R ¼ 3 (Slider–crank; m ¼ 0:25; b ¼ 1; z ¼ 0:0001; g ¼ 1) (\\\: harmonic, ///: sub-harmonic resonance zones).
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Fig. 4(a) is a zoom to the lower velocity ranges of the parametric stability chart of Fig. 3(b), and
Fig. 4(b) is the coarse approximation complete stability chart, in the sense described above. To
facilitate interpretation of these charts, some of the unstable zones (cross-hatched regions) are
labelled according to their emanation points as described in Eqs. (32) and (33).
An inspection of Figs. 3 and 4 shows that spread out among the instability zones of the first

torsional mode, are numerous parametric resonance zones related to higher modes and
considerable combination resonance zones. Moreover, some of these zones, such as OH25 and
OS26 for example (see Fig. 4(a)), range below the fundamental resonance frequency. Noting that
these resonances could not be predicted through a massless shaft model, one concludes that
continuous modelling of the shaft is indispensable for a thorough stability analysis of the
considered system.
On the other hand, one notes from Fig. 4(a) that up to the sixth order instability regions of the

first mode attain an observable width in the considered range of l: This implies that rotation rates
as low as one-sixth of the fundamental torsional natural frequency of the shaft may be unsafe for
the considered example, which is very slightly damped ðz ¼ 0:0001Þ:
Fig. 5 corresponds to a damping factor value of z ¼ 0:01 and shows the effect of damping on

the stability of the above considered shaft. Comparing Figs. 3–5 one concludes that the most
obvious effects of damping are to eliminate the higher order instability regions with small width
and to push all the instability regions towards larger l values by rounding the points of the
instability horns. Thus, damping has a stabilizing effect on the torsional vibrations of the shaft. It
should, however, be noted that the Rayleigh damping model adopted in this study is rather of a
formal nature and that, as compared to the actual material damping, it has the tendency of
exaggerating the effect of damping with increasing O:
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Fig. 4. Stability charts for slider–crank ðm ¼ 0:25; b ¼ 1; z ¼ 0:0001; g ¼ 1Þ: (a) Detail from Fig. 3(b), (b) complete

analysis (coarse approximation) (\\\: harmonic, ///: sub-harmonic, 
: combination resonance zones).
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Finally, Fig. 6 shows stability charts of the above example with z ¼ 0:0001 and b ¼ 5:
Comparing to Figs. 3 and 4 one notes that the instability regions are now shifted towards smaller
O values, this effect being especially pronounced for the instability regions related to the first
torsional mode. This is due to the fact that the fundamental frequency is now reduced to $1 ¼
0:432841 (see Table 1, b ¼ 5). Also, as the first two natural frequencies of the shaft are now better
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Fig. 5. Stability charts for slider–crank ðm ¼ 0:25; b ¼ 1; z ¼ 0:01; g ¼ 1Þ: (a) Parametric, (b) complete (coarse

approximation) (\\\: harmonic, ///: sub-harmonic, 
: combination resonance zones).

Fig. 6. Stability charts for slider–crank ðm ¼ 0:25;b ¼ 5; z ¼ 0:0001; g ¼ 1Þ: (a) Parametric, (b) complete (coarse
approximation) (\\\: harmonic, ///: sub-harmonic, 
: combination resonance zones).
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separated, the parameter ranges dominated by the instability zones of the fundamental mode are
now less subjected to the intervention of those of the second mode.

4.2. Shaft connected to a Scotch-yoke mechanism

Let the shaft be connected to a Scotch-yoke mechanism (Fig. 7) attached again at its right end
ðk ¼ 2NÞ: For this simple mechanism one has

%I ¼ m2i
2
0 þ m3 þ

m4

2

� �
r2; a ¼

1

2
m4r

2; *IðtÞ ¼ �cos 2t; ð34Þ

where i0 is the second link’s radius of gyration with respect to the fixed pivot O.
Two numerical examples are considered where z ¼ 0:0001 and g ¼ 1: m ¼ 8 is set in Eq. (13)

and again N ¼ 5; R ¼ 10 are taken in parametric stability analysis while taking N ¼ 2; R ¼ 3 in
complete stability analysis. The first example corresponds to b ¼ 1 and the resulting stability
charts are given in Figs. 8(a) and (b). A portion Oo0:4 of the stability chart is not shown on
Fig. 8(a) because no instability region of observable width has been obtained in that region. Also,
no sub-harmonic parametric resonance region of finite width has been obtained for this example.
Comparing Figs. 8(a) and (b) to their counterparts with slider–crank mechanism (Figs. 3(b) and
4(b)) one observes that there is a certain resemblance with respect to harmonic resonances but
that, in general, the shaft with Scotch-yoke mechanism is less prone to go unstable. The second
example corresponds to b ¼ 5 and the resulting stability charts are given in Figs. 9(a) and (b). It
can be seen that sub-harmonic resonance regions are now present, most of them being in the
curious form of ‘‘S’’-shaped narrow bands (Fig. 9(a)).
Before closing this section, let one redraw attention to the existence of well-pronounced

combination resonance regions in all of the considered cases (Figs. 4(b), 5(b), 6(b),8(b), 9(b))
and note that this feature is not shared by any practical dynamic stability analysis problem.
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Fig. 7. Scotch-yoke mechanism.
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5. Conclusions

A general method of dynamic stability analysis is described for FEM-modelled continuous
shafts connected to mechanisms with position dependent inertia. Numerical examples are given
for shafts connected to slider–crank and Scotch-yoke mechanisms. In the numerical examples, the
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Fig. 9. Stability charts for scotch–yoke ðb ¼ 5; z ¼ 0:0001; g ¼ 1Þ: (a) Parametric, (b) complete (coarse approximation)
(\\\: harmonic, ///: sub-harmonic, 
: combination resonance zones).

Fig. 8. Stability charts for scotch–yoke ðb ¼ 1; z ¼ 0:0001; g ¼ 1Þ: (a) Parametric, (b) complete (coarse approximation)
(\\\: harmonic, 
: combination resonance zones).
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determination problem of the combination resonances could, however, not be considered to a
desired degree of accuracy, due to its over-dimensionality.
The considered examples have shown that both parametric and combination resonances related

to higher torsional modes of the shaft have considerable effects on its stability performance.
Moreover, when the system is slightly damped and the constant part of the generalized inertia of
the attached mechanism is relatively small (so that the first two natural frequencies of the shaft are
not well separated) these effects can be observed at velocity ranges where the resonance zones of
the first mode are expected to dominate. It is, therefore, concluded that continuous modelling of
the shaft is indispensable for a thorough stability analysis of its torsional vibrations.
Among the two considered mechanisms, the slider–crank is determined to be the worst in the

sense that it has a stronger destabilizing effect on its shaft. It is shown that for a shaft connected at
one end to that kind of mechanism, rotation rates as low as one-sixth of the fundamental torsional
frequency may be unsafe if no sufficient damping is present.

Appendix A

Details of construction of global mass and stiffness matrices in the analysis of torsional (or
longitudinal) vibrations of prismatic bars can be found in many textbooks (see for example, Ref. [14]).
The non-dimensional parts of these matrices, corresponding to quadratic interpolation function,
internal node placed at the middle of each element, consistent mass matrix, bar with left end fixed and
element number N (matrix dimensions: 2N 
 2N), are reproduced here for completeness.

K ¼
N

3
�

16 �8

�8 14 �8 1 0

�8 16 �8

1 �8 14 �8 1

&

1 �8 14 �8 1

0 �8 16 �8

1 �8 7

2
666666666666664

3
777777777777775

; ðA:1Þ

M ¼
1

30N
�

16 2

2 8 2 �1 0

2 16 2

�1 2 8 2 �1

&

�1 2 8 2 �1

0 2 16 2

�1 2 4

2
666666666666664

3
777777777777775

: ðA:2Þ
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