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Abstract

The problem of propagation of waves in multilayered anisotropic poroelastic medium is studied using the
technique of transfer matrix. The model consists of a stack of anisotropic poroelastic solid layers overlying
an anisotropic elastic solid layered half-space. The whole layered medium is lying under fluid half-space.
The transfer matrices for anisotropic poroelastic layer and anisotropic elastic solid layer are derived. Using
these matrices, reflection and transmission coefficients for the waves propagating in considered
multilayered model are evaluated. The interface between the two stacks is considered to be imperfect
and modified boundary conditions are applied thereat. Numerical computations are done for a particular
model. The effects of porosity, anisotropy of the layers, thickness of the layers and imperfect bonding are
studied on the wave propagation through the considered model. The results indicate that anisotropy of
half-space is a very dominant property influencing the reflection–refraction phenomenon. Also, it is noticed
that the imperfection of interface is accompanied by the dissipation of energy and the interface acts as an
absorbing boundary.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The concepts of fluid-saturated porous media have gained much attention in past years. The
theory of poroelasticity has been proposed as a model for sediments to account for the acoustic
and other properties which are not described by the fluid and the elastic theory alone. Biot [1,2]
initiated the theory for elastic wave propagation in porous saturated materials which is very much
general in nature and is formulated in such a way that quite general forms of solid and fluid may
be incorporated, so representing a potentially powerful tool for studying the behavior of many
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different kinds of porous media. The theory takes into account the motion of the fluid and
interconnected voids of a porous material and predicts the existence of three types of body waves,
two dilatational and one shear. Practically, the saturated porous materials are anisotropic due to
bedding, compaction and presence of micro-cracks. For instance, shales are naturally bedded and
possess intrinsic anisotropy at the microscopic level. Similarly, compaction and presence of micro-
cracks and fractures make the skeleton of a porous rock anisotropic.
Wave propagation in layered media has been a field of interest to many researchers due to its

applications in different areas. The fundamental work on waves in layered media is reported in the
classical text by Brekhovskikh [3]. Kennet [4] presented a detailed and systematic work on seismic
wave propagation in stratified media. The ultrasonic of layered anisotropic media is very
important due to applications in surface acoustic wave devices and composites [5–7]. In most
ultrasonic applications, the transfer matrix method is utilized. The transfer matrix method in
standard form was developed for general anisotropy in Refs. [7–9]. Soldatos and Ye [10] studied
wave propagation in anisotropic laminated hollow cylinders of infinite extent.
Layered porous sequences have also attracted much attention because of their distinctive

properties which are the topic of modern research. The applications of studies of layered fluid-
saturated porous media cover a variety of fields, from physics to geophysics, engineering, soil-
mechanics, underwater acoustics and non destructive evaluation. Wave propagation through
layered porous media is analyzed by one or other method for many applications [11–17]. Reflection
and transmission of seismic waves at the boundary of porous media are integral part of seismic
studies of the earth’s interior. The phenomenon in such a layered medium gives interesting data
about mechanical and damping properties of the elementary layers and about effective media. The
details of the behavior of solid can be easily extracted from the reflected wave field in the fluid and
this study of influence of fluid loading on the interaction of elastic waves with elastic solids finds
applications in the fields of geophysics, engineering, underwater explosions and sonar systems.
However, most of the work has been performed by taking into account either one or two of the

physical properties of media at a time. The work presented, in this paper, is an effort to study the
combined effects of different physical properties of media, e.g., layering, anisotropy, porosity,
wave attenuation, imperfect boundaries, etc. on the propagation of waves. A multilayered model
consisting layered stacks A and B of anisotropic poroelastic solid and anisotropic elastic solid,
respectively, overlying an anisotropic elastic solid half-space is studied. First we summarize the
Biot’s theory of fluid-saturated poroelastic materials. The transfer matrices for anisotropic
poroelastic layer and anisotropic elastic solid layer are obtained. Employing the technique of
transfer matrices, the global matrices for the two stacks are determined. Imperfect bonding
between the two stacks and the modified boundary conditions are discussed thereat. The
analytical expressions of reflection and transmission coefficients in terms of the global matrix
elements are then obtained. Finally, the numerical computations are done by limiting the total
number of layers. The effects of variation in different properties of media are discussed in detail.

2. Biot theory for transversely isotropic porous solid and solutions of basic equations

According to Biot’s theory [1,2], homogeneous porous solid matrix and its saturating fluid are
treated in the manner of two interpenetrating elastic continua. Losses arise due to the viscous
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motion of the fluid with relative to the solid matrix and due to viscoelasticity of frame. The
equations of motion in a fluid-saturated porous medium are given by

ti1;1 þ ti2;2 þ ti3;3 ¼ r .ui þ rf
.Wi ði; j ¼ 1; 2; 3Þ;

� ðpf Þ;i ¼ rf .ui þ
#cirf

b
.Wi þ F #bi

’Wi; ð1Þ

where b is the porosity, tij are the total stress components acting on both the solid and fluid
phases, measured per unit area of the porous material, pf is the pore fluid pressure measured per
unit area of the fluid, rf is the mass density of the fluid, r is the bulk density of the porous
material, ui and Ui are the components of the average displacements of the solid and fluid phases
respectively, ’Wi ¼ bð ’Ui � ’uiÞ are the components of fluid-discharge velocity denoting the flow of
the fluid relative to the solid.
The dot ð:Þ denotes the differentiation with respect to time t and comma before an index denotes

the partial space derivative. The viscodynamic operator F ðkÞ represents the friction between the
solid and fluid phases. The forms of viscodynamic operator and the coefficient #bi were obtained by
Biot for isotropic porous materials assuming the pores to be either circular or flat.
For circular pores

#bi ¼
x
ki

; ð2Þ

where x and ki are the viscosity and permeability of the pore fluid, respectively.
For cylindrical pores, the permeability is given by

ki ¼
8

%a2

� �
di; ð3Þ

where %a is the pore size and di is the shape factor and its value is one for circular cylindrical pores.
The function F ðkÞ and k are defined as

F ðkÞ ¼
kTðkÞ

4f1� 2TðkÞ=ðikÞg
; TðkÞ ¼

ber0ðkÞ þ i bei0ðkÞ
berðkÞ þ i beiðkÞ

; k ¼ %a
orf

x

� �1=2
; ð4Þ

where berðkÞ and beiðkÞ are the real and imaginary parts of the Kelvin’s function and primes
denote their derivatives. o is the angular frequency.
The #ci in Eqs. (1) are experimentally determined parameters that account for the fact that not

all of the fluid moves in the direction of macroscopic pressure gradient because of the shape and
orientation of the interstitial cavities. In the case of straight pores, these constants are unity.
The constitutive equations for a transversely isotropic porous solid (TIPS) medium [18],

relating stresses to strains, are

txx ¼ 2B1exx þ B2ðexx þ eyyÞ þ B3ezz þ B6z;

tyy ¼ 2B1eyy þ B2ðexx þ eyyÞ þ B3ezz þ B6z;
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tzz ¼ B4ezz þ B3ðexx þ eyyÞ þ B7z;

tyz ¼ 2B5eyz;

tzx ¼ 2B5ezx;

tyz ¼ 2B1exy;

pf ¼ B6ðexx þ eyyÞ þ B7ezz þ B8z; ð5Þ

where

eij ¼
1

2

@ui

@xj

þ
@uj

@xi

� �
ð6Þ

is the strain tensor of the solid phase of the porous solid, and z ¼ div½bðu�UÞ
 is the increment of
fluid content per unit volume of the porous material, i.e., the amount of fluid which has flowed in
and out of the given element attached to the solid frame. The coefficients B1;B2;y;B8 appearing
in Eqs. (5) are elastic coefficients for a TIPS. These eight elastic coefficients are chosen in order to
constitute a symmetric matrix for transverse isotropic porous solid having z-axis as its axis of
vertical symmetry. These are evaluated by the method developed by Hashin and Rosen [19] and
by Christensen [20] for evaluating the material coefficients of composite materials. These are given
by

B1 ¼ m12;

B2 ¼ K12 � m12;

B3 ¼ 2n31K12;

B4 ¼ E33 þ 4n231K12;

B5 ¼ m13;

B6 ¼ �
Kf ðKs þ 4ms=3Þ

Kf þ ms þ bðKs þ ms=3� Kf Þ
;

B7 ¼ �Kf 1þ ð1� bÞ
2nsðKs þ ms=3Þ � Kf

Kf þ ms þ bðKs þ ms=3� Kf Þ

� �
;

B8 ¼
Kf ½ðKs þ ms=3Þbþ ms


Kf þ ms þ bðKs þ ms=3� Kf Þ
;

where

E33 ¼ ð1� bÞEs þ
4bð1� bÞð1=2� nsÞ

2

ð1� bÞ=Kf þ b=ðKs þ ms=3Þ þ 1=ms

;

n31 ¼ ð1� bÞns þ b=2þ
bð1� bÞð1=2� nsÞ½1=ðKs þ ms=3Þ � 1=Kf 


ð1� bÞ=Kf þ b=ðKs þ ms=3Þ þ 1=ms

;

K12 ¼ Ks þ
ms

3
þ

b
1=ðKf � Ks � ms=3Þ þ ð1� bÞ=ðKs þ 4ms=3Þ

;

m13 ¼
ð1þ bÞ
ð1� bÞ

ms; Es ¼ 2msð1þ nsÞ:
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The coefficient m12 is determined from the equation

A
m12
ms

� �2
þ2B

m12
ms

� �
þ C ¼ 0;

where

A ¼ �3bð1� bÞ2 � ðZs þ b3Þð1þ bZsÞ;

B ¼ 3bð1� bÞ2 þ ð1� bÞðZs � 1þ 2b
3Þ=2� b=2ðZs þ 1Þð1� b3Þ;

C ¼ �3bð1� bÞ2 þ ð1� bÞð1� b3Þ;

Zs ¼ 3� 4ns: ð7Þ

In the above relations, Ks; ms; Es and ns are the bulk modulus, shear modulus, Young’s modulus
and the Poisson ratio of the solid frame matrix, respectively. Kf is bulk modulus of the interstitial
pore fluid.
Consider two-dimensional wave motion in xz-plane. The plane harmonic wave solutions of

Eqs. (1) can be written in the form

ux ¼ a1 exp io t �
x

c
� qz

� �� �
;

uz ¼ a3 exp io t �
x

c
� qz

� �� �
;

Wx ¼ b1 exp io t �
x

c
� qz

� �� �
;

Wz ¼ b3 exp io t �
x

c
� qz

� �� �
; ð8Þ

where a1; a3; b1 and b3 are the wave amplitudes, c is the apparent phase velocity. Substituting these
solutions in Eqs. (1)–(6), we obtain a system of four equations in a1; a3; b1 and b3; the non-trivial
solution of this system exists when

fr� B5q
2 � ð2B1 þ B2Þ=c2g �ðB3 þ B5Þð

q
c
Þ ðB6=c2 þ rf Þ B6ð

q
c
Þ

�ðB3 þ B5Þð
q
c
Þ fr� B4q

2 � B5=c2g B7ð
q
c
Þ ðrf þ B7q

2Þ

ðB6=c2 þ rf Þ B7ð
q
c
Þ f�B8=c2 þ

#c1rf

b � iF #b1=og �B8ð
q
c
Þ

B6ð
q
c
Þ ðrf þ B7q

2Þ �B8ð
q
c
Þ f�B8q

2 þ
#c3rf

b � iF #b3=og

�����������

�����������
¼ 0: ð9Þ

Expansion of the determinant gives a cubic in q2 which can be written as

T0q
6 þ T1q

4 þ T2q
2 þ T3 ¼ 0; ð10Þ

where

T0 ¼ C11B5ðB27 � B4B8Þ;

T1 ¼ T11 þ T12=c2;

T2 ¼ T21 þ T22=c2 þ T23=c4;

T3 ¼ T31 þ T32=c2 þ T33=c4 þ T34=c6;
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T11 ¼ C11ðB4B8 � B27Þrþ C11rB5B8 þ 2C11rf B5B7 þ C11C33B4B5 � r2f ðB4B8 � B27Þ;

T12 ¼ C11ð2B1 þ B2ÞðB27 � B4B8Þ � C33B4B5B8 þ C33B5B
2
7 þ C11ðB23B8 þ 2B3B5B8Þ

� C11B6ð2B3B7 þ 2B5B7 � B4B6Þ;

T21 ¼ �C11r2B8 � 2C11rrf B7 � C33C11rðB4 þ B5Þ þ C11r2f B5 þ C33r2f B4 þ rr2f B8 þ 2B7r3f ;

T22 ¼ rðC11B5B8 þ C33B4B8Þ þ rC11ð2B1 þ B2ÞB8 þ 2C11B7rf ð2B1 þ B2Þ � C33rB27

þ C11C33B4ð2B1 þ B2Þ þ C33rB5B8 � 4r2f B5B8 � 2rf ðB3 þ B5ÞðC11B6 þ C33B7Þ

� 2r2f B3B8 � C11C33ðB23 � 2B3B5Þ þ 2C33rf B4B8 þ 2r2f B6B7 � C11rB26;

T23 ¼ C33B
2
7ð2B1 þ B2Þ � ðC11B5 þ C33B4Þfð2B1 þ B2ÞB8 � B26g þ C33ðB3 þ B5ÞðB3B8 � 2B6B7Þ;

T31 ¼ r2C11C33 � rr2f ðC11 þ C33Þ þ r4f ;

T32 ¼ rC33fC11ðB5 þ 2B1 þ B2Þ � rB8 � 2rf B6g þ r2f frB8 þ 2rf B6 þ C11ð2B1 þ B2Þ þ C33B5g;

T33 ¼ rC33B8ðB5 þ 2B1 þ B2Þ þ C33C11B5ð2B1 þ B2Þ þ r2f fB26 � B8ð2B1 þ B2Þg

þ C33B6ð2rf B5 � rB8Þ;

T34 ¼ C33B5fB26 � B8ð2B1 þ B2Þg;

C11 ¼
#c1rf

b
� i

F #b1

o
; C33 ¼

#c3rf

b
� i

F #b3

o
: ð11Þ

The roots of Eq. (10) are, in general, complex. We denote these roots by qðnÞ; n ¼ 1; 2;y; 6:
Three roots with positive real parts correspond to the waves traveling in the positive z direction
(downgoing waves) and the other three roots with negative real parts correspond to the waves
traveling in the negative z direction (upgoing waves). We order the six roots qðnÞ; n ¼ 1; 2;y; 6
such that qð1Þ; qð2Þ; qð3Þ correspond to the three upgoing waves, namely quasi-Pf ; quasi-Ps and
quasi-SV waves respectively; and qð6Þ; qð5Þ and qð4Þ correspond to the downgoing quasi-Pf ; quasi-
Ps and quasi-SV waves respectively.
Thus, we write

qð1Þ ¼ �qð6Þ; qð2Þ ¼ �qð5Þ; qð3Þ ¼ �qð4Þ: ð12Þ

Eq. (10), a cubic in q2; has three equal roots if

#Q ¼
T21 � 3T0T2

9T20
¼ 0;

and two equal roots, if

#R ¼
2T31 � 9T0T1T2 þ 27T

2
0T3

54T30
¼ 0:

In general, the expressions of #Q and #R are non-zero implying that all the roots of Eq. (10) are
distinct. It is unlikely that the roots are repeated. These three roots correspond to quasi-Pf ; -Ps
and -SV waves in transversely isotropic poroelastic medium. In case of isotropic poroelastic
medium, they reduce to the ones which are known to be distinct and correspond to Pf ; Ps and SV
waves respectively.
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The wave amplitudes a1; a3; b1 and b3 are obtained. These are given by

a1ðnÞ ¼
X1ðnÞ
X ðnÞ

; a3ðnÞ ¼
X2ðnÞ
X ðnÞ

; b1ðnÞ ¼
X3ðnÞ
X ðnÞ

; b3ðnÞ ¼
X4ðnÞ
X ðnÞ

; ð13Þ

where

X1ðnÞ ¼ q4ðnÞC11ðB4B8 � B27Þ

þ q2ðnÞfB8ðB5C11 þ B4C33Þ=c2 � 2C11rf B7 � rC11B8 þ C33ð�C11B4 � B27=c2Þg

þ C33
B8

c2
ðB5=c2 � rÞ � C11C33ðB5=c2 � rÞ þ r2f ðB8=c2 � C11Þ

� 	
;

X2ðnÞ ¼
q3ðnÞ

c
C11ðB6B7 � B3B8 � B5B8Þ

þ
qðnÞ

c
½fB7ðrf þ B6=c2Þ � B8ðB3 þ B5Þ=c2gC33


þ
qðnÞ

c
½C11rf B6 þ r2f B8 þ C33C11ðB3 þ B5Þ
;

X3ðnÞ ¼ q4ðnÞrf ðB
2
7 � B4B8Þ þ q2ðnÞfB4C33ðrf þ B6=c2Þ � ðC33B7 þ rf B8ÞðB3 þ B5Þ=c2g

þ q2ðnÞfrf B8ðr� B5=c2Þ þ rf B7ðrf þ B6=c2Þ þ B7r2f g

þ ðrf þ B6=c2Þðr2f � C33ðr� B5=c2ÞÞ;

X4ðnÞ ¼
q3ðnÞ

c
fC11ðB4B6 � B3B7 � B5B7Þ þ ðB4B8 � B27Þrf g þ

qðnÞ
c

� f�C11rf ðB3 þ B5Þ þ C11ðB5=c2 � rÞB6 þ rf B8ðB3 þ 2B5Þ=c2

� rrf B8 � rf B7ðrf þ B6=c2Þg;

and

X ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðX1ðnÞÞ

2 þ ðX2ðnÞÞ
2 þ ðX3ðnÞÞ

2 þ ðX4ðnÞÞ
2

q
:

The displacement components associated with the quasi body waves in a transversely isotropic
porous solid layer can, then, be written in the form

ux ¼
X6
n¼1

f ðnÞa1ðnÞ exp io t �
x

c
� qðnÞz

� �� �
;

uz ¼
X6
n¼1

f ðnÞa3ðnÞ exp io t �
x

c
� qðnÞz

� �� �
;
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Wx ¼
X6
n¼1

f ðnÞb1ðnÞ exp io t �
x

c
� qðnÞz

� �� �
;

Wz ¼
X6
n¼1

f ðnÞb3ðnÞ exp io t �
x

c
� qðnÞz

� �� �
; ð14Þ

where f ðnÞ are relative amplitudes of transmitted quasi-Pf ; quasi-Ps and quasi-SV waves to that of
incident wave.

3. Formulation of problem

We consider a stack A of transversely isotropic poroelastic solid (TIPS) layers over-
lying another stack B of transversely isotropic elastic solid (TIES) layers. Let medium A
has n layers and medium B has m layers. Thus, we have in total ðn þ mÞ layers and the
whole ðn þ mÞ-layered medium is underlying a fluid half-space (FHS) and overlying a trans-
versely isotropic elastic solid (TIES) half-space. The geometry of medium is shown in Fig. 1a.
Consider the case of incident P wave in the FHS which makes an angle y with the
normal to the boundary. Incidence of P wave at the interface between FHS and the first
TIPS layer results into one reflected P wave and three transmitted (quasi-Pf ; quasi-Ps and
quasi-SV) waves in the porous layer. These waves, when strike the next boundary, give
rise to three reflected waves and three transmitted waves and this process goes on. Similarly,
four quasi waves (two upgoing and two downgoing), propagate in TIES layer. Finally, two
waves (quasi-P and -SV) are transmitted into the TIES half-space, as shown in
Fig. 1a.
Consider the pth layer of thickness d ðpÞ bounded between the pth and ðp þ 1Þst interfaces.

The superscript ‘p’ is used to denote the quantities of the pth TIPS layer. The dis-
placements associated with the upgoing and downgoing body waves in pth TIPS layer are
written as

uðpÞx ¼
X6
n¼1

f ðpÞðnÞaðpÞ
1 ðnÞ exp io t �

x

c
� qðpÞðnÞz

� �� �
;

uðpÞz ¼
X6
n¼1

f ðpÞðnÞaðpÞ
3 ðnÞ exp io t �

x

c
� qðpÞðnÞz

� �� �
;

W ðpÞ
x ¼

X6
n¼1

f ðpÞðnÞbðpÞ1 ðnÞ exp io t �
x

c
� qðpÞðnÞz

� �� �
;

W ðpÞ
z ¼

X6
n¼1

f ðpÞðnÞbðpÞ3 ðnÞ exp io t �
x

c
� qðpÞðnÞz

� �� �
: ð15Þ
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Fig. 1. (a) Geometry of the medium; (b) core–mantle boundary model.
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4. Transfer matrix for anisotropic poroelastic layered stack

Let the displacement–stress field in pth TIPS layer be described by the column vector given by
VðpÞðzÞ ¼ ½uðpÞx uðpÞ

z W ðpÞ
z tðpÞzz tðpÞzx p

ðpÞ
f 
T: This can be expressed as the function of amplitudes by the

relation

VðpÞðzÞ ¼ ½GðpÞðzÞ
AðpÞ; ð16Þ

where AðpÞ ¼ ½ð f ðpÞð1Þ þ f ðpÞð6ÞÞ ð f ðpÞð1Þ � f ðpÞð6ÞÞ ð f ðpÞð2Þ þ f ðpÞð5ÞÞ ð f ðpÞð2Þ � f ðpÞð5ÞÞ ð f ðpÞð3Þ þ
f ðpÞð4ÞÞ ð f ðpÞð3Þ � f ðpÞð4ÞÞ
T is the amplitude vector, ½GðpÞðzÞ
 is the matrix of order 6 and its
elements are given in Appendix A.
The matrix relation (16) enables us to express the displacement–stress field at the upper surface

of the pth layer as the function of that at the lower surface. Eliminating the common amplitudes
from the equations

Vp ¼ ½Gp
AðpÞ and Vpþ1 ¼ ½Gpþ1
AðpÞ ð17Þ

we get

Vp ¼ ½Gp
½Gpþ1
�1Vpþ1; ð18Þ

where Vp; ½Gp
 and Vpþ1; ½Gpþ1
 are the values of VðpÞðzÞ and ½GðpÞðzÞ
 at pth and ðp þ 1Þst interface,
respectively, ½Gpþ1
�1 is obtained by evaluating the ½GðpÞðzÞ
�1 at ðp þ 1Þst interface.
Eq. (18) can be written as

Vp ¼ ½T ðpÞ
Vpþ1; ð19Þ

where ½T ðpÞ
 ¼ ½Gp
½Gpþ1
�1 is the local transfer matrix for the pth layer relating its displacement–
stress field vector on the two faces of the layer.
By successive repetition of the above process for each layer ðp ¼ 1; 2;y; nÞ and by invoking the

continuity conditions of displacements and stresses at the common surfaces in the layered
anisotropic poroelastic medium, we could relate the displacements and stresses at the upper
surface of the stack to those at its lower surface through a matrix relation. The local matrix for
each layer is of the same type as obtained for the pth layer.
Thus, if we denote

½T 
 ¼
Yn

r¼1

½T ðrÞ
 ð20Þ

then, we can write

V1 ¼ ½T 
Vnþ1; ð21Þ

where V1 ¼ Vð1ÞðzÞ and Vnþ1 ¼ VðnÞðzÞ are the displacement–stress vectors evaluated at the first
interface ðz ¼ 0Þ and at the ðn þ 1Þst interface ðz ¼ dð1Þ þ d ð2Þ þ?þ dðnÞÞ:
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5. Basic equations for transversely isotropic elastic solid

Following Love [21], the equations of motion for transversely isotropic solid are

ts
ij; j ¼ rsus

i ði; j ¼ 1; 2; 3Þ; ð22Þ

where ts
ij; j; us

i ; rs are the stresses, displacements and density in the transversely isotropic
solid respectively. Considering the motion in the xz-plane, the constitutive equations are
written as

ts
xx ¼ Ases

xx þ Fses
zz ¼ As @us

@x
þ Fs @ws

@z
;

ts
xz ¼ 2L

ses
xz ¼ Ls @us

@z
þ

@ws

@x

� �
;

ts
zz ¼ Cses

zz þ Fses
xx ¼ Cs @ws

@z
þ Fs @us

@x
; ð23Þ

where As; Ls; Fs and Cs are elastic constants and us; ws are the displacement components along x-
and z-axis, respectively.
We seek the solution of Eqs. (22) of the form

us ¼ Ps exp ikðct � x � szÞ;

ws ¼ Qs exp ikðct � x � szÞ: ð24Þ

Substituting this solution into Eqs. (23), we obtain a system of two equations in Ps and Qs; non-
trivial solution of which exists if

ðsÞ4LsCs þ ðsÞ2ð�LsNs � RsCs � ðJsÞ2Þ þ RsNs ¼ 0; ð25Þ

where Js ¼ ðFs þ LsÞ; Rs ¼ rsc2 � As; Ns ¼ rsc2 � Ls:
This equation being quadratic in ðsÞ2; has solutions as

ðsjÞ
2 ¼

Ms þ ð�1Þ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðMsÞ2 � 4LsCsRsNs

q
2LsCs

ð j ¼ 1; 2Þ; ð26Þ

where Ms ¼ LsNs þ RsCs þ ðJsÞ2:
The ratio of the displacement components us

j ; ws
j corresponding to s ¼ sj; is given by

ws
j

us
j

¼
Qs

j

Ps
j

¼ �
LsðsjÞ

2 � Rs

sjJs
¼ mj ðsayÞ ð j ¼ 1; 2Þ: ð27Þ

Thus, the solution of Eqs. (22) can be written as

us ¼ ½e7iks1z þ e7iks2z
 exp ikðct � xÞ

or

us ¼ ½Ps
1e

�iks1z þ Ps
2e

�iks2z þ Ps
3e
iks1z þ Ps

4e
iks2z
 exp ikðct � xÞ; ð28Þ

where Ps
1; Ps

2; Ps
3; Ps

4 are arbitrary constants.
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The corresponding expression of ws can now be written as

ws ¼ ½m1ðPs
1e

�iks1z � Ps
3e
iks1zÞ þ m2ðPs

2e
�iks2z � Ps

4e
iks2zÞ
 exp ikðct � xÞ: ð29Þ

The stress components can be determined by substituting the expressions of displacements from
Eqs. (28) and (29) into Eqs. (23).

6. Transfer matrix for anisotropic elastic layered stack

Consider the qth layer of TIES bounded between the ðn þ qÞth and ðn þ q þ 1Þst interfaces. The
superscript ‘q’ is used to denote the quantities of the qth TIES layer. The displacements associated
with the upgoing and downgoing body waves in qth layer are

usðqÞ ¼ ½PsðqÞ
1 e

�iks
ðqÞ
1

z þ P
sðqÞ
2 e

�iks
ðqÞ
2

z þ P
sðqÞ
3 e

iks
ðqÞ
1

z þ P
sðqÞ
4 e

iks
ðqÞ
2

z
 exp ikðct � xÞ;

wsðqÞ ¼ ½mðqÞ
1 ðPsðqÞ

1 e
�iks

ðqÞ
1

z � P
sðqÞ
3 e

iks
ðqÞz
1 Þ þ m

ðqÞ
2 ðPsðqÞ

2 e
�iks

ðqÞ
2

z � P
sðqÞ
4 e

iks
ðqÞ
2

zÞ
 exp ikðct � xÞ:

Defining the field vector in qth layer by VsðqÞðzÞ ¼ ½usðqÞ wsðqÞ tsðqÞ
zz tsðqÞ

zx 
 and amplitude vector by
AsðqÞ ¼ ½ðPsðqÞ

1 þ P
sðqÞ
3 Þ ðPsðqÞ

1 � P
sðqÞ
3 Þ ðPsðqÞ

2 þ P
sðqÞ
4 Þ ðPsðqÞ

2 � P
sðqÞ
4 Þ
; we write the expressions of

displacements and stresses in the matrix form as

VsðqÞðzÞ ¼ ½GsðqÞ ðzÞ
AsðqÞ; ð30Þ

where ½GsðqÞ ðzÞ
 is a 6� 6 matrix obtained by the coefficients of elements of AsðqÞ and its elements
are given in Appendix B.
Eq. (30) holds for each layer q; ð¼ n þ 1;y; n þ mÞ of the stack B. The transfer matrix ½TsðqÞ 
 is

determined by the product of the matrix ½GsðqÞðzÞ
 evaluated at the upper surface of the layer, i.e.,
at ðn þ qÞth interface and ½GsðqÞðzÞ
�1 at the lower surface, i.e., at ðn þ q þ 1Þth interface.
Applying the same procedure for each layer of the stack B of TIES layers and using the

continuity conditions of the displacements and stresses at each interface of the layered anisotropic
solid medium, the displacement–stress field vector at the uppermost surface of the stack B is
related to its lowermost surface. Denoting the global matrix of the layered anisotropic medium by
½Ts
; we write

½Ts
 ¼
YðnþmÞ

q¼ðnþ1Þ

½TsðqÞ 
: ð31Þ

This results in

Vnþ1 ¼ ½Ts
Vnþmþ1; ð32Þ

where Vnþ1 and Vnþmþ1 are the displacement–stress vectors at the upper and lower faces of the
TIES stack B, respectively.
Expressing the displacement–stress field vector in TIES half-space as

Vðnþmþ1ÞðzÞ ¼ ½eðnþmþ1Þ

P

sðnþmþ1Þ
1

P
sðnþmþ1Þ
2

" #
; ð33Þ
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where ½eðnþmþ1Þ
 is the 4� 2 matrix obtained from the coefficients of amplitudes P
sðnþmþ1Þ
1 and

P
sðnþmþ1Þ
2 of transmitted quasi-P and -SV waves in TIES half-space and is given in Appendix B.
From the continuity of displacements and stresses at ðn þ mÞth interface, it follows that

Vðnþmþ1ÞðzÞ ¼ VðnþmÞðzÞ at the ðn þ mÞth interface or

Vðnþmþ1Þ ¼ Vnþmþ1: ð34Þ

This implies that

Vnþ1 ¼ ½Ts
½eðnþmþ1Þ

P

sðnþmþ1Þ
1

P
sðnþmþ1Þ
2

" #
: ð35Þ

The displacement potential in the FHS, satisfying the wave equation, is

f ¼ ðe�ikraz þ ReikrazÞ expfikðct � xÞg; ð36Þ

where ra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2=a2 � 1

p
; a being the P wave velocity in the fluid and R is the reflection coefficient.

The normal displacement uz and the pressure p in the FHS are given by

uz ¼ ikraðReikraz � e�ikrazÞ expfikðct � xÞg; ð37Þ

p ¼ �lr2f ¼ ro2ðe�ikraz þ ReikrazÞ expfikðct � xÞg: ð38Þ

7. Boundary conditions

The bonding between the stack A of TIPS layers and stack B of TIES layers is considered not to
be perfect and does not ensure the continuity of tangential displacement. Following Vashishth
et al. [22], the modified boundary conditions to be applied at such an interface, i.e., ðn þ 1Þst
interface, are

uðnÞz ¼ uðnþ1Þz ; ð39aÞ

W ðnÞ
z ¼ 0; ð39bÞ

tðnÞzz ¼ tðnþ1Þzz ; ð39cÞ

tðnÞzx ¼ tðnþ1Þzx ; ð39dÞ

tðnÞzx ¼ io
mðnþ1Þ

aðnþ1Þs

c
ð1� cÞ

ðuðnÞx � uðnþ1Þx Þ; ð39eÞ

where quantities with superscript ðn þ 1Þ correspond to the ðn þ 1Þst TIES layer and those with the
superscript ðnÞ correspond to the nth TIPS layer.
The boundary conditions at interface z ¼ 0 between the FHS and first TIPS layer are

uð1Þ
z þ W ð1Þ

z ¼ uz; ð40Þ

tð1Þzz ¼ �p; ð41Þ
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p
ð1Þ
f ¼ p; ð42Þ

tð1Þzx ¼ 0; ð43Þ

where the quantities with superscript 1 correspond to the first TIPS layer.
The boundary conditions (39) along with Eq. (43) provides us an interfacial matrix ½Z
6�4;

relating the displacement–stress vectors of nth and ðn þ 1Þst layers. Thus, we can write

VðnÞðzÞ ¼ ½Z
Vðnþ1ÞðzÞ at ðn þ 1Þst interface

which implies that

Vnþ1 ¼ ½Z
½Ts
½eðnþmþ1Þ

P

sðnþmþ1Þ
1

P
sðnþmþ1Þ
2

" #
: ð44Þ

Using Eq. (21), we obtain the condensed form expression for V1 as

V1 ¼ ½T 
½Z
½Ts
½eðnþmþ1Þ

P

sðnþmþ1Þ
1

P
sðnþmþ1Þ
2

" #
or V1 ¼ ½C


P
sðnþmþ1Þ
1

P
sðnþmþ1Þ
2

" #
; ð45Þ

where ½C
 ¼ ½T 
½Z
½Ts
½eðnþmþ1Þ
; a 6� 2 matrix, is the global transfer matrix for the whole
ðn þ m þ 1Þ-layered medium.
Utilizing Eqs. (37), (38) and (45) into the boundary conditions (40)–(42), we obtain

ðC21 þ C31ÞP
sðnþmþ1Þ
1 þ ðC22 þ C32ÞP

sðnþmþ1Þ
2 � ikraR ¼ �ikra;

C41P
sðnþmþ1Þ
1 þ C42P

sðnþmþ1Þ
2 þ ro2R ¼ �ro2;

C61P
sðnþmþ1Þ
1 þ C62P

sðnþmþ1Þ
2 � ro2R ¼ ro2: ð46Þ

Solving the above equations, the analytical expressions of reflection coefficient ðRÞ; transmission
coefficients of q-P wave and q-SV wave are obtained as

R ¼
D2 � Qf D1
D2 þ Qf D1

;

P
sðnþmþ1Þ
1 ¼

�2ro2ðC42 þ C62Þ
D2 þ Qf D1

; P
sðnþmþ1Þ
2 ¼

2ro2ðC41 þ C61Þ
D2 þ Qf D1

; ð47Þ

where

D1 ¼
ðC21 þ C31Þ ðC22 þ C32Þ

ðC41 þ C61Þ ðC42 þ C62Þ

�����
�����; D2 ¼

C41 C42

C61 C62

�����
�����; Qf ¼

ro2

ikra
:

The expressions of the reflection and transmission coefficients yield, as a by-product, the
characteristic equation for the propagation of surface waves in the considered model. On putting
the denominator D2 þ Qf D1 ¼ 0; we get the frequency equation for the propagation of generalized
Rayleigh waves on the surface of a fluid-loaded layered anisotropic poroelastic medium bonded
loosely to layered anisotropic elastic solid substrate. The frequency equation is given by

Qf fðC21 þ C31ÞðC42 þ C62Þ � ðC41 þ C61ÞðC32 þ C22Þg þ ðC41C62 � C42C61Þ ¼ 0: ð48Þ
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In the absence of FHS, i.e., the case when r ¼ 0; the frequency equation (48) reduces to
D2 ¼ ðC41C62 � C42C61Þ ¼ 0:
This is the frequency equation of surface waves propagating on the free surface of anisotropic

poroelastic layered medium bonded loosely to a layered anisotropic elastic solid substrate.

8. Application of transfer matrix to core–mantle boundary model

In order to verify the solutions obtained by the present approach in comparison with the other
model and in order to broaden the application of the transfer function technique to various core
phases, this study first derives a complete complex transfer matrix and then applies that to get
reflection and transmission coefficients when a plane P wave is incident at the plane layered core–
mantle boundary. The geometry of the model for core–mantle boundary is given in Fig. 1(b).
The displacement potential in the FHS can be considered as

f ¼ Teikrazeikðct�xÞ; ð49Þ

where T is the transmission coefficient.
The displacement potentials in the mantle (EHS) are

fðnþ1Þ ¼ ðeikr
ðnþ1Þ
a z þ R1e

�ikr
ðnþ1Þ
a zÞeikðct�xÞ;

cðnþ1Þ ¼ R2e
�ikr

ðnþ1Þ
b zeikðct�xÞ ð50Þ

where

rðnþ1Þa ¼
ðc2=a2nþ1 � 1Þ

1=2; c > anþ1;

�ið1� c2=a2nþ1Þ
1=2; coanþ1;

(

and

r
ðnþ1Þ
b ¼

ðc2=b2nþ1 � 1Þ
1=2; c > bnþ1;

�ið1� c2=b2nþ1Þ
1=2; cobnþ1;

(
ð51Þ

where R1 and R2 are the reflection coefficients of P and SV waves in EHS.
The displacement–stress vector Vðnþ1Þ is obtained as

Vðnþ1Þ ¼ ½eðnþ1Þ


1

R1

R2

2
64

3
75; ð52Þ

where

e11 ¼ �ikeikr
ðnþ1Þ
a z; e12 ¼ �ike�ikr

ðnþ1Þ
a z; e13 ¼ �ikr

ðnþ1Þ
b e�ikr

ðnþ1Þ
b z;

e21 ¼ ikrðnþ1Þa eikr
ðnþ1Þ
a z; e22 ¼ �ikrðnþ1Þa e�ikr

ðnþ1Þ
a z; e23 ¼ �ike�ikr

ðnþ1Þ
b z;

e31 ¼ �k2fl� ðlþ 2mÞðrðnþ1Þa Þ2geikr
ðnþ1Þ
a z;

e32 ¼ �k2fl� ðlþ 2mÞðrðnþ1Þa Þ2ge�ikr
ðnþ1Þ
a z;
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e33 ¼ �2mk2r
ðnþ1Þ
b e�ikr

ðnþ1Þ
b z;

e41 ¼ 2mk2rðnþ1Þa eikr
ðnþ1Þ
a z; e42 ¼ �2mk2rðnþ1Þa e�ikr

ðnþ1Þ
a z;

e43 ¼ �mk2ð1þ ðrðnþ1Þb Þ2Þe�ikr
ðnþ1Þ
b z:

The displacement–stress vector V1 is given by

V1 ¼ ½Ts
½eðnþ1Þ


1

R1

R2

2
64

3
75 ¼ ½P


1

R1

R2

2
64

3
75; ð53Þ

where

½Ts
 ¼
Yn

q¼1

½TsðqÞ
 and ½P
 ¼ ½pij
 ¼ ½Td
½eðnþ1Þ
: ð54Þ

The boundary conditions at interface (1) are

ðiÞ uð1Þ
z ¼ uð0Þ

z ; ðiiÞ tð1Þzz ¼ tð0Þzz ; ðiiiÞ tð1Þxz ¼ 0: ð55Þ

Substitution of Eqs. (49) and (53) in the boundary conditions (55) and simplification of
resulting equations leads to the evaluation of reflection and transmission coefficients. These are

R1 ¼ ðikraðp44p51 � p41p54Þ þ ro2ðp24p51 � p21p54ÞÞ=D;

R2 ¼ ð�ikraðp42p51 � p41p52Þ þ ro2ðp21p52 � p22p51ÞÞ=D;

and

T ¼ ð�p21ðp52p44 � p42p54Þ þ p51ðp22p44 � p24p42Þ � p41ðp22p54 � p24p52ÞÞ=D;

where

D ¼ �ikraðp52p44 � p54p42Þ þ ro2ðp22p54 � p24p52Þ: ð56Þ

9. Numerical results and discussion

Numerical calculations of the study were done for a particular model. The model consists of
two layers, one transversely isotropic poroelastic solid (TIPS) layer and other transversely
isotropic elastic solid (TIES) layer. These two layers are underlying a fluid half-space and
overlying a transversely isotropic elastic solid half-space. The values of material coefficients for
TIPS are taken from Yammamato [23] and are given in Table 1.
Using Eqs. (7), the values of the elastic constants B

ð1Þ
1 ;y;Bð1Þ

8 can be derived from the material
coefficients given in Table 1. When the layer is isotropic, then

B
ð1Þ
3 ¼ B

ð1Þ
2 ; B

ð1Þ
6 ¼ B

ð1Þ
7 ; B

ð1Þ
5 ¼ B

ð1Þ
1 and B

ð1Þ
4 ¼ B

ð1Þ
2 þ 2Bð1Þ

1 :

The values of the elastic constants and density for TIES layer, TIEHS and FHS are given in
Table 2.
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For these values of elastic parameters, the reflection and transmission coefficients of the above
stated numerical model were computed. The values of non-dimensional wave number kH1;
porosity b; ratio of thickness of two layers ðD:R: ¼ H2=H1Þ and bonding parameter c are taken
as 0.1, 0.3, 2 and 1.0 respectively, if not mentioned otherwise.
In this paper, the technique of transfer matrices has been used. The technique is popular and is

widely reported for modelling wave propagation in layered structures. It is known fact that a
transfer matrix is sometimes ill-conditioned and numerical instabilities occur especially when
either the overall thickness of the layer or the frequency of the waves becomes very high, i.e., when
the factor kH1 assumes larger values. These instabilities propagate during the subsequent
computation and hence get amplified.
Various attempts have been made to reduce these instabilities. Dunkin [24] developed a delta

operator technique which was improved by Kundu and Mal [25], Levesque and Piche [26] and
Castings and Hosten [27]. Schmidt and Jensen [28] proposed a different approach whereby local
equations for two layer sets are mapped into global system that comprises all unknowns
associated with boundary conditions. In this case effectiveness depends on the stability of the
Gaussian elimination technique used in the numerical computation. But for n layers, where n is
large, the advantage of transfer matrix method is obvious because this method involves n-
operation process while mapping technique is the n2 or even n3-operation process, depending
upon the sparseness of the global system. Levesque and Piche [26] demonstrated, with the help of
comparative studies that the transfer matrix technique provides a complete representation for the
frequency, time and spatial dependence of the acoustic field.
Though the numerical calculations, in this study, were done for low frequency waves (small

values of kH1), the numerical instability due to ill-conditioned matrix elements occur here also at
some points. The numerical errors in ill-conditioned matrix are due to the presence of both
growing and decaying terms in the elements of transfer matrix. As reported by Castings and
Hosten [27], the closed form expressions for the local transfer matrix elements and sub
determinants need to be found using mathematical software that perform symbolic operations. In
our case, the transfer matrix was obtained in closed form expressions. The analytical expressions
of all elements were arranged in such a way that higher order terms get multiplied with the lower
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Table 1

Material coefficients of TIPS layer (in CGS units)

Water saturated sandstone

Ks ¼ ð5:33� 1011; 15:99� 109Þ
Es ¼ ð5:332� 1011; 10:64� 108Þ
Kf ¼ 2:3� 1010

ms ¼ ð2:0� 1011; 4:0� 109Þ
ns ¼ 0:33
rf ¼ 1:025
b ¼ 0:30
x ¼ 1:0� 10�4

rs ¼ 2:65
#c1 ¼ #c3 ¼ 1:25

A.K. Vashishth, P. Khurana / Journal of Sound and Vibration 277 (2004) 239–275 255



order terms which limit the order of terms to certain threshold at the lowest level in order to
prevent instabilities due to precision inaccuracies. In fact, the modified expressions were obtained
by grouping the terms when the matrices ½Gp
 and ½Gp
�1 were multiplied. This controls the abrupt
increase or decrease in the order of elements of transfer matrix and thus the local transfer matrix
gets stabilized.
In Fig. 2a, the effect of porosity of TIPS layer on reflection coefficient is shown. The figure

depicts the absolute value of the coefficient with varying angle of incidence for the porosity
b ¼ 0:0001; 0.1, 0.3 and 0.5 at kH1 ¼ 0:1: It is observed that the reflection coefficient of P wave in
FHS depends upon the porosity of the adjoining porous layer significantly. The effect of porosity
is predominant before the critical angle ð15
Þ for the transmitted quasi-P wave. In this range, the
reflection coefficient increases with the porosity. When the porosity of the layer is very small, i.e.,
the layer is effectively a TIES layer, then the peaks of the reflection coefficient (solid curve) are not
so sharp. This is probably due to the negligible effect of second kind of dilatational wave in the
case. As the porosity increases, the first peak gets heightened showing the presence of second P
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Fig. 2. Variation of reflection coefficient with angle of incidence for different values of porosity b at (a) kH1 ¼ 0:1;
(b) kH1 ¼ 0:3:

Table 2

Material constants for TIES layer, EHS and FHS

TIES TIEHS FHS

Elastic Asð2Þ ¼ 75 Asð3Þ ¼ 90:26 l ¼ 2:2
constants Csð2Þ ¼ 50 Csð3Þ ¼ 83
ðdyn=cm2Þ Fsð2Þ ¼ 17:092 Fsð3Þ ¼ 48:65

Lsð2Þ ¼ 11:42 Lsð3Þ ¼ 14:9

Density rsð2Þ ¼ 2:1 rsð3Þ ¼ 2:6 r ¼ 1:0
ðg=cm3Þ
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wave. The amplitude of reflection coefficient corresponding to this peak increases as the porosity
is increased.
In Fig. 2b, the variations of absolute value of the reflection coefficient is shown for different

values of porosity at kH1 ¼ 0:3: The effect of porosity is better observed in this case than that for
lower value of kH1: The effect of porosity is also prominently felt for greater range of angle of
incidence, while for lower value of kH1; this was only up to second critical angle. Moreover, as
porosity increases, the magnitude of reflection coefficient also increases. The positions of critical
angles are shifted towards right in this case. It is known that critical angles are those angles
beyond which the P and S waves become the surface waves at the interface [29].
Fig. 3 shows the variation of reflection coefficient with angle of incidence at three different

values of non-dimensional wave number kH1 ¼ 0:1; 0.3, 0.5. The number of kinks in the
reflection coefficient increases with the increase in kH1: This implies that for fixedH1; the number
of kinks increases as the wavelength of the wave decreases. This observation is physically
acceptable as the short wavelength waves are trapped in a layer.
To study the effect of the wave number kH1 on the reflection coefficient, jRj was calculated at

an incident angle of 10
 for the different values of porosity and plots are shown in the Fig. 4. As
observed in earlier graphs, the magnitude of reflection coefficient increases with the increase in
porosity. The curve for b ¼ 0:1 shows some different behavior from the other two curves for
b ¼ 0:3 and 0.5, in the starting range of kH1:
The effect of ratio of the thickness of TIES layer to the thickness of TIPS layer, D.R., on the

reflection coefficient is shown in Figs. 5a–c at different values of kH1 ¼ 0:1; 0.5, 0.8. When
D:R: ¼ 0; then only TIPS layer is present in the model. Fig. 5a shows that there is a smooth
variation in jRj with the change in D.R. The effect of TIES layer increases as the D.R. increases.
The change in reflection coefficient is noticeable corresponding to these changes in the thickness of
layers. The sensitivity of the reflection coefficient is understood from the fact that the small
changes in the thickness of TIPS layer can result in a relatively large change in the gradient of the
velocity profile. By changing the thickness of TIPS layer, the wave-guide like nature of the
sedimentary layer changes which, in turn, affects the velocity profile and hence the reflection
phenomenon. However, the position of critical angles is not altered by the change in thickness at
kH1 ¼ 0:1: For higher values of kH1; the critical angles vary in number and position. Total

ARTICLE IN PRESS

Fig. 3. Variation of reflection coefficient with angle of incidence for kH1 ¼ 0:1; 0.3, 0.5.
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internal reflection, for the values kH1 ¼ 0:5 and 0.8, occurs earlier in the comparison to
kH1 ¼ 0:1:
Fig. 6 shows the variation of reflection coefficient jRj with frequency for two different values of

thickness H1 of TIPS layer (i.e., H1 ¼ 100 m and H1 ¼ 200 m). The reflection coefficient shows
the periodic behavior. It repeats itself in small frequency ranges.
One of the main objectives of the study is to observe the effect of anisotropy of medium on the

reflection–transmission phenomena. jRj was computed for the whole model to be transversely
isotropic and for the case when both the layers and the half-space are isotropic. The comparison is
shown in Fig. 7a. There is a qualitative change in the two curves before the incident angle 6
 and
after that both the curves are of same type. The difference between the two curves clearly indicates
the necessity to incorporate the anisotropy in a mathematical model. Further, the effect of degree
of anisotropy on reflection coefficient was also studied and the results are shown in the Fig. 7b.
The results were computed for four different data sets ((a)–(d)) of values of the elastic coefficients.
It is noticed from this figure that the reflection phenomenon is affected remarkably by the degree
of anisotropy. One of the interesting points of observation is the advancement of the critical angle,
for the transmitted quasi-P wave, towards left with the increase in the degree of anisotropy of the
model. The other point of investigation is to find the layer whose degree of anisotropy influences
the results the most. We allowed to vary the degree of anisotropy of each layer one by one and
computed the values of jRj: It is observed that the results are the most affected by the increment in
the degree of anisotropy of the half-space (see Fig. 7c) and the increase in the degree of anisotropy
of porous layer does not change the reflection coefficient, significantly. To make the effect of
anisotropy of each layer on the reflection coefficient clearer, the results were computed for the
following cases:

(1) elastic layer and the half-space are transversely isotropic and the poro elastic layer is isotropic
(Fig. 7d);
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Fig. 4. Variation of reflection coefficient with non-dimensional wave number kH1 at angle of incidence 10
:
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(2) poroelastic layer and the half-space are transversely isotropic and the elastic layer is isotropic
(Fig. 7e);

(3) both the layers are isotropic and the half-space is transversely isotropic (Fig. 7f).

It is clear from the figures that the anisotropy of the porous layer is not affecting the results very
much but the effect of anisotropy of the elastic layer and the half-space is noticeable. Fig. 7e
shows the reflection coefficient when we model the elastic layer as isotropic one. The difference
between the three curves in Figs. 7e and f emphatically depicts the fact that between the elastic
layer and half-space, it is the half-space whose anisotropy dominates the results. In Fig. 7f, the
effect of increase in the anisotropy of half-space is displayed. The position of critical angles is
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Fig. 5. Variation of reflection coefficient with angle of incidence for different values of ratio of thickness of layers at

(a) kH1 ¼ 0:1; (b) kH1 ¼ 0:5; (c) kH1 ¼ 0:8:
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altered as the half-space is changed from isotropic one to strong anisotropic. Also, the behavior of
reflection coefficient for strong anisotropic half-space, is different (one additional peak is visible in
the curve). The minima are also moving towards left.
Figs. 8a–e illustrate the effects of imperfect bonding between the TIPS layer and TIES layer, on

the reflection coefficient at different values of kH1 (i.e., kH1 ¼ 0:1; 0.3, 0.5, 0.8, 1.0). The
reflection curve at kH1 ¼ 0:1 for different values of c (i.e., c ¼ 1:0; 0.75, 0.50, 0.25) clearly
depicts the effect of loose bonding (see Fig. 8a). The value of bounding parameter c is one in the
case of welded contact between the porous layer and the elastic layer. The total internal reflection
takes place nearly at incident angle 40
 for welded contact. However, in case of loosely bonded
interface, i.e., when c ¼ 0:75; 0.5 and 0.25, the dissipation of energy is observed even after 40
:
This behavior clearly matches with the established fact that loose boundaries are absorbing
boundaries and energy is dissipated at such boundaries which results the decrease in magnitude of
the reflection coefficient. The value of the non dimensional wave number is increased to 0.3 in the
next step and Fig. 8b shows the results in this case. The dissipation of energy is more than that for
kH1 ¼ 0:1 and this increases further when the value of kH1 increases. This implies that when the
thickness of the first layer is comparable to the wavelength of the wave, then the effects of loose
boundary are significant. It is also observed that the bonding parameter affects the reflection
coefficient prominently after 20
; for all the values of kH1: One interesting feature noted is that
jRj becomes unity at 45
; 49
; 55
 and 61
 for kH1 ¼ 0:3; 0.5, 0.8 and 1.0, respectively (see
Figs. 8b–e). These are the angles analogous to those in welded contact, at which total internal
reflection takes place for respective values of kH1:
The effect of different layers of anisotropic substratum on reflection coefficient is exhibited in

Fig. 9a. jRj for different combinations of layers of the model is plotted. The results for the
following particular models are computed and compared:

(a) when the complete model including both transversely isotropic layers, is considered;
(b) when the TIPS layer is not included in the model;
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Fig. 6. Variation of reflection coefficient with frequency at angle of incidence 10
:
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(c) when the TIES layer is not included in the model;
(d) when both the layers are not included in the model.

The results shown in the figure are computed for kH1 ¼ 0:3 and b ¼ 0:5: The effect of layers of
different materials is clearly demonstrated.
An important feature of the study carried out is the generality of the model studied. All the

models mentioned above, which find applications in seismology and engineering, are obtained as
particular cases of the study. It is observed that the presence of the TIES layer in the model has a
significant effect on the magnitude of the reflection coefficient. It attains its minimum value when
elastic layer is not included in the model. Also, the magnitude decreases when either of the layers
or both of the layers are absent.
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Fig. 7. Variation of reflection coefficient with angle of incidence for different degrees of anisotropy.
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To check the validity of the numerical model and the accuracy of the codes developed for
computation, a well-known case of reflection and refraction at FHS–EHS interface is reduced
from the considered model. The elastic half-space is considered isotropic one. The result is
displayed in Fig. 9b. The result agrees with that mentioned in the text of Ewing et al. [29].
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Fig. 8. Variation of reflection coefficient with angle of incidence for different values of c at (a) kH1 ¼ 0:1;
(b) kH1 ¼ 0:3; (c) kH1 ¼ 0:5; (d) kH1 ¼ 0:8; (e) kH1 ¼ 1:0:
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Figs. 10a and b illustrate the variations in absolute values of transmission coefficients for
quasi-P and SV waves, respectively, with angle of incidence for kH1 ¼ 0:1 and for different
values of porosity b: The effect of porosity on transmission of waves in TIES half-space
is displayed in the figures. For lower values of incident angle (up to 15
), the effect of porosity
is more counted than that at greater incident angle. The amplitude of the refracted quasi-SV
wave increases sharply from 20
 to 40
 and the amplitude of refracted quasi-P wave decreases
and tend to zero as incident wave approaches to normal incidence. In Figs. 11a and b, the effects
of porosity on transmission coefficients are shown for kH1 ¼ 0:3 and there is considerable
difference between the transmission curves for kH1 ¼ 0:1 and 0.3. For kH1 ¼ 0:3; the amplitude
of transmission coefficient of the quasi-P and SV waves are affected by the porosity of the first
layer.
The effect of non dimensional wave number on transmission coefficients is shown in the

Figs. 12a and b. The magnitudes of transmission coefficients were computed for different
values of kH1 ¼ 0:1; 0.3, 0.5, 0.8. The non-dimensional wave number, considerably, affects
the transmission of the waves. As the value of kH1 increases from 0.1 to 0.8, number of
peaks increases. Also, the increment in kH1 increases the amplitude of the transmission
coefficients.
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Fig. 9. (a) Variation of reflection coefficient with angle of incidence for different models at kH1 ¼ 0:3 and porosity
b ¼ 0:5; (b) reflection coefficient at FHS–EHS interface.

A.K. Vashishth, P. Khurana / Journal of Sound and Vibration 277 (2004) 239–275 263



Figs. 13a and b display the effect of loose bonding, between the layers, on transmission
coefficients of quasi-P and SV waves, respectively, at kH1 ¼ 0:1: At this value of kH1; the effect is
not so clear. A little decrease in the amplitude is observed at kH1 ¼ 0:1 due to the loose bonding.
But, for kH1 ¼ 0:3; a significant effect of loose bonding on transmission coefficients is observed
and the graphs show this in the Figs. 14a and b. Both the transmission coefficients are behaving
differently towards loose bonding. Amplitude of transmitted quasi-P wave increases with
imperfection of the interface in the range 12–38
 and, then after 46
; it again increases. In the case
of quasi-SV wave, there is a considerable difference between its peak magnitudes for welded
contact and loose boundary.
Figs. 15a and b exhibit the effect of anisotropy of the model on transmission coefficients of

quasi-P and SV waves. It is noted that the transmission coefficients of quasi-P and SV waves show
the same type of behavior between the range 20
 and 40
 in isotropic model while the
transmission coefficient are of opposite nature, in this range, in case of transversely isotropic
model. Anisotropy of the medium causes difference between them. The amplitude of transmission
coefficient of quasi-P wave increases due to the anisotropy of complete model in the range of
5–17
: The transmission coefficient of quasi-SV wave shows this behavior in little earlier range of
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Fig. 10. Variation of transmission coefficient with angle of incidence at kH1 ¼ 0:1 for (a) q-P wave, (b) q-SV wave.
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angle of incidence. It is the matter of further investigation that the anisotropic half-space alone
affects the transmission coefficients. To study this, the transmission coefficients of quasi-P and
-SV waves are plotted for the model when only EHS is transversely isotropic and the other two
layers are isotropic. The comparison of the curves in Figs. 15a and b implies that the anisotropy of
the half-space affect the transmission up to a great extent and at the same time, the anisotropy of
both the layers is equally important.
In Fig. 16a, the real and imaginary part of the reflection coefficients R are plotted against the

angle of incidence. The real part of the reflection coefficient attains its minimum value (i.e., �1) at
the incident angle 39
: The imaginary part also suffers a sharp change near this angle. This angle
coincides with the one after which total internal reflection takes place. The recognition of the
minimum of real part of R at such an angle gives a criterion of identification of surface wave
modes [7].
To plot the dispersion curves of surface waves propagating in the considered model, the angle

where the minima of ReðRÞ occurs for different values of kH1; are identified. Using Snell’s law,
the phase velocity, corresponding to these angles, as a function of kH1 is evaluated. The
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Fig. 11. Variation of transmission coefficient with angle of incidence at kH1 ¼ 0:3 for (a) q-P wave, (b) q-SV wave.
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dispersion curves of surface waves, so obtained, are shown in Fig. 16b, for two different values of
porosity b: Only fundamental modes are shown in the figure. The phase velocity of the surface
waves increases with the increment in porosity of the first layer.
To justify the fact that the roots of Eq. (10), a cubic in q2; are non-repeated, the wave velocities

of the quasi-Pf ; quasi-Ps and quasi-SV waves were computed using the three roots of Eq. (10) and
these are shown in Fig. 17 as a function of the angle between the direction of propagation of wave
and the z-axis. As established, the wave velocities depend on the direction of propagation in a
transversely isotropic medium.
In Fig. 18, comparison between reflection coefficients of reflected P wave for the three models is

made. These models refer to

(i) Model R1 Dorman et al. [30]
(ii) Model 94 Phinney and Alexander [31]
(iii) Model 81 Phinney and Alexander [31]
and the associated data is given in Table 3.
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Fig. 12. Variation of transmission coefficient with angle of incidence for different values of kH1 for (a) q-P wave, (b) q-

SV wave.
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The three curves are obtained at incident angle of 60
 for the period 0–100 s: This reflection
coefficient is associated with the seismic PcP phase. The curves obtained in the present study
match with the ones obtained by Teng [32]. The amplitudes for the model 2 and model 3 are
distinct from the model 1. As studied by Teng [32], the PcP shows the sensitivity to the core–
mantle boundary structure.

10. Conclusion

Wave propagation in a multilayered medium is studied in detail. The analysis of the problem is
done by using the transfer matrices. The reflection and transmission coefficients are obtained in
terms of global matrix elements. Numerical computations are done for a particular model which
consists of TIPS and TIES layers overlying a TIES half-space and underlying FHS. The effects of
various parameters e.g., anisotropy, porosity, non-dimensional wave number, frequency,
imperfect bonding between the layers on reflection–transmission phenomenon are studied.
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Fig. 13. Variation of transmission coefficient with angle of incidence at kH1 ¼ 0:1 for different values of c for (a) q-P
wave, (b) q-SV wave.
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It is observed that the increment in porosity increases the magnitude of the reflection coefficient.
The main purpose of this study is the investigation of the effect of anisotropy on the reflection and
transmission of waves through a layered medium. The phenomenon is influenced significantly by
the anisotropy of the medium and it is the anisotropy of half-space which is influencing the most.
This may be the point of further investigation. Also, it is noticed that the loose bonding between
the layers is accompanied by the dissipation of energy and hence decreases the reflection and
transmission of energy.
The characteristic equations for the surface waves propagating along the fluid-loaded

anisotropic layered substrate and for the free surface waves propagating along the anisotropic
layered substrate are obtained. The phase velocity curves for the surface waves propagating along
the fluid-loaded anisotropic layered substrate are plotted by recording the minima in the reflection
coefficient. The effect of porosity on the phase velocity is observed.
The study is of practical interest because of the current importance attached to the use of

composite materials in wide variety of applications. Typically, the composite structural
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Fig. 14. Variation of transmission coefficient with angle of incidence at kH1 ¼ 0:3 for different values of c for (a) q-P
wave, (b) q-SV wave.
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components are made up of stack of layers. The modelling of wave propagation in layered
anisotropic media may also find its application in seismology.
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Appendix A

gðpÞ11 ¼
cosðoqðpÞð1ÞzÞ

M ðpÞ ; gðpÞ12 ¼
i sinðoqðpÞð1ÞzÞ

N ðpÞ ; gðpÞ13 ¼ �
i sinðoqðpÞð1ÞzÞ

N ðpÞ Q
ðpÞ
1 ;

gðpÞ14 ¼ �
cosðoqðpÞð1ÞzÞ

M ðpÞ R
ðpÞ
1 ; gðpÞ15 ¼ �

i sinðoqðpÞð1ÞzÞ
N ðpÞ S

ðpÞ
1 ; gðpÞ16 ¼ �

cosðoqðpÞð1ÞzÞ
M ðpÞ L

ðpÞ
1 ;
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Fig. 15. Variation of transmission coefficient with angle of incidence for (a) q-P wave, (b) q-SV wave.
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gðpÞ21 ¼
i sinðoqðpÞð1ÞzÞ

M ðpÞ ; gðpÞ22 ¼
cosðoqðpÞð1ÞzÞ

N ðpÞ ; gðpÞ23 ¼ �
cosðoqðpÞð1ÞzÞ

N ðpÞ Q
ðpÞ
1 ;

gðpÞ24 ¼ �
i sinðoqðpÞð1ÞzÞ

M ðpÞ R
ðpÞ
1 ; gðpÞ25 ¼ �

cosðoqðpÞð1ÞzÞ
N ðpÞ S

ðpÞ
1 ; gðpÞ26 ¼ �

i sinðoqðpÞð1ÞzÞ
N ðpÞ L

ðpÞ
1 ;

gðpÞ31 ¼ �H ðpÞ cosðoqðpÞð2ÞzÞ
M ðpÞ ; gðpÞ32 ¼ �GðpÞ i sinðoqðpÞð2ÞzÞ

N ðpÞ ; gðpÞ33 ¼ i sinðoqðpÞð2ÞzÞQðpÞ
2 ;

gðpÞ34 ¼ �cosðoqðpÞð2ÞzÞRðpÞ
2 ; gðpÞ35 ¼ i sinðoqðpÞð2ÞzÞSðpÞ

2 ; gðpÞ36 ¼ cosðoqðpÞð2ÞzÞLðpÞ
2 ;

gðpÞ41 ¼ �H ðpÞ i sinðoqðpÞð2ÞzÞ
M ðpÞ ; gðpÞ42 ¼ �

cosðoqðpÞð2ÞzÞ
NðpÞ GðpÞ; gðpÞ43 ¼ cosðoqðpÞð2ÞzÞQðpÞ

2 ;

gðpÞ44 ¼ �i sinðoqðpÞð2ÞzÞRðpÞ
2 ; gðpÞ45 ¼ cosðoqðpÞð2ÞzÞSðpÞ

2 ; gðpÞ46 ¼ i sinðoqðpÞð2ÞzÞLðpÞ
2 ;

ARTICLE IN PRESS

Fig. 16. (a) Variation of real and imaginary parts of reflection coefficient with angle of incidence; (b) variation of phase

velocity with non-dimensional wave number.
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Fig. 17. Wave velocity as a function of direction of propagation.

Fig. 18. Reflection coefficient of reflected P-wave due to P-wave incident in the mantle against core.

A.K. Vashishth, P. Khurana / Journal of Sound and Vibration 277 (2004) 239–275 271



gðpÞ51 ¼ H�ðpÞ cosðoqðpÞð3ÞzÞ
M ðpÞ ; gðpÞ52 ¼ G�ðpÞ i sinðoqðpÞð3ÞzÞ

N ðpÞ ; gðpÞ53 ¼ �i sinðoqðpÞð3ÞzÞQðpÞ
3 ;

gðpÞ54 ¼ cosðoqðpÞð3ÞzÞRðpÞ
3 ; gðpÞ55 ¼ �i sinðoqðpÞð3ÞzÞSðpÞ

3 ; gðpÞ56 ¼ �cosðoqðpÞð3ÞzÞLðpÞ
3 ;

gðpÞ61
i sinðoqðpÞð3ÞzÞ

M ðpÞ H�ðpÞ; gðpÞ62 ¼
cosðoqðpÞð3ÞzÞ

N ðpÞ G�ðpÞ; gðpÞ63 ¼ �cosðoqðpÞð3ÞzÞQðpÞ
3 ;

gðpÞ64 ¼ i sinðoqðpÞð3ÞzÞRðpÞ
3 ; gðpÞ65 ¼ �cosðoqðpÞð3ÞzÞSðpÞ

3 ; gðpÞ66 ¼ �i sinðoqðpÞð3ÞzÞLðpÞ
3 ;

where
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Table 3

Models of core–mantle boundary

Model no. Layer no. Thickness (km) a (km/s) b (km/s) r ðg=cm3Þ

1 0 N 8.150 0.000 9.400

1 11.00 10.200 5.200 6.200

2 13.00 11.600 6.100 5.670

3 12.00 13.000 6.840 5.660

4 N 13.690 7.210 5.650

2 0 N 8.300 0.000 9.500

1 30 10.000 2.800 6.700

2 N 13.600 7.500 5.500

3 0 N 8.300 0.00 9.500

1 100 13.30 4.800 6.700

2 N 13.60 7.500 5.500
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Appendix B

GsðqÞ
11 ¼ cos yðqÞ1 ; GsðqÞ

12 ¼ �i sin yðqÞ1 ; GsðqÞ
13 ¼ cos yðqÞ2 ;

GsðqÞ
14 ¼ �i sin yðqÞ2 ; GsðqÞ

21 ¼ �m
ðqÞ
1 i sin y

ðqÞ
1 ; GsðqÞ

22 ¼ m
ðqÞ
1 cos y

ðqÞ
1 ;

GsðqÞ
23 ¼ �m

ðqÞ
2 i sin y

ðqÞ
2 ; GsðqÞ

24 ¼ m
ðqÞ
2 cos y

ðqÞ
2 ; GsðqÞ

31 ¼ X
ðqÞ
1 i cos y

ðqÞ
1 ;

GsðqÞ
32 ¼ X

ðqÞ
1 sin yðqÞ1 ; GsðqÞ

33 ¼ X
ðqÞ
2 i cos y

ðqÞ
2 ; GsðqÞ

34 ¼ X
ðqÞ
2 sin yðqÞ2 ;

GsðqÞ
41 ¼ Y

ðqÞ
1 sin yðqÞ1 ; GsðqÞ

42 ¼ Y
ðqÞ
1 i cos y

ðqÞ
1 ; GsðqÞ

43 ¼ Y
ðqÞ
2 sin yðqÞ2 ;

GsðqÞ
44 ¼ Y

ðqÞ
2 i cos y

ðqÞ
2 ;

where

X
ðqÞ
j ¼ �kðCsðqÞs

ðqÞ
j m

ðqÞ
j þ FsðqÞÞ; Y

ðqÞ
j ¼ �kLsðqÞðsðqÞj þ m

ðqÞ
j Þ

and

yðqÞj ¼ ks
ðqÞ
j z ð j ¼ 1; 2Þ

½eðnþmþ1Þ
 ¼ ½eðnþmþ1Þ
ij 
;

where

eðnþmþ1Þ
11 ¼ e�iks

ðnþmþ1Þ
1

z; eðnþmþ1Þ
12 ¼ e�iks

ðnþmþ1Þ
2
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1
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ðnþmþ1Þ
2

z;

eðnþmþ1Þ
31 ¼ iX ðnþmþ1Þ

1 e�iks
ðnþmþ1Þ
1

z; eðnþmþ1Þ
32 ¼ iX ðnþmþ1Þ

2 e�iks
ðnþmþ1Þ
2

z;

eðnþmþ1Þ
41 ¼ iY ðnþmþ1Þ

1 e�iks
ðnþmþ1Þ
1

z; eðnþmþ1Þ
42 ¼ iY ðnþmþ1Þ

2 e�iks
ðnþmþ1Þ
2

z:
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