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1. Introduction

Cylindrical shells with oblique ends are encountered in such industrial applications as mitred
pipe bends, ‘hillside’ nozzles in pressure vessels, and diagonal tubular members in offshore rigs.
Formulating analytical or semi-analytical solutions for shells of such geometry is a major
challenge. While solutions have been presented for the elastostatic [1] and free vibration [2]
problems for such shells apparently no solution has yet been given for the problem of prestressed
vibration.
In the current study the differential quadrature method (DQM) is applied to the problem of the

prestressed vibration of a cylindrical shell with an oblique end. The curved shell surface is
developed onto a plane, and blending functions are used to map the geometrically irregular
domain onto a square parent domain. The blending functions resemble those used earlier by
Malik and Bert [3] for the vibration problem of an irregular plate. The governing equations are
solved in the parent domain, and special attention is paid to the boundary conditions on the
elliptical oblique end of the shell. Results obtained using the method are compared with results
found using the finite element method (FEM).

2. Geometry and boundary conditions

A cylindrical shell is considered having a radius r; mean height L0; and thickness h (Fig. 1). The
position of a typical point P on the shell mid-surface is given by the physical co-ordinates Y ; y:
Displacement components u; v; w (respectively in the axial, circumferential and normal
directions), and stress resultants are defined in these physical co-ordinates. The base of the shell
lies in a plane perpendicular to the shell axis, while the top lies in a plane that is oblique at an
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angle of a with the shell axis. At both the base and top of the shell clamped support conditions are
assumed. A uniform external pressure p acts on the surface of the shell.
The shell mid-surface, which in the physical co-ordinate system is irregular, and continuous in

the circumferential direction, is first considered developed onto a plane (Fig. 2). In the
development process two artificial boundary lines are created at the former y ¼ 7180� line,
disrupting the circumferential continuity. Conditions must be enforced on these two lines,
comparable to the continuity conditions existing over the y ¼ 7180� line in the original shell.
Planar co-ordinates X ;Y which have dimensions of length are used to describe positions on the
developed surface. Non-dimensional co-ordinates for this surface are defined as y ¼ X=r; c ¼
Y=r: The governing domain equations for the shell are written in these non-dimensional co-
ordinates.
A square parent domain is defined in the natural co-ordinates x; Z with �1pxp1; �1pZp1:

Blending functions [3] are then employed to develop mapping relations between the natural co-
ordinates x; Z and the developed co-ordinates y; c: The blending functions are given by

s ¼ 1
2
½ð1� ZÞ%s1ðxÞ þ ð1þ xÞ%s2ðZÞ þ ð1þ ZÞ%s3ðxÞ þ ð1� xÞ%s4ðZÞ	

� 1
4 ½ð1� xÞð1� ZÞs1 þ ð1þ xÞð1� ZÞs2 þ ð1þ xÞð1þ ZÞs3 þ ð1� xÞð1þ ZÞs4	; ð1Þ

where s ¼ y;c: The %yiðxÞ; %yiðZÞ; %ciðxÞ; %ciðZÞ expressions are the parametric equations for the
edges of the developed surface, and the yi; ci are the non-dimensional Cartesian co-ordinates
of the corner points of the developed surface. Using Eq. (1) the relations between the two sets of
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Fig. 1. Circular cylindrical shell with oblique end.

t 

n�

�
(�

3
, �

3
)

(�
2
, �

2
)

(�
4
, �

4
)

(�
1
, �

1
)

�
3
(�), �

3
(�)

�
1
(�), �

1
(�)

�
2
(�), �

2
(�)�

4
(�), �

4
(�)

�

Fig. 2. Cylindrical surface mapped onto a plane.
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co-ordinates for the present case are obtained as

y ¼ px; c ¼ zð1þ ZÞ; ð2Þ

where z ¼ a þ b cosf; a ¼ L0=2r; b ¼ 0:5 tan a: The product px is represented for clarity by f; and
the variables f; Z are used subsequently to describe the mapped domain.
Using the chain rule of calculus, the transformation of derivatives from the y;c system to the

f; Z system can be determined as

@

@y
¼

@

@f
þ

bð1þ ZÞ sin f
z

@

@Z
;

@

@c
¼

1

z
@

@Z
: ð3Þ

These relations correspond to those used by Gill [1] in the static analysis of mitred bends.
Relations for higher order and mixed derivatives are readily developed from these basic relations.
For clamped supports at the base (Y ¼ 0) the boundary equations are given by

u ¼ 0; v ¼ 0; w ¼ 0;
1

r

@w

@c
¼ 0; ð4Þ

where u; v; and w still represent the physical displacement components. For the clamped support
conditions at the oblique top of the shell the boundary relations are given as

u ¼ 0; v ¼ 0; w ¼ 0;
1

r

@w

@y
sin gþ

@w

@c
cos g

� �
¼ 0; ð5Þ

where g is the angle between the normal n to the shell boundary and the axial co-ordinate
line (Fig. 2).

3. Budiansky shell theory

To determine the static stress states and the frequencies of prestressed vibration for the shell the
Budiansky shell theory [4] is employed. This theory is an extension of the Sanders linear shell
bending theory and is applicable to static, buckling, and prestressed vibration problems. The
governing equations are given by

K ½L	fUg þ l½ #L	fUg þ b½ %L	fUg ¼ fQg; ð6Þ

where the symmetric arrays ½L	 and ½ #L	 and ½ %L	 are given by

L11 ¼
@2

@c2
þ k1

@2

@y2
; L12 ¼ k2

@2

@c@y
; L13 ¼ n

@

@c
þ k3

@3

@c@y2
;

L22 ¼ k4
@2

@c2
þ k5

@2

@y2
; L23 ¼

@

@y
� k6

@3

@c2@y
� k

@3

@y3
;

L33 ¼ 1þ k
@4

@c4
þ 2

@4

@c2@y2
þ

@4

@y4

� �
; ð7Þ
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and

#L11 ¼ nc
@2

@c2
þ ny

@2

@y2
þ 2ncy

@2

@c@y
;

#L12 ¼ 0; #L13 ¼ �rp
@2

@c
;

#L22 ¼ nc
@2

@c2
þ ny

@2

@y2
� 1

� �
þ 2ncy

@2

@c@y
þ rp;

#L23 ¼ 2ny
@

@y
þ 2ncy

@

@c
þ rp

@

@y
;

#L33 ¼ �nc
@2

@c2
þ ny �

@2

@y2
þ 1

� �
� 2ncy

@2

@c@y
� rp; ð8Þ

and

%L11 ¼ %L22 ¼ 1; %L33 ¼ �1; %Lij ¼ 0; iaj: ð9Þ

The factor K is given by K ¼ Eh=ð1� n2Þ; where n and E are Poisson’s ratio and Young’s
modulus. The constants ki are given by

k1 ¼
1� n
2

1þ
k

4

� �
; k2 ¼

1þ n
2

�
1� n
2

3k

4
; k3 ¼

1� n
2

k;

k4 ¼
1� n
2

1þ
9k

4

� �
; k5 ¼ 1þ k; k6 ¼

3� n
2

; ð10Þ

where the geometric factor k is defined as k ¼ 1
12 ðh=rÞ2: The parameter l is related to the

prestressed state. The parameter b is related to the frequency of prestressed vibration o (rad/s) by
b ¼ r2rho2; where r is the mass density of the shell. The vector of displacements fUg represents
fu v wgt; while the vector of loads fQg is given by f0 0 r2pgt: The quantities nc; ny; and ncy

represent, respectively, the axial, circumferential, and in-plane shear membrane stress resultants in
the shell.
For the determination of the prestressed vibration stress state relations between the stress

resultants and displacement components are required. In the Budiansky theory these relations are
given by

nc ¼
K

r

@u

@c
þ n

@v

@y
þ w

� �� �
; ny ¼

K

r

@v

@y
þ w þ n

@u

@c

� �
; ncy ¼ K

1� n
2r

@v

@c
þ

@u

@y

� �
: ð11Þ

Substitution of the co-ordinate and derivative transfer relations (2)–(3) into Eqs. (6)–(9), leads
to domain equations in the parent co-ordinate system. These equations together with the
boundary conditions (4)–(5) govern the problem.
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4. Differential quadrature method

Following the DQM approach [5,6] a grid of sampling points is first defined in the parent
domain. The derivatives which appear in the domain and boundary equations are replaced by
linear series involving the displacements at the sampling points of the grid and known weighting
coefficients. For the axial (c) direction the well known Chebyshev–Gauss–Lobatto spacing of
sampling points with d points is used, and a series of polynomial trial functions is selected. For the
circumferential (y) direction equally spaced sampling points are used, and a series of
trigonometric trial functions is selected. Continuity over the artificial boundary lines created in
the mapping is then automatically satisfied. Explicit formulas for the weighting coefficients are
available for the series in both directions [6].
At each sampling point of the DQM grid either the DQM analogues of the boundary or domain

equations are represented. For shells there are four boundary conditions, while there are only
three governing equations. One of the boundary conditions is then enforced at an adjacent
domain point instead of a domain equation. Such a point, labelled a ‘d point’, is taken a short
distance (dD10�5) from the boundary point [5].
A two-step procedure is used for the prestressed vibration analysis. In the first step a static

analysis is conducted to find the resultants nc; ny; and ncy for a uniform unit normal pressure. In
the use of Eq. (6) the parameters l and b are set to zero, and the displacements are found for the
specified pressure. Resultants are then found from the displacements using Eqs. (11). In the
second step, the prestressed vibration analysis, Eq. (6) with l unity and fQg zero, are solved for b
and fUg: The full details of the procedure are given by Hu [7].

5. Results

Results for the prestressed vibration characteristics of cylindrical shells with oblique ends were
not found in the literature. For validation it was decided to rely on comparisons DQM and FEM
results for each case. Sample results are given for cases where the length ratio L0=r is varied from
1.5 to 2.5, the thickness ratio r=h from 50 to 200, and the obliquity angle a from 0� to 45�: All
results are given for shells with material properties of E ¼ 0:2e12 Pa; n ¼ 0:3; and r ¼
7770 kg=m2: The value assumed for the shell radius in the analyses was 1 m:
Comparisons for the fundamental frequencies are given in Tables 1 and 2. The results labelled

FEM correspond to converged FEM values, found using flat four-noded 24 degree-of-freedom
elements. The DQM results correspond to a grid size of 22� 22:
In Table 1 results for fundamental frequencies are given for cases of non-zero external pressure.

The pressure level pi; was changed according to the r=h ratio with respective values of p1 ¼
�5e5 Pa; p2 ¼ �2:5e5 Pa; p3 ¼ �1:25e5 Pa used for the r=h ¼ 50; 100; 200 cases. These pressures
represent significantly large values, which however lie below the shell buckling pressures. The
results for all cases indicate very close agreement between the DQM and FEM, with maximum
differences of the order of 1%: For each r=h case the fundamental frequencies decrease as the
length ratio increases. The frequencies also decrease as the obliquity angle a is increased. The most
significant dependence on the obliquity angle occurs for short thin shells.

ARTICLE IN PRESS

X.J. Hu, D. Redekop / Journal of Sound and Vibration 277 (2004) 429–435 433



In Table 2 results for fundamental frequencies are given for internal pressure, zero pressure, and
external pressure loading cases. The geometric cases of r=h ¼ 100; L0=r ¼ 2:0; a ¼ 0�; 15�; 30�; 45�

are covered. Application of an internal pressure leads to an increase in the fundamental frequency
with respect to the zero pressure case, while application of an external pressure leads to a decrease.
These trends agree with those mentioned by Redekop et al. [8] in relation to a pressurized toroidal
panel.

6. Conclusion

The method using blending functions discussed herein has been successfully applied to the
prestressed vibration problem of a cylindrical shell with an oblique end. The method is useful in
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Table 1

Fundamental frequencies for cases with non-zero prestress (rad=s� 102)

L0=r a r=h ¼ 50 (p ¼ p1) r=h ¼ 100 (p ¼ p2) r=h ¼ 200 (p ¼ p3)

FEM DQM FEM DQM FEM DQM

1.5 0� 14.16 14.14 10.14 10.10 6.436 6.382

15� 13.12 13.12 9.150 9.152 5.614 5.582

30� 11.87 11.89 8.148 8.155 4.749 4.757

45� 10.86 10.64 7.125 7.142 3.874 3.904

2.0 0� 10.83 10.81 7.498 7.471 4.392 4.352

15� 10.29 10.30 7.071 7.080 3.949 3.959

30� 9.612 9.618 6.502 6.505 3.443 3.446

45� 8.869 8.872 5.863 5.868 2.855 2.869

2.5 0� 8.761 8.746 6.092 6.073 3.080 3.052

15� 8.467 8.464 5.738 5.732 2.844 2.832

30� 8.052 8.050 5.365 5.361 2.482 2.480

45� 7.583 7.580 4.939 4.938 2.041 2.050

Table 2

Comparison of fundamental frequencies for cases of internal pressure, zero pressure, external pressure for shells with

r=h ¼ 100; L0=r ¼ 2:0 (rad=s� 102)

a Internal pressure Zero pressure External pressure

p ¼ 2:5e5 Pa p ¼ 0 p ¼ �2:5e5 Pa

FEM DQM FEM DQM FEM DQM

0� 8.826 8.777 8.189 8.150 7.498 7.471

15� 8.302 8.317 7.740 7.735 7.071 7.080

30� 7.749 7.723 7.174 7.161 6.502 6.505

45� 7.115 7.085 6.541 6.528 5.863 5.868
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parametric studies, and results obtained show excellent agreement with finite element results.
Further work is planned, involving additional shells of irregular shape.

References

[1] S.S. Gill, The Stress Analysis of Pressure Vessels and Pressure Vessel Components, Pergamon, Oxford, 1970.

[2] X.J. Hu, D. Redekop, Vibration of cylindrical shells with oblique ends, Proceedings of the 17th International

Conference on Structural Mechanics in Reactor Technology (SMiRT 17), Prague, August 2003.

[3] M. Malik, C.W. Bert, Vibration analysis of plates with curvilinear quadrilateral plan-forms by DQM using blending

functions, Journal of Sound and Vibration 230 (1996) 949–954.

[4] B. Budiansky, Notes on nonlinear shell theory, Journal of Applied Mechanics 40 (1968) 393–401.

[5] C.W. Bert, M. Malik, Free vibration analysis of thin cylindrical shells by the differential quadrature method,

Journal of Pressure Vessels Technology 118 (1996) 1–12.

[6] C. Shu, Differential Quadrature and its Application in Engineering, Springer, Berlin, 2001.

[7] X.J. Hu, Stability and Vibration of a Cylindrical Shell with an Oblique End, M.A.Sc. Thesis, University of Ottawa,

2003.

[8] D. Redekop, B. Xu, Y.M. Zhang, Vibration of prestressed toroidal panels using the DQM, in: C.-K. Choi,

W.C. Schnobrich (Eds.), Advances in Structural Engineering and Mechanics, Vol. 1, Busan, Korea, 1999,

pp. 335–340.

ARTICLE IN PRESS

X.J. Hu, D. Redekop / Journal of Sound and Vibration 277 (2004) 429–435 435


	Prestressed vibration analysis of a cylindrical shell with an oblique end
	Introduction
	Geometry and boundary conditions
	Budiansky shell theory
	Differential quadrature method
	Results
	Conclusion
	References


