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Abstract

This paper deals with the use of the continuous wavelet transform for system identification purposes. The
wavelet analysis of the free responses of a linear mechanical system allows the estimation of its natural
frequencies, viscous damping ratios and mode shapes, using either the modulus or the phase of the wavelet
transform. A complete procedure for modal identification from free responses based on the continuous
wavelet transform is presented. Two difficulties during the implementation of this technique are
highlighted: the edge effect and the choice of the time—frequency localization of the wavelet transform.
Some upper and lower bounds for the mother wavelet’s parameters are given in order to improve the
numerical computation. Three complex-valued mother wavelets are studied and the full procedure is
applied to a damped discrete system. The correct choice of the mother wavelet’s parameters leads to an
accurate identification of the modal parameters.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The number of algorithms that have been developed over the past 30 years, to estimate modal
parameters from measured frequency or impulse response function data is considerable. The
modal analysis identification method presented in this paper, is based upon the use of continuous
wavelet transform (CWT). The measured signals are free-decay responses of mechanical
structures which are then processed with a time—frequency transform. Referring to the concept
of characteristic space introduced by Allemang and Brown [1] to represent measurement data,
the temporal axis of this method is neither time nor frequency but rather is substituted by a
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time—frequency plane. The time—frequency representation allows the time variation of the
instantaneous amplitude and phase of each component within the measured signals to be
determined. Moreover, if the general classification for identification methods given in Ref. [2] is
used, the identification method is indirect in the sense that it estimates the modal parameters
(natural frequencies, damping ratios, modal constants and their phases); it can be applied to
multi-degree-of-freedom (m.d.o.f) systems and is a single-input-multi-output (SIMO) method.
Regarding the class of SIMO and m.d.o.f, the most widely known are, in the time domain, the
least-squares complex exponential (LSCE) [3] and the Ibrahim time domain (ITD) [4]; in the
frequency domain, the global rational fraction polynomial [5] (GRFP). The LSCE and the ITD
approaches allow the modal parameters to be extracted from damped complex exponential
response information. The ITD method uses free decay responses instead of impulse response
functions used in the LSCE method. The GRFP is an extension of the very popular and widely
used rational fraction polynomial (RFP) method [6] to analyse globally a set of frequency
response functions using one single input reference.

In the proposed technique, the processed signals can be considered, under certain
conditions such as the assumption of weak damping, as a sum of components consisting of
asymptotic frequency modulated signals. The wavelet analysis of such signals highlights the
maximum amount of information within the data: it has a tendency to concentrate near a series
of curves called ridges which are directly linked to the amplitude and phase of each
component within the measured signal. The properties of such a representation applied to
asymptotic frequency modulated signals have been studied extensively since 1990 [7—-13]. From
the extraction of the ridges and from the value of the CWT along the ridges, modal parameters
are identified. This procedure can be seen as an isolation of a mode of vibration: the
identification procedure is then easier because it is performed on the amplitude and phase of one
component of the measured signal separately as it is for a single-degree-of-freedom (s.d.o.f)
system.

Some authors have already used wavelet analysis processing free responses of mechanical
structures in order to identify their modal characteristics. Staszewski [14] proposed three methods
for estimating modal damping ratios based on the CWT. Ruzzene et al. [15] showed that the CWT
applied to free responses of m.d.o.f system represents a consistent improvement for the estimation
of instantaneous frequencies compared to the Hilbert transform (HT). These authors used the
Morlet wavelet and the identification of the mode shapes is not performed. Argoul et al. [16-18]
chose the Cauchy wavelet and provided a procedure to identify natural frequencies and viscous
damping ratios as well mode shapes. The previous authors applied their identification techniques
to proportionally damped m.d.o.f systems. Newland [19-21] introduced a new orthogonal wavelet
called harmonic wavelet. Tang [22] used this mother wavelet to process exponentially time-
decaying signals in a relatively narrow bandwith situation. Most of these authors applied their
procedure to real data [15-18,21,22]. Finally, Staszewski [23] and Argoul and Le [18] started to
adapt their procedure to non-linear systems.

In light of these references, the choice of the mother wavelet is not obvious; in addition, the
value of the parameter(s) appearing in its definition is not clearly explained. For the numerical
computation of the CWT of finite record signals, the problem of the edge effect is sometimes seen
but not seriously tackled. Moreover, damping estimation is only performed from the modulus of
the CWT.
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The aim of this paper is to improve the use of continuous wavelet transform for modal
identification purposes from the free-decay responses of structures. The choice of the mother
wavelet and of its localization properties is discussed. Efforts are made to remedy the problem of
edge effect appearing during the numerical computation of the CWT. The procedure of
identification of the modal characteristics (modal frequencies, modal damping ratios and mode
shapes) based on the CWT (modulus and phase) is presented in detail.

The paper is arranged as follows: Section 2 provides a description of the general theoretical
background on CWT, and develops its application to frequency modulated signals. Section 3 is
devoted to the formulation of the modal parameters identification, in which the relations between
the data and the modal parameters are given. Numerical and practical aspects of this procedure
are studied in Section 4. The approach is to process the edge effect problem and to propose some
rules for the choice of the mother wavelet’s parameters. The step-by-step algorithm for the
procedure is then presented. The final section (Section 5) illustrates the edge effect and validates
the procedure with a numerical example.

2. CWT applied to frequency modulated signals
2.1. Continuous wavelet transform: theoretical background

For the sake of completeness, this section gives a basic presentation of the wavelet transform
theory together with the most relevant properties for the proposed procedure. The same definition
as used by Carmona et al. [11] is chosen for the CWT of a signal u(¢), that is a finite energy and
piece-wise continuous function of ¢,

+ o0 B —b
nuta— [ uoi(*0) a (n

— o0

where (.) is a square integrable and piece-wise continuous function called the mother or
analyzing wavelet, and y(.) is its complex conjugate. The pair (b, a) is called the time-scale variable
of the analysis, where a (a > 0) is a scale parameter that plays the role of the inverse of frequency,
and b is a translation parameter related to time. Eq. (1) can be viewed as either the inner product
between the signal u(¢) and the shifted and scaled copies of Y(7) : ¥, () = (1/a)y((t — b)/a), or as
the convolution product between u(t) and (1/a)y(— =). The function y(¢) is an admissible mother
wavelet when Cy, defined by

G = [ taop L @)

is finite, non-zero and independent of the real number w. In Eq. (2), Y(w) is the Fourier transform
(FT) of Y(2) : y(w) = fif Y(t)e ' dt. When this admissibility condition is verified, the signal u(t)

can be reconstructed by
| IR t —b\da
ut) =~ / / Ty [ul(b, a)y <—>— db. (3)
vJ-—o JO a a
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Moreover, Parseval’s theorem applied to Eq. (1) gives the following expression in frequency
domain:

Tylul(b,a) = % / o ﬁ(w)t_ﬁ(aw)ei“’b dw. (4)

0

The local resolution of the CWT in time and in frequency depends on the dilatation parameter «
and is determined, respectively, by the duration Az, and bandwidth Aw, of the mother wavelet:

ACO./,

At =aAty, Aw= ()

P
Here, At; and Aw, are stated in terms of root mean squares [24] which are equivalent to standard
deviations in statistics

+ o0
Aty = sz\/ / (t = 1y’ (0 dr, (6)

+ o0
_ d 7
Aow ||w||2\// ) W@ do @

where ¢, and wy, are the centre of (#) and lﬁ(w), respectively,
i Inb(t)l2 i |w<w)|2

= dt and _ ‘ ]
L e e oo= [ 0N ®

| - ||, denotes the classical norm in the space of square integrable functions. The function v is said
to be localized about the phase point (#y, wy) with uncertainty u(yy) = Aty Awy. It can be seen from
Eq. (5) that u(y,,) = AtAw = u(y). The Heisenberg uncertainty principle states that ,u(t//)/z,
thus, an improvement of the time localization (i.e., a decrease of Af) is accompanied by a
deterioration in the frequency localization (i.e., an increase of Aw). If wy, /a is considered to be the
frequency variable w, then the tw plane can be viewed as the time—frequency plane. The
localization domain for the CWT at point (b, w = wy /a) becomes

A A
[b+ aty — alty, b + aty + alty] x Dy _ 2%y Dy + Dy .

©)

a’ a a

Referring to the conventional frequency analysis of constant-Q filters, the Q factor is introduced
as the ratio of the centre-frequency to the frequency bandwidth

__wya oy
0= 2(Awy/a)  2Awy (10)

0 is independent of . Gram-Hansen and Dorize [25] associate this Q value to the filter bank of a
(1/N)th octave that is a classical notion in acoustics: a (1/N)th octave band of centre frequency
wy is a band [0, w,] with @) = 27Ny, and w; = 2/CMe,, hence Q = 1/21/CN) — 2=1/CN),
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Due to the linearity property of the CWT, the signal of multi-components can be pro-
cessed as

N

N
Zwkm=2ﬂmmm (11)

J=1 J=1

Ty

Using localization properties of the mother wavelets, in both time and frequency domains, a
particular component #; can be extracted from multi-component signals. If y and u are
continuous and piece-wise differentiable, the integration by parts theorem allows relation (1) to be

rewritten as
+o +0o0 L/t
1 / (i <Q> dt] . (12)
o al a

Moreover, when v is square and absolutely integrable and i is of finite energy, the CWT of & with
 is then related to the CWT of u with y:

.o — ;o ()

1
Tylia)(b,a) = — p T[u)(b, a). (13)

This relation can be easily extended to the finite energy signal it when / is square and absolutely
integrable:

1 1
Tli(b,a) = —— Tylil(b. ) = — T;[u)b. 0). (14)

It should be also nqgted that for the expression of T'; L] and of T; [u] in the frequency domain [see
Eq. (4)], Y/(») and /(w) can be substituted by —1ww(w) and a)zlp(w) respectively.

2.2. CWT of frequency modulated signals and ridge estimation
A finite energy real signal u(¢) can always be associated with an analytic signal Z,(t) by making
use of the Hilbert transform:

Z,(t) =[I +1H]u(?), (15)
where I and H are, respectively, the identity and the Hilbert transform operators. It
gives

Z(w) = 20(w)a(w),

u(t) = Re[Z,(1)], (16)
where @ denotes the Heaviside function. One defines the canonical pair (A,(t), ¢,(¢)) of signal u(z)

with modulus 4,(¢) = |Z,(?)| (4,(t)=>0) and phase ¢,(1) = L[Z,(?)] (¢,(t)€[0,2n)); hence u(t) =
A,(t) cos(¢,(1)). The instantaneous angular frequency w,(¢) is then given by

out) = 4D _ o) (17)
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This canonical representation has proved to be useful in many applications. However, when
multi-component signals are under study, a band-pass filtering is necessary in order to separate
each component.

Conversely, when u(7) is given in the form of a single component

u(r) = A(1) cos(¢(1)), (18)

its analytical signal Z,(7) is generally different from the associated complex signal A()eD. Z,(1)
can be approximated by A(¢)e®:

Z(t)~ A(1)e D, (19)

and u(z) is then called an asymptotic signal if it is sufficiently “oscillatory”. This approximation
means that the oscillations resulting from the phase term ¢(¢) are much faster than the variation
coming from the amplitude term A(7). When the admissible mother wavelet y(¢) is progressive (i.
its Fourier transform /(w) vanishes for o <0), the CWT of a real-valued signal u is related to the
CWT of its analytical signal Z,(t)

1 1
Ty[ulh,a) = <u ¥y /(0 = 5 {Zu¥p 1)) = 5 Ty[Z,)(D, ). (20)

The main feature of the CWT applied to asymptotic signals is that it is concentrated along curves
in the time—frequency domain called “‘ridges”. The restriction of the wavelet transform to each
ridge, called the “‘skeleton” of the transform, contains a maximal information: it is very close to
the component of the signal itself. A definition of the ridge and an approximation of the skeleton
are given in Refs. [7-13] as

K
(b)) = ——, 21
ar(b) ) 21)
Ty[ul(b, ar(b)) = Corr(b)Z,(b), (22)

where K is a constant depending on the mother wavelet and Corr(b) is the correction function
entirely characterized by the mother wavelet and by the ridge a,(b). Once the ridge is determined,
the analytical signal Z,(¢) can be deduced. Its real and imaginary parts give the signal and its
Hilbert transform, respectively. The ridge extraction is obtained through a non-parametric
identification technique, for which several algorithms can be found in Refs. [7-13]. “Differential”
methods are based on a local analysis of either the extrema of the CWT modulus, or the points
where the frequency of the CWT coincides with that of the scaled wavelet. In “integral’” methods,
ridges are seen as smooth and slowly varying functions where the energy has a tendency to localize
in the time—frequency map. An appropriate penalty function is then optimized for obtaining the
set of smooth ridge candidates. The choice of a method, either differential or integral, strongly
depends on noisy or clean signals. Due to the pure signals processed in this paper, the Marseille
method [19,11] is applied. The phase of the CWT is used with K = (f)lp(O) and Corr(b) =
Y(a,d.(b)), where ¢y (1) denotes the phase of the mother wavelet. If significant noise is present
within the signal, integral methods, which are more stable than differential ones, are
recommended. For instance, Staszewski [23] uses the simulated annealing algorithm to minimize
the penalty function.
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3. Formulating modal parameters identification
3.1. Free responses of viscous damped modal m.d.o.f system
Consider a m.d.o.f mechanical system with viscous proportional damping. The free responses at

point k of such a system of N degrees of freedom, in terms of displacement u(¢), velocity () and
acceleration iix(¢), are expressed according to the modal basis

N N
we() = ug(t) =Y Biipje” " cos(dt — @), (23)
j=1 j=1
N N }
() = gty = = Digpjwe” 9 cos(d@yt — ¢; — 5)), (24)
=1 j=1
N N §
() = () = =Y Bigp;wie 9 cos(d@yt — ¢, + 0)), (25)
=1 J=1

where j is the mode number. @;; is the (k,j) term of the modal matrix made of eigenvectors
@; = [Py, Py, ... Py;]". Bach of these vectors can be normalized to give the maximum value &,
equal to unity. For the mode j: w;, @; are the undamped and damped vibration angular
frequencies and ¢&; is the damping ratio

1/2

. 2
= {[Y’(O) o) +[Y.,~<0)]2} ,

7

Y;(0) and Y,-(O) are the initial modal displacement and velocity of mode j; ¢, =
arctan{(c_,-o—i-éj)/ l—é_f} with ¢ = ¥;(0)/(w; Y;(0)), éj:arctan{,/l—if/éj} and 0, =

arctan{Zéﬂ /1 — éf/(l - 25,2)}-

Relations (23), (24) and (25) can be rewritten in general form: Z]]\L 1 Akj(t) cos(ay(1)) where
. T

(26)
Ay, (1) = |®yilpje 5" for w(?), (b)
~ Y
%y (1) = Dt — @; — 5Vj ) (1 + sgn(Py)), (a) 07
Ay, (1) = |Dyjlpjc0;e~ 5" for iy (1), (b)
o T
o (1) = &t — @+ 0; + 5 (1 +sgn(Py)), (a) 28)

Ay (1) = |Dylp;7e= " for iy (). (b)

The assumption of weak damping is made; thus, it is shown in Ref. [26] that each component of
these signals is asymptotic when &;« 1/ \/5: Zii(t) ~ Ayi(1)e™). Moreover, Géradin and Rixen
[27] show that in the case of non-proportional damping, the assumption of weak damping allows
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the off-diagonal terms in the generalized damping matrix to be neglected without disturbing
significantly (through second order perturbation) the spectrum of eigenvalues of the damped
system.

3.2. Relations between data and modal parameters

The data for the modal identification come in the form of instantaneous functions: the
amplitude 4,,,(7) (or 4;,(7) or 4;,(1)), and the phase oy, (¢) (or oy, (¢) or oy, (¢)) of each component
extracted from the CWT of the measured free responses uy(¢) (or i (¢) or iix(¢)) at point k. Simple
instantaneous relations R(7) between data and modal parameters are deduced from Egs. (26), (27)
and (28) in order to get linear or constant relations. The estimation of modal parameters is then
performed through a parametric identification technique based on the minimization by the least-
squares method of an error criterion defined as the difference between the instantaneous functions
that are derived from the measurement R™““(¢) and those obtained with the model R™%!(f).

(1) Use of phases: The time evolution of the phase o, (¢) (or oy, (¢) or oy, (¢)) given in Eq. (26a)
(or (27a), or (28a)) is a straight line with slope @;; the estimation of @; leads then to a straight line
inverse problem. The time evolution of the ridge a,‘”k/_(t) given in Eq. (21), gives:

K

Wj = Oy, = ma (29)
K
D =y, (1) = —, 30
or CU] o kj( ) ar{lkj ([) ( )
D= oy, (1) = . 31
or wj o A_/( ) ar‘;kj(t) ( )
Two other relations based on the phase give the damping ratio directly
& = lcos(0; — m sgn(Py;))| = |cos(ou,, (1) — aiy; (1)),
or ¢& = |cos O+ msen(@i)) | _ cos | Zhurt) — dugtl) o) — %y (1) . (32)
2 2
The phase difference d}d(t) of the mode j between point k and point /:
(1) = oy (1) = 0 (1) = — (i (1) — 00y (1)) = — (o () — o0, (1)) (33)
is either null or equal to +=
b
df'(1) = 3 (sen(@;) — sen(®y). (34)
Thus, @;; and @; have the same sign if d}d (1) = 0 and opposite signs if d}d (1) = =
(2) Use of amplitudes: w; can be expressed as
. Ailkj(t) _ Aul\j(t) (35)

w; = or w;= .
/ Auk,-(t) / Al:l/(/'(t)
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The time evolution of the logarithm of amplitude log(4,,(?)) (or log(4;,,(7)) or log(4;,(1)) is a
straight line with slope —¢;w;, as seen below

log(Au, (1)) = log(|Pylp;) — &o;t,

log(4,,, (1) = log(1Pylp;w;) — Cwjt,

log(Ai, (1)) = log(|Pylp;w7) — eyt (36)
The identification problem is again a straight line inverse problem. The ratio 4,,,()/A,,,(?) of the

amplitude of the jth component of the response at point k upon that at point m is a constant in
time which is the absolute value of the kth component of mode j; thus,

|¢mj| / Aum/([)‘

(37)

4. Numerical and practical aspects of CWT
4.1. Mother wavelet choice

The optimal mother wavelet y for modal identification purposes using the free responses of a
m.d.o.f system should satisfy the following conditions: (a) y is admissible (Eq. (2)). (b) ¥ is
progressive. (¢) ¥ has good time and frequency localization properties. (d) The first and the second
derivatives of s satisfy the three previous conditions, and thus Eq. (14) can be used.

The first condition is obvious. Several reasons suggest the use of progressive wavelets instead of
real ones for the analysis of real signals (cf. Ref. [11]): (i) it allows the direct connection between a real
signal and its associated analytic signal (see Eq. (20)). (ii) the wavelet transform of real signals using
real wavelets yields real wavelet coefficients, and there is no natural way of making a connection with
some “‘local spectrum’ which one would like associate with a given signal. The third condition is very
important in the context of time—frequency analysis and the final condition makes the processing by
CWT of displacement, velocity and acceleration easier without differential and integral operations.

Three complex-valued mother wavelets are compared. One or two parameters appear in the
definition of each mother wavelet and strongly influence the localization properties. The first one
is the well-known Morlet wavelet. The second is the Cauchy wavelet of order n, intensively used in
quantum mechanics [28] when n = 1 and also by Argoul et al. [16-18,29] when »n > 1. Finally, the
third one is the harmonic wavelet recently proposed by Newland [19-21]. The formulae of y(7),
Y(w), Cy, ty, wy, Aty, Awy, i, and Q are given in Table 1 for the three wavelets. The first and the
second condition are verified by both Cauchy and harmonic wavelets. The Morlet wavelet is only
numerically admissible and progressive when the product of the two parameters fJ is large
enough ((f0)=5 in practice). According to the third condition, the Morlet wavelet has its
time—frequency window with the smallest area allowable (%) by the Heisenberg inequality. The
uncertainty p,, of the Cauchy wavelet behaves asymptotically with this threshold when its order
parameter n tends towards infinity. The harmonic wavelet has infinite uncertainty but its support
in frequency domain is compact. This property allows the isolation of components with close
frequencies. Newland [21] improves time localization by windowing the spectrum of wavelets, but
it is more complicated. The last condition is easily verified by the definition of the Cauchy wavelet
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Table 1
Definition of the main characteristics of the three mother wavelets
Morlet wavelet Cauchy wavelet Harmonic wavelet®
l//(l‘) e—fz/(zéz)eiﬁt i n+1 eiZmzt _ eiZmnt
(ﬁﬁ Tri— i
) 5\ 2me—(@=P’3 /2 2mof'e o @ Ol(w — m2m)(n21 — w)]
n! (n—m)2n
: I 2n—1) 1
R * a2 LD L n®
220 (n) 4n2(n — m) m
ty 0 0 0
wy B " 1 (n+m)n
2
Awy: 1 Van+1 (n—m)n
W2 2
Aty i 1 0
\/E vV2n—1
- 1 1 2 o0
b /1
2 2V o
_ Wy Bé 1 (n+m)
0=51—— P z
v2n+1

#Newland uses the inverse FT definition: w(x) = fj:cc W(w)e' ™ do.

given in Table 1. The first and the second derivatives of y, are also the Cauchy wavelets since
Un(t) = i(n+ D1 (1) and (1) = —(n + D+ 20, (D), (38)

and the identification procedure with & and i by the aid of Eq. (14) can be simplified. The first and
second derivatives of the Morlet wavelet also satisfy the fourth condition, but they are not the Morlet
wavelets and their time—frequency localization are no longer as good as the Morlet wavelet [26]. The
derivatives of the harmonic wavelet are admissible and progressive, however, its time localizations
are poor; moreover they are not absolutely integrable, so the application of Eq. (14) is limited.
The properties of the mother wavelet can be referred to the parameter Q defined in relation (10)
[30]. To compare the three proposed mother wavelets, the Q factor is used: each mother wavelet
will have the same value of Q and w,, (and consequently the same Aw, ). Each mother wavelet and
its corresponding FT are plotted in Fig. 1 according to different values of (1/N)th octave which is

Fig. 1. Modulus of mother wavelets in time and in frequency domains corresponding to different Q values:
(a) @ = 1.4142 (1 octave), (b) Q = 17.3099 (1/12 octave). Cauchy wavelet: O, Morlet wavelet: * and harmonic wavelet:
A Vertical lines - - - delimit /., and I, [see Section 4.2].
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(b)

Fig. 1 (continued).
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Table 2

Dependence of the definition parameters of the three mother wavelets on Q

Filter Morlet wavelet Cauchy wavelet Harmonic wavelet
Octave Q p 0 n n m

1 1.4142 3.5 0.5714 3 0.7540 0.3601
1/3 4.3185 37.5 0.1629 37 6.6593 5.2773
1/6 8.6514 149.5 0.0818 149 25.1688 22.4185
1/12 17.3099 559.5 0.0408 559 98.1694 92.6574

directly linked to Q [see Section 2.1]. Table 2 gives N, QO and the correspondence between the
definition parameters of each mother wavelet. Some remarks follow:

(i) for the Morlet wavelet, (0)#0 but (0) tends towards 0 when the product f increases,
moreover, at a given wj, the localizations in time and in frequency obtained from Eq. (5) and
Table 1: At,,, = o/ (wjﬁ) and Aw,, = w;/(Bé ﬁ) depend only on the product 6 and thus on Q
value. So, without loss of generality, one can assign 6 = 1 and f§ varying to reach the expected
value of Q. (i) The more Q increases, the closer the Cauchy and the Morlet wavelet curves become
in the both time and frequency domains. (iii) The harmonic wavelet has very poor properties in
time and exhibits the Gibbs phenomenon because of discontinuties in the frequency domain. In
addition, the harmonic wavelet is not absolutely integrable which is required for a window
function in practical purposes [24]. Thus, the CWT computed with harmonic wavelet will not be
retained for the modal identification purpose, which agrees with the conclusion of Tang [22] when
he compares it to short time Fourier transform. (iv) when Q is small (0 = <5, i.e, 0<5/ V2 in
practice), it is natural to use the Cauchy wavelet instead of the Morlet wavelet and when
0= 5/\/5 (i.€ fo = p=5 and n>25), the Cauchy wavelet has uncertainty u,, ~%(1 +1/2n—1)+
o(1/(2n — 1))?). It shows that the variation of ty, versus Q tends quickly toward % when Q
increases; this variation is presented in Fig. 2. Because the difference in time—frequency
localization between the Cauchy and Morlet wavelets is less than 2%, it is still possible to use the
Cauchy wavelet.

4.2. CWT computation-edge effect

The measured signal u(?) is generally sampled over the finite length record L with a sampling
period T. The frequency content of this discrete version is limited by the Nyquist frequency
Snyquise = 1/(2T). The CWT computation can be performed by different algorithms: quadrature
rule, fast Fourier transform (FFT) with or without zero padding, convolution product and the
chirp Z transform [26]. As the definition of the CWT given by Eq. (1) consists of an integration
over all R, the signal can be either put to zero outside the record interval or periodized by FFT
algorithm. All examples in the following will be performed with FFT algorithm implemented in
MATLAB software.

The edge-effect problem, well described by Slavic et al. [31], arises due to the finite length and to
the discretization of measured data record and to the nature of the CWT (convolution product see
Section 2.1). It cannot be removed and a domain D in the tw plane, where the edge effect can be
neglected, can be determined.
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Fig. 2. Uncertainty g, of Cauchy wavelet (O) and of Morlet wavelet (L0). Vertical line corresponding to Q = \/§ /2,
numerically admissible limit of Morlet wavelet.

Let the two real coefficients ¢; and ¢, greater or equal to 1 be introduced such as when 7 is
outside the interval I. = [ty — clAty, ty + ¢ Aty ] and when o is outside the interval ., =
[y — crAwy, oy + ¢rAwy], Y(1) and Y(w) have good decreasing properties, respectively (this
means that (7) and y(w) have null or very “small” values). It can be shown by the help of the
Bienaymé-— Tchebychev inequality, that when 7 is outside I, and o is outside I, then
Sy, WOP A< 1/ and fo_, W(@)P do <1/, respectively.

The effect of the values of ¢, and ¢ are then illustrated and three cases are considered: ¢; =
¢r=2,¢,=cr=5and ¢, = ¢, = 8. In Fig. 1, the vertical lines denote for both wavelets, the
bounds of the intervals 7, and I.,. It can be noted that the more Q increases, the closer these lines
become for the Morlet and Cauchy wavelets. More precisely, the ratios ry = [(ty +
cAty)|/ Iy (ty)| and I Ilﬁ(col/, + crAwy)|/ |lp(a)¢)| are proposed to characterize the propertles of
the decrease of V(1) and Y(w), respectively. In Ref. [26], it is shown that ry = rl/, = e /4 and
ro=1* =e 9/ for the Morlet wavelet. For the Cauchy wavelet, ry,(Q) and r l//(Q) tend
asymptotically when Q tends to infinity, towards rl// and r*, respectively. "y and rj are drawn
versus Q in Fig. 3. The choice of ¢; = ¢y = 5 seems to be a good compromise.

Fig. 3. Extended localization of mother wavelet in time (a) and frequency (b) domains. — Cauchy wavelet, - - - Morlet

v

wavelet correspondingto O : ¢, =c¢, =2, 0 : ¢, = ¢y = 5and A : ¢, = ¢y = 8. Vertical line corresponding to Q =
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Thus, it is proposed to define D as an “‘extended” time—frequency localization domain for the
CWT expressed in Eq. (9) around the phase point (b;, w; = wy /a;). Using the coefficients ¢;, ¢, and
the progressive property of the mother wavelet, D becomes

b+ z——cAz, bj+—1ty +—c/At
[ ij a)jtw ija)/tl//]

X [max (O, co_,-(l — ¢ Aﬂ?'”)), (1 +c A;‘”)] (39)
W W

D must be included into [0, L] x [0, 27tfyyquisc]; this leads to the following system of inequalities:

O ALy, — 20y wﬁéL——%Al——%

- Aty y<b; v v

Wj wj Wy (40)
0 <wj < chNqust

1+ cf(Aa),/,/wl/,)‘

Finally, by introducing Q and g, and assuming 7, = 0, which is true for both Morlet and Cauchy
wavelets, system (40) becomes

1 1
wj wj
2 uis.

0<CO]\ TCfNyq t (42)

L+¢(1/20)

As shown by inequalities (41) and (42), D is delimited by two hyperbolae whose equations are
o = (1/b)c20u,, and o = 1/(L — b)c,2Qu,, and two horizontal lines whose equations are @ = 0
and o = 27fnyquis: /(1 + ¢£(1/20)). Due to the introduction of the two parameters ¢; and ¢, greater
than 1, the useful time interval is smaller than L and the maximum useful frequency is smaller
than fnyguis;. This useful domain D will be used for the modal identification procedure.

4.3. Mode decoupling—mother wavelet parameter choice

The next step is to be able to correctly extract two close ridges corresponding to two coupled
modes. Note w; the angular eigenfrequency and dw; the frequency discrepancy from which the
effect of the modal coupling must be avoided. In order to solve this problem, the frequency
localization domain of the CWT along a ridge, given in relation (39) [max(0,w;(1 —
cr(Awy /wy))), wi(1 + ¢s(Awy /wy))] is assumed to be included into [w; — dw;, w; + dw;]. This
leads to

O>cr (43)

wj
2 dwj'
It is proposed that dw; = min((w; — wj_1),(wj11 —w;)) for 1<j<N with wyg =0, oy =
27tfNyquisi- Thus, inequality (42) previously obtained is immediately checked since dw; <mfnyquis:-
Then relation (41) combined with the Heisenberg’s inequality gives
o<t

=4 44
2 (44)



T.-P. Le, P. Argoul | Journal of Sound and Vibration 277 (2004) 73—100 89

and finally, the parameter Q can be bounded by the following limits:

Cl)j i
<0O<—. 45
« 2dw; Q 2¢, (43)

Here, L and fxyuis: are obtained from measurements; w; can be evaluated by FFT and classified in
increasing order. ¢; and ¢, must satisfy the following inequality:

ccr <L dw;, (46)

deduced from Eq. (45). It is proposed to start with ¢, = ¢, = 5. When inequality (46) is not
checked, ¢; and ¢, must be reduced until (46) becomes true. Then, the value of Q can be chosen in
the limits fixed by Eq. (45). When the Q value increases, the edge effect becomes more significant,
thus the useful time interval for modal identification shrinks but the mode decoupling is more
effective.

4.4. Full procedure for modal parameters identification of m.d.o.f systems

Using the properties of the CWT for processing frequency modulated signals, an identification
procedure is proposed to obtain the values of modal parameters. The procedure is presented for
displacement responses and can be easily extended to velocity or acceleration ones. It consists of
three steps

(1) First step: compute the CWT of signal u(¢); the CWT of i(¢) and of iix(¢) can be deduced
from Eq. (14). The choice of the mother wavelet and its parameters are based on the Q value
following relation (45). The choice of Q depends on the spectral components in the signal as
well as the sampling rate and the duration of the signals. The use of the peak picking
technique applied to the FFT of the signal under study is enough to obtain some rough
estimates of the modal frequencies in the signals and then allows the computation of the
bounds of Q.

(2) Second step: estimate ridges and skeletons. The time variation of instantaneous frequencies

’"‘“‘”"(b) and of the analytical signals Zm‘“‘"“(b) from the CWT of wu(f) can be
deduced

measure ('b (0)

uk] (b) ark] (b) (47)
2
Zmeasure b measure b, i b
U ( ) l//( r/ mcasule) [ ]( akj( ))
2

~—— " measure b, » b . 48
7,0 Ty [ 1(b, ayiei(b)) (48)

It is also possible to obtain ocmj“‘““(b) fok‘a‘”"(b) oc’"‘a‘”"(b) and Zgif”"“”(b) from ridges and
skeletons of T [i"***"*] and T [i]***"] deduced in ﬁrst step.

(3) Third step: identify modal parameters: @; (or w;), ¢; and @y;. For each modal parameter,
several adapted identification procedures are detailed with the expressions of R™“"*(p) and

of R™4!(p) (see relations in Section 3.2):
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(a) For the angular frequency &; (or w;):

(1) From ridge: R"™%e(p) = ocmf"‘“"(b) obtained from Eq. (47) and R"°%!(p) = @;.

(i) From phase: R™“"€(p) = Z”’:‘“”"(b) obtained from Eq.(48) and R™%!(p) =
@yt — @+ 5(1 — sgn(@y).

(111) From modulus: Rmeasure(b) |Zmeasure(b)|/|Zzlchusure(b)| or Rmeasure(b) —
|chasun(b)|/|zmca\ura(b)l and Rmodd(b) = wj.

(b) For the damplng ratio ¢

(1) From modulus: R™"¢(p) = log(|Zumkj_’”“”""(b)|) and  R"™%(p) = log(4,,,) =
og(|Dxilp w € 1dentified slope 18 an estimation o w;. It 1s then easy
log(|®ylp;) — ;jw;b. The identified sl i imati ffjjl'h
to get ¢; and w; from the previous estimations of —¢;w; and @;.

(11) From phase Rmcasulc(b) |COS(LzmcaSure(b) Lzﬂgamre(b))' and Rmodcl(b) — f

A similar procedure can be obtamed by using i instead of u: R”“‘“’”‘(b)
Zl'll( asure (b) L Z’I:;( asure (b)
lcos [ —4—F5—~ | and R™%!(b) = ¢&;.
(c) For the mode shape ®;, The index m is found by: max.) _,| Z’”“”“"(b)|

(1) absolute component |(pk]|' Rmcasure(b) |Zmeasuie(b)|/|zn casul@(b)| and Rmodel(b)
|(pkj|/|@mj| = |(ij|-

(11) the sign of @ ot Rmeasure(b) chasure(b) chasure(b) and Rmodel(b) dkm(b)
n/2(1 — sgn(Py;)). Finally, &;; = |(ij|sgn(¢>kj) It is noted that all above proposed
identification methods are linear and lead to a direct estimation without iteration
and initial conditions. Furthermore, the phase difference d;‘l(b) = LZZZ‘”W(I)) —
LZ’"e“S””’(b) given in relation (33) characterizes the dissipation effect between two
pomts k and [ of the structure and thus can be used to detect the presence of non-
proportional damping and/or non-linearity [18].

5. Application to simulated data

5.1. Hlustration of edge effect and of different identification techniques

In order to illustrate the influence of the edge effect and the Q parameter on the identification
results, the procedure described in Section 4.4 is then applied to the free response of a s.d.o.f
system whose mass m = 1 kg, rigidity k =7 kN/m, damping coefficient ¢ =2 N s/m; initial
conditions: #(0) = 1 m and #(0) =0 m/s; L =5sand T = 0.0049 s. Using ¢; = ¢, = 5 and dw; =
w; — 0 = 83.6660 rad/s, relation (45) gives the bounds of Q: 2.500< Q<41.833. T [u](b, a) is first
computed from the displacement u(¢). T [#](b, @) and T[ii](b, a) are then deduced from Eq. (14).
Fig. 4 shows the FT, CWT, relative errors between exact frequency (response modulus) of the
response signal, and the estimated instantaneous frequency (response modules) based on CWT of
the Cauchy wavelet with 1/3 octave filter (Q = 4.3185). All the modal parameter identification
techniques presented in the full procedure 4.4 are tested with this Q value. Figs. 5 and 6 present
different functions R™“**(f) for angular frequency and for damping ratio identifications
respectively. The edge effect is delimited by two hyperbolae in the time—frequency plane illustrated
in Fig. 4 and by vertical lines in the representation of functions R™“"“(¢) of Figs. 5 and 6. The
identified values are very similar and very close to the exact values for all the techniques, and
identification errors are negligible inside the domain D [26]. For practical reasons, the first
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Fig. 4. Modulus of FT and of CWT using Cauchy wavelet 1/3 Octave of s.d.o.f system response. Relative errors of
extracted ridge (frequency: ———) and of associated analytical signal (modulus: —). Two hyperbolic curves and two

vertical lines delimit edge effects on time—frequency plane and on extracted ridge respectively.

identification methods for angular frequency (i.e., from ridge) and damping ratio (i.e., from the
slope of the logarithm of the modulus) can be selected. The identified modal parameters of the
above s.d.o.f system obtained with these first methods, with the Morlet and Cauchy wavelets, for
different values of Q, are given in Table 3. The results obtained with harmonic wavelets are
unsatisfactory and not presented here. When Q is small (Q = 1.4142), the computation with the
Morlet wavelet is not performed since it is neither admissible nor progressive. With the Cauchy
wavelet, this value of Q is outside the bounds of Q with ¢, = ¢, = 5 and inside the interval of Q
when ¢, = ¢, ~3; and the result is a little worse than those for higher Q values due to a worse
time—frequency localization of the Cauchy mother wavelet. When Q increases, the extracted
results are quite similar for the Morlet and Cauchy wavelets, due to the convergence of r, and I
to the same limit for the two mother wavelets.

5.2. Validity test

The identification procedure presented above in Section 4.4 is then applied to the mass spring—
damper model with four degrees of freedom illustrated in Fig. 7. The free displacements
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ur(1), 1 <k <4 of the four masses of this model are plotted in Fig. 8 with initial conditions of
displacements [u;(0) = 1.00, u>(0) = 0.75, u3(0) = 0.50, 14(0) = 0.25]*(m) and of zero velocities.
The sample of duration L = 5 s is taken over M = 1024 points (sampling period 7" = 0.0049 s).
Analysis is performed for the u(¢) with both Cauchy and Morlet wavelets. The value Q; of Q is
chosen for each natural frequency w; following relation (45) with ¢; = ¢, = 5 and gathered in
Table 4. The effect of the choice of Q on the procedure is then illustrated with the Cauchy wavelet,

Fig. 6. Functions R""*(¢) for damping ratio identification: (a) from modulus of: — displacement, - - - velocity and
— O— acceleration; (b) from phase difference of: — displacement—velocity and —O— displacement—acceleration.
Vertical lines delimit edge effects on the extracted ridge and skeleton.
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Table 3

Exact and identified modal parameters of the s.d.o.f system

Filter Exact Morlet wavelet Cauchy wavelet
Octave Q w ¢ w ¢ w ¢

1 1.4142 83.6660 0.0120 — — 83.6749 0.0120
1/3 4.3185 83.6660 0.0120 83.6740 0.0120 83.6739 0.0120
1/6 8.6514 83.6660 0.0120 83.6740 0.0120 83.6739 0.0120
1/12 17.3099 83.6660 0.0120 83.6740 0.0120 83.6739 0.0120

Cy |__j % k4
I mp = mg = m3 =my = lkg
Uz
ms —
kl = kg = 70001\7/771
e L= % ks ky = ky = 8000N/m
my U2 ¢ =c¢3=07Ns/m
¢y =c¢4 =0.8Ns/m
Co |__j kQ
1 u,
my —
C1 |__j kl

Fig. 7. Definition of the test 4-d.o.f system.

on this example. Figs. 9(a) and (b) show the signal u4(7), its FT and the logarithm of the modulus
of the CWT computed with the Cauchy wavelet, for the values Q; previously obtained. In
Fig. 9(a), QO = Q; = 8, the first mode can be easily distinguished but the third and fourth ones are
coupled since the condition for mode decoupling is not checked: 10.5<0<659. 0= 0, =20 s
used for the extraction of the second mode but the first mode is now outside the useful domain D
previously defined. In Fig. 9(b), CWT is performed with Q = Q3 = Q4 = 30, the third and fourth
modes are well separated: however, the useful time interval for the second mode is very short and
the first mode is also outside of D. The identification procedure is then applied with the ridges and
skeletons within D. Fig. 10 presents the first mode extracted as an example with the ridge (for
identification of frequency), logarithm of modulus (for identification of damping ratio), ratios of
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Fig. 8. Free responses of the test 4-d.o.f system (u; denotes the displacement of mass my).

Table 4

0 values choice for CWT of the m.d.o.f test system

Wy dwj . &< <ﬁ Qchasen
“ Tdw, S 25 20

107 107 2.500< 0<15.708 8

27n 17n 3.971<0<42.412 20

427 107 10.500< 0<65.973 30

S52n 107 13.000< 0 <81.681 30

modulus (for identification of absolute components of mode) and phase differences (for sign of
components of mode). The identified modal parameters given in Table 5 and the mode shapes
drawn in Fig. 11 obtained with Morlet and Cauchy mother wavelets are very close since p,(0)),
ry(Q;) and rl/;(Qj) are very similar for the two wavelets. It can be noted that estimated modal
parameters and mode shapes match closely the exact values but not as well for the identified
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damping ratio of the fourth mode. The results agree well with the exact values, confirming the
choice of the ¢;, ¢y and Q values.

6. Remarks and conclusions

This article concerns the modal identification from the free responses of m.d.o.f systems based
on continuous wavelet transform. After a discussion of complex-valued mother wavelets, a
complete modal identification procedure is established with improvements for numerical
implementation. The parameter Q is chosen to compare different mother wavelets and to
characterize the quality of the CWT. Two interesting mother wavelets for identification procedure
are retained and studied: Morlet and Cauchy. A thorough analysis demonstrated that the two
mother wavelets behave asymptotically when Q tends toward infinity. The modal parameters
(frequencies, modal damping ratios and mode shapes) can be extracted from different methods
and are tested on both s.d.o.f and m.d.o.f systems. The procedure is shown to be efficient with a
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Fig. 11. Mode shapes of the test 4-DOF system.

Table 5

Exact and identified modal parameters of the m.d.o.f test system

Mode Exact Identified Exact Identified
frequency frequency (Hz) damping ratio damping ratio (%)
(Hz) Morlet Cauchy (%) Morlet Cauchy

1 4.7397 4.7397 4.7396 0.15 0.15 0.15

2 13.5900 13.5905 13.5906 0.43 0.43 0.43

3 21.5035 21.5146 21.5145 0.68 0.67 0.67

4 25.9414 25.9764 25.9797 0.81 0.75 0.75

suitable choice of mother wavelet and their corresponding definition parameters. The edge effect
is highlighted and the introduction of two real coefficients ¢; and ¢, allows this effect to be taken
into account during the identification process. Moreover, some upper and lower bounds are given
for Q to facilitate the identification of coupled modes and to remedy the edge effect problem. The
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efficiency of the improved technique with ¢, = ¢ = 5 and with different values of Q, depending to
the mode under study, is tested in the case of a discrete system with four degrees of freedom. The
identified modal parameters obtained with both wavelets are quite similar. The use of the Cauchy
wavelet is legitimate when Q is small (Q<5/ \/5). When Q increases, the results obtained with
both wavelets become closer, a little better with the Morlet wavelet due to its excellent
time—frequency localization. The facilities for processing either accelerations, velocities or
displacements make the use of the Cauchy wavelet interesting for modal identification purposes.
Finally, the proposed procedure can be easily extended to other linear time—frequency
representations, such as the short time Fourier transform. The non-proportional damping and
the identification of nonlinearities are also under study; preliminary results can be found in
references [18,26].
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