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Abstract

Continuous wavelet transforms (CWTs) are widely recognized as effective tools for vibration-based
machine fault diagnosis, as CWTs can detect both stationary and transitory signals. However, due to the
problem of overlapping, a large amount of redundant information exists in the results that are generated by
CWTs. The appearance of overlapping can smear the spectral features and make the results very difficult to
interpret for machine operators. Misinterpretation of results may lead to false alarms or failures to detect
anomalous signals. Moreover, as conventional CWTs only use a single mother wavelet to generate daughter
wavelets, the distortion of the original signal in the resultant coefficients is inevitable. Obviously, this will
significantly affect the accuracy in anomalous signal detection. To minimize the effect of overlapping and to
enhance the accuracy of fault detection, a novel wavelet transform, which is named as exact wavelet
analysis, has been designed for use in vibration-based machine fault diagnosis. The design of exact wavelet
analysis is based on genetic algorithms. At each selected time frame, the algorithms will generate an
adaptive daughter wavelet to match the inspected signal as exactly as possible. The optimization process of
exact wavelet analysis is different from other adaptive wavelets as it considers both the optimization of
wavelet coefficients and the satisfaction of the admissibility conditions of wavelets. The results obtained
from simulated and practical experiments prove that exact wavelet analysis not only minimizes the
undesirable effect of overlapping, but also helps operators to detect faults and distinguish the causes of
faults. With the help from exact wavelet analysis, sudden shutdowns of production and services due to the
fatal breakdown of machines could be avoided.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. The use of wavelet transforms in vibration-based machine fault diagnosis

The Fourier transform (FT) represents a signal by a family of complex exponents with infinite
time duration. Therefore, FT is useful in identifying harmonic signals. However, due to its
constant time and frequency resolutions, it is weak in analyzing transitory signals. In contrast,
CWTs have a constant frequency to bandwidth ratio analysis. Therefore, CWTs provide powerful
multi-resolution in time—frequency analysis for characterizing the transitory features of non-
stationary signals. Moreover, CWTs can decompose an inspected signal into a family of
elementary functions. This ability renders the analysis of the inspected signal easier for machine
operators. Hence, extensive research has been conducted on the use of CWTs in vibration-based
machine fault diagnosis [1-4]. The authors had also performed a comparison on the effectiveness
of the popular envelope detection and CWTs on the fault diagnosis of roller bearings [5]. The
study shows that CWTs outperform the envelope detection in identifying the causes of faults.
Nevertheless, CWTs have not yet been widely adopted by industry for machine fault diagnosis.
The major obstacle is the difficulty in interpreting the results that are generated by CWTs. Fig. 1
shows the results that were generated by the Morlet CWT for analyzing a vibration signal that
was collected from a defective roller bearing.

1.2. The deficiency of conventional wavelet transforms

Every component has multiple excited frequency zones, particularly in the high-frequency
region. The reason to seek for the excited frequency zone is to obtain higher signal-to-noise ratio
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Fig. 1. Overlapping occurs in the result that is generated by the Morlet CWT.
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so that fault related impulses or impacts could be revealed more clearly. Normally, if the
component is defective, then the fault-related impulses, which are caused by the contacts between
the surface of the defective component and other surfaces during rotation, should be revealed
more clearly in the excited frequency zones [6]. The excited frequency zones of the defective roller
bearing were found by performing an impact test on the bearing housing. The theories of the
impact test can be found in a number of publications by Brual and Kjaer, such as the one from
Randall [7]. Due to the limitation of accelerometers, we recorded the vibration generated by the
bearing housing up to 10 kHz. When performing the impact test on the defective roller bearing, it
was found that the one of the excited frequency zones of the bearing’s housing was around 8 kHz.
In Fig. 1, high values of wavelet coefficients, which are related to faulty impulses, are found at the
frequency level of 7.99kHz. This frequency level coincides well with the 8 kHz excitation
frequency found by the impact test. Hence, the identification of excited frequency zones for the
inspected component helps the operator to reveal problems of the component. Unfortunately,
high values of coefficients also emerge at the same time in adjacent frequency levels of 6.69 and
9.99 kHz. These undesirable high coefficients are caused by overlapping. Although their values are
relatively smaller than the ones at 7.99 kHz, they smear the spectral features and make the result
very difficult to be interpreted by machine operators. As each component of a running machine
has its own excited frequency zones, the appearance of high coefficients at adjacent frequency
levels may mislead operators to think that faults are also occurring in other components
simultaneously. Consequently, the overlapping induces operators to misinterpret the results and
make incorrect decisions in fault diagnosis. Misinterpretation of results may lead to false alarms
or the failure to detect anomalous signals. Such negligence may cause fatal breakdown of
machines, which could interrupt production and services. In the worst scenario, it could even
cause human casualties.

Besides the problem of overlapping, the results that are generated by conventional CWTs
always contain distortions as compared to the original inspected signal. The Morlet CWT has
been selected to demonstrate the cause of distortions as it is often used in decomposing vibration
signals for machine fault diagnosis. As shown in Fig. 2, the inspected signal contains three
transitory features—two harmonic waveforms and one impulsive signal. The coefficients that are
generated by the Morlet CWT at scales X, Y and Z clearly show that the three transitory features
are diluted and distorted at all three scales. Hence, the original time and frequency properties of
the inspected signal are difficult to identify from the displayed coefficients in these scales. This
undesirable effect makes the identification of anomalous signals even more difficult. The
distortions as shown in Fig. 2 are mainly due to the fact that Morlet CWT uses only one single
mother wavelet to generate the required family of wavelets. Obviously, a single mother wavelet

scale X A

scale Y 4\/\/%/\/'\#—“—«/\]\[\/\/\/%

scaleZ  — NN AN

feature 1 feature 2 feature 3

4 M NN 1 -0 e i
SRR | P L VR ) W AT A | —
raw signal VAVAY b \_‘I’ VYN

Fig. 2. Features being diluted and distorted in the analysis of Morlet CWTs.
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Fig. 3. The expected ideal result of exact analysis.

cannot provide all necessary wavelets to adaptively match with each of the characteristics of the
transitory features that are contained in the raw signal [8].

Idealistically, each of the three temporal features of the raw signal should only appear in one
scale that has the same frequency content and defined time frame as shown in Fig. 3. However,
due to the problems of overlapping in adjacent scales and the distortion of the signal, the three
temporal features appear in all three scales of the defined time frame as shown in Fig. 2. For the
benefit of vibration-based machine fault diagnosis, the decomposed features that are obtained
from an effective analyzing tool should possess all of the information on the amplitude, time and
frequency exactly as they are in the original raw signal. That is, after the decomposition of the raw
signal, each temporal feature should appear only in its expected scale and time frame exactly as it
is displayed in the raw signal. The ideal results should have no overlapping, distortion or
redundant information. Such a clear and precise result is called exact analysis. The aim of this
paper is to develop an effective algorithm that will allow CWTs to achieve such a desirable result.

1.3. The limitations of current methods used for minimizing overlapping

Wavelet ridge extraction [9] has been used to minimize the redundant information that often
appears in the results generated by conventional CWTs. However, it cannot solve the problem as
precisely as that performed by exact wavelet analysis. One of the main reasons for this deficiency
is that it uses a single mother wavelet to generate the required family of wavelets. Another reason
is that although it has the ability to delete some disturbance information, the deleted information
may not include the undesired information which is caused by overlapping. The method of
matching pursuit [10] uses a sub-optimal set of atoms that are selected from a time—frequency
dictionary to solve the overlapping problem. However, this method still cannot generate the same
results as exact wavelet analysis because it uses a single function to produce the time—frequency
atoms. Many methods had also been tried to obtain the best time—frequency resolutions in order
to minimize the effects of distortion and dilution to the original signal. For instance, Telfer et al.
[11] optimized the shift and dilation parameters of the discretization of a chosen wavelet
transform. Szu et al. [12] sought the optimal linear combination of predefined wavelet bases for
the classification of speech signals. Kocur et al. [13] employed a neural network to select wavelet
features for breast cancer diagnosis. Tagliarini and Page [14] optimized the wavelet coefficients so
that they could provide desirable properties for image identification. Galvao et al. [15] calculated
adaptive biased wavelet expansions by using the conventional gradient-descent method. Finally,
Silva [16] studied evolutionary-based methods for adaptive signal representation. These adaptive
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methods are superior in feature extraction than the methods that use predefined wavelets (e.g., the
Daubechies family). To summarize the achievements of these studies, they have adopted either
one of two optimizing strategies for constructing adaptive wavelets. The first strategy is the
optimization of the scale and translation factors for a single and predefined mother wavelet. The
second strategy is the direct optimization of the wavelet coefficients. For the first strategy, in spite
of the efforts that have been spent on optimizing the scale and the translation factors, a single
form of mother wavelet cannot possibly generate all of the required daughter wavelets to exactly
match all of the transitory features of an inspected signal. The second strategy cannot accomplish
the similar result as produced by exact wavelet analysis because of the admissibility conditions of
wavelet [17] have been neglected during the process of optimization. This negligence directly
decreases the matching ability and the accuracy of the analyzed results. To overcome the above
limitations, exact wavelet analysis has been designed to produce an exact analysis for any
inspected signal. It is aimed at compensating the inherent deficiency of conventional CWTs and
minimizing the undesirable effects that often occur in their generated results for vibration-based
machine fault diagnosis.

1.4. Introduction on exact wavelet analysis

Two versions of exact wavelet analysis have been developed by the authors to produce an exact
analysis for the inspected signals. The first version utilizes the concept of ‘maximum matching
mechanism’ to determine the most appropriate coefficients to represent the inspected raw signal.
A common phenomenon has been observed when using the conventional CWTs to decompose a
given signal. Within the selected time frame, if a daughter wavelet, which is generated by a
particular scale, has the largest value of wavelet coefficient, it often implies that the shape of that
daughter wavelet can match the shape of the inspected signal better than other daughter wavelets
generated by other scales. Such a phenomenon is the so-called ‘maximum matching mechanism’
[18,19]. The advantage of the first version implemented by such concept is simple and fast in
computation. Its disadvantage is that it cannot guarantee that the selected daughter wavelet will
have a geometric shape exactly similar to the inspected signal within the selected time frame. The
major problem is the selection of mother wavelet is not adaptive to the inspected signal. Within
each selected time frame, this method only provides a relative measure to determine which scale
can generate a daughter wavelet to match for the inspected signal better than other scales of the
same mother wavelet. The first version cannot achieve the desirable exact analysis for the
inspected signal.

In view of this, a second version of exact wavelet analysis has been designed and implemented.
The second version is aimed to provide a direct measure of the similarity in shapes between the
daughter wavelet and the inspected signal. Instead of using the largest value of wavelet coefficient,
the ‘normalized dot product’ of the daughter wavelet and the inspected signal is adopted for
measuring their similarity in shape. Genetic algorithms are employed to optimize not only the
scale and translation factors, but also the formation of mother wavelets that are used to generate a
series of daughter wavelets. Therefore, the derived exact wavelets are able to match all of the
properties of the inspected signal as closely as possible. Although the computation is more
intensive, the results are more precise and easier for machine operators to identify anomalous
vibrations generated by defective machines.
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The paper is organized as follows. The cause and effect of overlapping that often occurs in the
results generated by conventional CWTs are investigated and discussed in Section 2. The
algorithm and the design of exact wavelet analysis are introduced in Section 3, and a verification
of the effectiveness of the analysis is followed. Section 4 describes the set up of an industrial test
that is used to further verify the effectiveness of exact wavelet analysis in practice. Finally, Section
5 provides a discussion of the results and benefits of using exact wavelet analysis in vibration-
based machine fault diagnosis, and draws conclusions.

2. The cause and effect of overlapping

The equation of CWTs that are applied to an inspected signal x(¢) can be expressed as

CWT(a,b) = <ih (1) - x(1) >= Ial_l/z/ﬂC X <ﬂ> dr, (1)

a

where < - ) indicates the inner product; the asterisk, ‘*’, stands for complex conjugate; and ¥, (?)
denotes the daughter wavelets that are derived from the mother wavelet ¥(¢) by continuously
varying both the scale factor a, and the translation or time shift factor . The factor la|~'/? is used
to ensure energy conservation.

Eq. (1) states that the generated daughter wavelets are dependent on the variation of the
translation b and the scale a. It manifests the signal x(¢) at different levels of resolution by
measuring the similarity of signal x(¢#) and the daughter wavelet ¥, ,(¢) at different scales. This
implies that, if the shape of a particular daughter wavelets at scale @’ is closely matched with the
shape of a segmental signal x(¢) at time shift factor #’, then the wavelet-transforming coefficient
CWTy(d,b') will have a large magnitude. However, this scenario does not imply that the
magnitude of coefficient CWT,(d",b’) is zero even when the shape of another daughter wavelet at
arbitrary scale ¢” deviates from the shape of the segmental signal. Consequently, at time shift
factor &', the overlapping of coefficients occurs in all adjacent scales. The closer the scale a”
approximates to ¢, the more serious the overlapping may occur. Hence, as long as CWTs are used
to decompose the inspected signal for identifying the properties of the signal, the undesirable
effect of overlapping is inevitable. Fig. 4 illustrates the effect of overlapping by showing part of
the coefficients that are generated from the Morlet CWT to match for a simulated signal x(7)
which consists of two temporal sinusoidal waveforms as

x(8) = x1(1) + x2(1)  (0.05<¢<0.2), 2)
where
10 sin(40077) 0.075<t<0.1s
xi(f) = .
0 otherwise
and

10sin(20077)  0.125<1<0.15s
Xo(1) = . .
0 otherwise
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According to the definition of Eq. (2), the results of the Morlet CWT should only exist as a
temporal waveform x(¢) from 0.075 to 0.1s at frequency level 200 Hz, and another temporal
waveform x,(f) from 0.125 to 0.15s at frequency level 100 Hz. However, as shown in Fig. 4, the
unexpected waveforms appear also at levels of 220 and 180 Hz, which are adjacent to 200 Hz.
These waveforms are redundant and caused by overlapping. A similar phenomenon also occurs at
levels of 120 and 80 Hz, which are adjacent to 100 Hz. The problem of overlapping exists in the
results generated not only by the Morlet CWT, but also by other conventional types of CWTs.
Thus, this undesirable effect of overlapping must be minimized to ensure an accurate and reliable
decomposition of vibration signals for machine fault diagnosis.

3. The design of exact wavelet analysis
3.1. Satisfaction of the admissibility conditions

To minimize the effects of overlapping and distortion, the derived exact wavelets are rendered
to be adaptive to the inspected signal via optimization. In the process of optimizing the derived
exact wavelets, two conditions must be satisfied. The first condition is to ensure the derived
wavelets satisfy the admissibility conditions. The second condition is to identify the required
variables of the exact wavelets to be optimized. The ‘abc wavelets’ that were proposed by Borde
[20] made a good solution for the first condition. The distinguishing feature of abc wavelets is their
extra parameter c. This extra parameter offers another degree of freedom to wavelet function so
that it can mimic any signal better than the conventional ‘ab’ two-dimensional wavelets. The abc
wavelets are derived by solving a system of equations that are specially defined for describing the
admissibility conditions of wavelets [21]. The equations required ensuring a 4-tap wavelet to
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satisfy the admissibility conditions are:
Ggra+d+d=1 orthonormality,
cocr +cic3=0 orthogonality,

)

¢3 —acy + fey —neg =0 lock condition,
co+cr+ce+c3= \/5 energy conservation.

In Eq. (3), each individual equation describes an admissibility condition of the 4-tap wavelet.
The variables ¢; (i = 0,1,2,3) define the four taps of the wavelet. The value \/5 in the fourth
equation is used to ensure energy conservation. The parameters «, f§, and n can be obtained
through an arbitrarily designed continuous function (3, £), where

o=f(3=19,
p=r®=29,
n=f3=3,9. (4)

By solving the equations that are listed in Eq. (3), the taps of the 4-tap wavelet can be derived as
1 —o+202 28— af + +n—2oc;7+ﬁ17

= (1= By,
° 20— P+ (1 — )] ’
2—a+o? =2 +af —n—2un+ py+n?
= + (o —n)y,
1 23201 = B+ (n — )]
1 +oa—28+af+ > —n—2un — P+ 217
(B 1y,

“T 20— P+ (7 — )] ’
C3sz+oc2—2ﬁ af 4 2%+ — 2am — Py + 1’ Ly — )y 5)
2/2[(1 = B + (n — @)’] ’

where
\/1+2oc+o<2 6 + 208 + B> +2n—6om+2[>’n+n ©
Y=

2v/2[(1 — B + (n — @]

By using the above generic solutions, one can easily derive various scales of wavelets that satisfy
the admissibility conditions.

3.2. Identifying the required variables to be optimized

To ensure that the derived wavelets may closely match the inspected signal, one must identify
the required parameters of the exact wavelets to be optimized. We have modified the simple Borde
exponent function [21] to identify the required parameters. The number of variables used in the
function is increased from two variables to four variables as

£(9,6,0Q,0) = e < sin(Qc + 0), @)
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where 3 = 1,2 and 3 (as defined in Eq. (4)), ¢ and Q are two positive real numbers, and the phase
angle 6 varies from 0 to 2. Note that the function f(3, ¢, 2, 8) uses four variables, which provide
more degrees of freedom to the derived wavelets to match the properties of the inspected signal.

To optimize the selection of the four variables, a comprehensive optimization strategy has been
adopted for the construction of the exact wavelets. As mentioned in Section 1, both the wavelet
coefficients and the scale factor of the exact wavelets should be optimized simultancously. Note
that the variables ¢, Q2 and 0, and the scale a will be optimized during the optimization process.
The variable 3 in the function f(3,¢, 2, 0) will not be optimized as its value has already been
defined in Eq. (4). The translation or time shift factor » in Eq. (1) is also not required to be
optimized because it is defined as the shift of one unit of time, the smallest possible time shifting
unit equivalent to the sampling time. The inspected signal will be optimized point by point per
unit of time until all the data points contained in the signal have been optimized.

3.3. Selection of the optimizing method and the fitness function

When selecting an appropriate method for optimization, one must consider the trade-off
between the intensiveness of computation and the accuracy of the results. Many optimization
methods are available, and each has its own advantages and limitations. The conventional
gradient-descent and conjugated gradient [22] methods can lead to local minima and maxima. The
use of the flexible polyhedron [23] involves intensive computation. Neural networks can be used to
for global optimization [24]. However, it is well known that the architecture of neural networks
greatly affects their performance and accuracy. The selection of an optimal architecture for a
neural network is a tedious and computationally intensive task. Another alternative is the use of
genetic algorithms, which have the ability and confirmed performance in global optimization [25],
as long as the algorithm used is not too computationally intense. Fortunately, most industrial
machines do not require real-time and on-line fault diagnosis. Therefore, genetic algorithms have
been employed to optimize the variables for deriving the required exact wavelets that are adaptive
to the inspected signal.

For each selected time frame, by taking the normalized dot product between the exact wavelet
coefficients and the inspected signal, a fitness index can be obtained to evaluate the degree of
matching. The index is calculated using a cosine function of two vectors:

cos(C, X) = 2z i (1<n<N), (8)

\/E?:l ‘712\/2?:1 xz?

where C and X stand for the vectors of the wavelet coefficients and the portion of the inspected
signal that is required to be matched respectively. The variables ¢; and x; represent the elements of
the vectors. NV is the number of data. The calculated index from the fitness function provides a
measure to evaluate the similarity of the two vectors not only in their magnitudes but also in their
geometrical shapes. The higher the index of the fitness function, the more similar are the derived
wavelet and the portion of the inspected signal. The index of the cosine function approaches to 1
indicates a prefect match, whilst the index approaches to zero shows a mismatch.



1014 P.W. Tse et al. | Journal of Sound and Vibration 277 (2004) 1005-1024

3.4. Optimization of exact wavelets in simulated signals

Based on the aforementioned theories, a series of exact wavelets were derived and applied to a
simulated Doppler signal for testing their effectiveness. The simulated signal is shown in the
bottom diagram of Fig. 5. The diagram shows that the frequency of the simulated signal increases
with time, and a temporal impulsive feature is presented at the first portion of the simulated
signal. To derive the exact wavelets for matching the simulated Doppler signal, the crossover and
mutation operators commonly used in genetic algorithms were employed for the optimization
process [25]. The control parameters used in the optimization process are listed in Table 1. To ease
the computational requirements and to increase the efficiency of the process, the population scale
is set to 100, the number of iteration to 400, the probability of crossover to 0.6 and the probability
of mutation to 0.02. The variables ¢, 2 and 60, and the scale a are coded and decoded using the
binary coding/decoding mechanism. The relationship of the precision in calculation and the coded
variables is defined according to Goldberg’s suggestion [25] as

Umax - Umin
BT )

where ¢ stands for the required precision, U, and U,; represent the maximum and the
minimum values of the variable that is being coded or decoded respectively, and / refers to the
code length. Once the required precision and the range of each variable are known, the code
length can be determined using Eq. (9).

By using the control parameters as listed in Table 1, the optimized exact wavelets that
correspond to every point or unit of time of the signal have been derived. The results generated by
the exact wavelets are compared to the simulated signal and displayed in Fig. 5. The results clearly
show that both the transient features and the shape of the resulting coefficients (top diagram)
closely match with the simulated signal (bottom diagram). The middle diagram of Fig. 5 displays
the corresponding scales which reflect the frequency of the signal at each unit of time. This scale
distribution diagram reveals the frequency variation of the simulated signal precisely. For the
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Fig. 5. The transient acceleration and scale information of the simulated signal.
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Table 1
The control parameters that are used in the genetic algorithm for optimizing and deriving the exact wavelets
Number order Items Values of parameters
1 Population scale 100
2 Terminal iteration times 400
3 Probability of crossover 0.6
4 Probability of mutation 0.02
5 Calculation precision
cell,100] 3¢
Qell,256] 1
0€l0,2x] le™?
ae[10,200] 1
6 Length of binary code
c 15
Q 8
0 13
a 8

purpose of comparison, the 3D distribution maps of the time-scale for the simulated signal that
are generated by exact wavelet analysis and conventional Morlet CWT are displayed in Figs. 6(a)
and (b) respectively. Note that exact wavelet analysis shows a clear and precise distribution that
well matches the simulated signal. In contrast, the conventional Morlet CWT generates a smear
distribution map that is full of overlapping and distortions. The time and frequency properties of
the simulated signal can hardly be identified from the map generated by Morlet CWT as shown in
Fig. 6(b). The machine operators could not draw any useful decision on machine fault diagnosis
from such inconclusive result.

It is worth noting that the result generated by exact wavelet analysis is totally different from the
results that are generated by wavelet ridge extraction or other adaptive wavelets. In the result of
exact wavelet analysis, there is only one transient amplitude of coefficient and one transient scale
at each unit of time. This one to one corresponding relationship between the generated coefficients
and the inspected signal is a powerful feature and uniquely offered by exact wavelet analysis.
Hence, exact wavelet analysis is useful in analyzing the non-linear and non-stationary temporal
signals that are caused by randomly occurring faults.

4. Applications of exact wavelet analysis in industrial machine fault diagnosis

To investigate the effectiveness of exact wavelet analysis in industrial machine fault diagnosis, a
series of vibration signals collected from a real machine were analyzed for detecting possible faults
occurring during the operation of the machine. The real machine is a motor-pump drive system as
shown in Fig. 7. It is composed of a variable speed AC motor, a hydraulic pump, flexible couplers,
a number of ball bearings and journal bearings, a gear coupler, shafts, and a flywheel for
balancing. The load of the pump can be adjusted via a variable displacement valve. In the
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Fig. 6. The simulated signal’s time-scale distribution maps as generated by exact wavelet analysis and the conventional
Morlet CWT. (a) Using the exact wavelet analysis. (b) Using the conventional Morlet CWT.

experiments, two different kinds of faults had occurred in ball bearing 1 which is labelled in Fig. 7.
To collect the vibration signals, accelerometers were installed in the bearing house in both the
radial and axial directions of the bearing housing. The shaft of the bearing ran at 23.3Hz or
1398 r.p.m. Usually, faults that occur in ball or roller bearings are related to their defective inner-
races, outer-races, rolling elements or cages [26]. In this study, defects occurred in the inner-race
and outer-race of the ball bearing 1 at different times. The geometric parameters of the ball
bearing 1 are listed in Table 2. Based on the geometric parameters and the rotational speed of ball
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Fig. 7. The configurations of the motor-pump rotary machine.

Table 2

The geometric parameters and the characteristic frequencies of ball bearing 1
Ball diameter 7.5mm

Pitch diameter 39.4mm

Contact angle 0°

Number of rolling elements 13

Ball-passing frequency inner-race (BPFI) 179 Hz (5.6 ms)
Ball-passing frequency outer-race (BPFO) 122 Hz (8.2 ms)

bearing 1, its characteristic frequencies can be calculated [5]. Its ball-passing frequency inner-race
(BPFI) and the ball-passing frequency outer-race (BPFO) are estimated as 179 and 122 Hz,
respectively.

The existence of faults often causes impulses or impacts that are resident in the vibration signal
[5]. When the defect is minor, the vibration energy that is generated by the defect is small. Hence,
the fault-related impulses are difficult to distinguish from the broad spectrum, because they may
be overwhelmed or even buried by other larger structural vibrations and background noise [27].
Exact wavelet analysis was applied to detect and extract such kind of buried fault-related impulses
from the vibration signal collected at the bearing’s housing.

When the bearing was operating normally, the vibration signal was collected. The temporal
signal of vibration is shown in the bottom diagram of Fig. 8, The results of exact wavelet analysis,
including the transient amplitude of the coefficient and the scale values for each unit of time, are
plotted in the top and middle diagrams of Fig. 8 respectively. Note that no distinctive high
magnitude coefficients, which are related to impulses caused by faults, can be found from the top
diagram. Moreover, the dominant scale of the analyzed results (middle diagram) is around
160—180. Therefore, most of the frequencies that are embedded in the inspected signal are
relatively low in frequency level.
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Fig. 8. Vibration signals and the results of the bearing when running normally.

Later, an inner-race defect was discovered in the bearing. The raw vibration signals were
collected when the defect was in moderate and then serious conditions as shown in the bottom
diagrams of Figs. 9(a) and (b) respectively. Finally, the bearing required an overhaul. Again, exact
wavelet analysis was used to analyze the vibration signals. When the inner-race defect was in
moderate condition, the results, which include the transient magnitude of the coefficient and the
scale values for each unit of time, are plotted in the top and middle diagrams of Figs. 9(a)
respectively. Similarly, when the defect was in serious condition, the transient magnitude of the
coefficient and the scale values for each unit of time, are plotted in the top and middle diagrams of
Fig. 9(b).

Note that in the top diagrams of Figs. 9(a) and (b), high magnitude coefficients, which are
related to faulty impulses, can be clearly revealed using exact wavelet analysis even though noise is
embedded in the inspected signals. In the top diagrams, quasi-periodic intervals that are
approximately equal to 5.6 ms can be found in the transient magnitudes of the coefficients. Similar
intervals can also be identified in the middle diagrams of Figs. 9(a) and (b) for scale distribution,
particularly at the scales with low values. Such quasi-periodic intervals are equivalent to the
inverse of the ball-passing frequency inner-race (BPFI) which is 179 Hz as listed in Table 2. Hence,
it can be concluded that the impulses are caused by the inner-race defect. It is worth to note here
that the fault-related impulses are quasi-periodic. The authors have done many tests and
consultancies in machine fault diagnosis for industries. Obvious periodic impacts are hardly seen
unless the damage of the defective component is very serious and near fatal breakdown. The idea
of machine fault diagnosis is to detect the occurrence of faults as soon as possible or in other
words, when the damage caused by faults is not serious. Therefore, the detection of quasi-periodic
impulses is important for obtaining advance warning prior to catastrophe. Exact wavelet analysis
does help to obtain such advance warning.

Another interesting observation is that the fault-related impulses always posses concentrated
vibration energy in a short burst. That is, most of the fault-related impulses have high frequency
content or occur at low scale values. Compared to the normal condition, as shown in the middle
diagram of Fig. 8, the scale levels have dropped from an average of 160 to as low as 30, depending
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Fig. 9. Vibration signals and the results of the bearing with moderate and serious inner-race defects. (a) Moderate
inner-race defect condition. (b) Serious inner-race defect condition.

on the severity of the defect. To investigate the time—frequency properties of the vibrations of a
normal and a defective bearing, the distributions of the number of data points against the scale
values smaller than 160 are plotted in Fig. 10. Under normal running condition, nearly all of the
data are located at scale values above 160. Only a few data points exist between the scale values
from 160 to 110. Under anomalous running conditions, the scale values have dropped



1020 P.W. Tse et al. | Journal of Sound and Vibration 277 (2004) 1005-1024

160+

| O
140 § X
] O ¥
120 (% X
{ O ¥
o 100 p 3
8 X
@ 80+ ¥
60 _ X O Normal condition
| X Moderate inner-race defect
X ¥  Seriousinner-race defect
40 %

0 25 50 75 100 125 150 175 200 225
number of data point corresponding to each scale

Fig. 10. Distributions of scale levels for normal and inner-race defect conditions.

significantly. The statistical analysis shows that the total number of data points that are located
below the scale value of 160 is 158, 1144 and 1476 for normal, moderate inner-race defect, and
serious inner-race defect running conditions respectively. The statistical results disclose that the
more serious the damage, the more fault-related impulses will occur at significantly high frequency
zone or low scale region. This phenomenon can be explained by the fact that when a defective
surface comes into contact with another surface, a high intensity of vibration energy is emitted for
a short time or at a high frequency. Such phenomenon provides the machine operator with an
extra piece of evidence to judge whether a fault has occurred in a running ball bearing.

To ensure that exact wavelet analysis is also effective for other type of bearing faults, an
artificial outer-race defect was introduced to the bearing after its overhaul by replacing a new
inner-race. Vibration signals were collected for both moderate and serious outer-race defect
conditions, as shown in the bottom diagrams of Figs. 11(a) and (b) respectively. Both figures also
show the transient scales and the transient magnitude of the coefficients in the middle and top
diagrams. As in the case of the inner-race defect, quasi-periodic intervals equal to 8.2ms can be
found in the top and middle diagrams of both figures. These quasi-periodic intervals are
equivalent to the inverse of the ball-passing frequency outer-race (BPFO) which is 122 Hz as listed
in Table 2. Hence, it can be concluded that the impulses are caused by the outer-race defect.
Moreover, nearly all the impulses occurred at much lower scale values (the middle diagrams of
Figs. 11(a) and (b)) than the scale values of the normal condition (the middle diagram of Fig. 8).
The distributions of the number of data points against the scale values smaller than 160 are
plotted in Fig. 12. For the moderate and serious outer-race defect conditions, the impulses are
located mostly below the scale value 160 to as low as 70. Whilst for the normal condition, the
lowest vibration is at the scale 110. According to the statistical analysis, the total number of
vibration data that are located below the scale value 160 is 627 and 727 for moderate and serious
outer-race defect conditions respectively. Obviously, the statistical results again reveal that the
more serious the defect, the more number of impulses appear at high frequency zone or low scale
region. The operator can use the scale distribution as a simple and instant method for evaluating
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the running condition of any ball bearing. Conventional CWTs cannot provide such an effective
and prompt method.

From the results of the simulated test and the experiments performed on the bearing of the
motor-pump drive during the normal, the inner-race defect and the outer-race defect conditions,
exact wavelet analysis is found to be effective in fault diagnosis. It helps machine operators not
only in detecting the existence of faults by using the scale distribution plot, but also in identifying
the causes of faults by using the information of the time intervals which is provided by both the
transient coefficient and the scale diagrams. The statistical analysis of the distribution of the total
number of data points versus the scales provides additional evidence for evaluating the severity of
the damage that has been caused by the faults to the machine.

5. Conclusions

An innovative wavelet called exact wavelet analysis has been designed to enhance the robustness
of vibration-based machine fault diagnosis. The deficiencies of conventional CWTs in machine
fault diagnosis have been thoroughly investigated. The newly derived exact wavelets are optimized
so that they can precisely reveal the time and frequency properties of the inspected signal. The
effectiveness of exact wavelet analysis has been demonstrated by both simulated and practical
experiments. From the derived theories and the experimental results, concluding remarks are
drawn as follows.

The effects caused by overlapping and distortion have been significantly reduced (as shown in
Figs. 5 and 6(a)) by exact wavelet analysis. These benefits cannot be achieved using conventional
CWTs (Fig. 6(b)). Exact wavelet analysis can provide a precise and clear transient plot of the
coefficients and scales. The results that are generated by exact wavelet analysis can closely match
the time and frequency properties of the inspected signal. The results can exactly distribute at their
expected time and scale locations as originally appeared in the inspected signal.

By varying the variables ¢, 2, and 0, multiple mother wavelets can be derived. The existence of
multiple mother wavelets will generate various kinds of daughter wavelets that are adaptive to the
characteristics of the inspected signal. Hence, exact wavelet analysis could be superior to other
optimized wavelets, which use only one single mother wavelet to characterize the inspected signal.
The distortion and dilution to the inspected signal that commonly occur in other wavelets have
been significantly reduced.

Both the optimization of the wavelet coefficients and the scales, and the satisfaction of the
admissibility conditions, have been fully considered and satisfied during the design of exact
wavelet analysis. Such a thorough consideration ensures that the derived exact wavelets can match
the transient properties of the inspected signal as closely as possible. Thus, exact wavelet analysis
possesses a powerful ability in the extraction of both stationary and transitory features.

The fault-related impulses that are caused by defects can be revealed in both the transient
coefficient and scale plots that are generated by exact wavelet analysis. By using these plots,
machine operators can easily detect the existence of faults and identify the causes of the faults.
Such convenience is not available from conventional CWTs.

The distribution of scales derived under different machine running conditions can also provide
an important clue in the evaluation of different running conditions of a machine. Normal and
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anomalous running conditions reveal significantly different scale distributions. A machine that
has a fault has much lower scale values. The severe the fault, the higher the vibration energy
contained in the fault-related impulses, and the more the impulses appear at high frequency zone
or low scale region.

Both the theoretical analyses and the experimental results show that exact wavelet analysis is an
effective tool for vibration-based machine fault diagnosis. Exact wavelet analysis can be used to
extract fault-related features that exhibit both stationary and non-stationary characteristics,
making it particularly suitable for detecting randomly occurring faults. Exact wavelet analysis
provides an unambiguous diagnostic ability to machine operators for detecting the existence of
faults and determining the severity of deterioration of a defective machine.
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