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1. Introduction

Marku$s and Mead [1] studied physical phenomena connected with elastic wave propagation in
anisotropic media. They presented a classification of the possible free wave motions in a three-
layered composite thick cylinder. Both the inner and outer layers were made out of transtropic
(transversely isotropic) material namely of short-strand fibreglass and polyester resin (GFRP).
The middle layer was made of isotropic rubbery material. To obtain a correct and closed-form
solution for the propagating waves, Bessel and special Frobenius series were used. Numerical
results were given in the form of dispersion curves.
Jing and Tzeng [2] presented an approximate elasticity solution for arbitrarily laminated

anisotropic cylindrical closed shells of finite length with simply supported ends. They transformed
the coupled partial differential equations with constant coefficients by dividing the shell into
several thin coaxial laminae.
KudliWka [3] modified the previous method to obtain dispersion curves for an axisymmetric

problem of arbitrarily laminated, orthotropic unclosed cylindrical thick-walled pipes of infinite
length. He determined the first five dispersion curves and relative amplitudes of axial and radial
displacements for axisymmetric elastic waves propagating along the axis of a boron-epoxy pipe.
KudliWka [4] investigated a problem of the energy flow of elastic waves in an epoxy matrix

composite reinforced by continuous boron fibres. For this anisotropic material, mean values of
the energy flow densities for axisymmetric elastic waves in a hollow cylinder, as functions of the
radial co-ordinate and the wave number, were determined. The results for some wave numbers
and phase velocities belonging to the basic dispersion curve were compared with those obtained
for an isotropic epoxy cylinder with the same geometry as the anisotropic one.
In this paper, energy flow densities of axisymmetric elastic waves propagating along the axis of

a thick-walled, three-layered (transtropic–isotropic–transtropic) composite shell are determined.
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The geometry and material properties of the cylinder analyzed are the same as those used in
Ref. [1]. The inner and outer transtropic GFRP (glass fibres, resin polyester) layers of equal
thickness surround the middle isotropic rubber layer. It is shown, how the isotropic rubber core
influences both the dispersion curves and energy flow densities. The results for some values from
the basic dispersion curve are compared with those obtained for a pure transtropic cylinder
without the rubber core.

2. Energy flow in an elastic, homogenous and isotropic medium

If a volume element of an elastic medium is disturbed, both the state change and energy needed
propagate across the total medium as a flow with certain space density. The energy transport can
be expressed by some quantity, e.g., by the energy flow density. This vector quantity has at some
selected point the same direction as the energy transport. Its value is

I ¼ cw ¼ cðwk þ wpÞ; ð1Þ

where c is the energy transport velocity, w is the total mechanical, wk is the kinetic and wp is the
potential energy density.
It can be derived, that both the energy densities for a harmonic wave propagating along x-axis,

uðx; tÞ ¼ A cos½Kðx � ctÞ�; have equal values

wk ¼ wp ¼ 1
2
rK2c2A2 sin2½Kðx � ctÞ�: ð2Þ

Here A is the amplitude, K ¼ 2p=l is the wave number, l is the wavelength, c is the phase velocity
of the harmonic wave considered and r is the density of the medium. It is evident, that the mean
value of the energy flow density belonging to one period of this wave motion

%I ¼ c %w ¼ 1
2
rK2c3A2: ð3Þ

Note the mean value of sin2½Kðx � ctÞ� across one period is equal to 1/2.

3. Energy flow in a hollow anisotropic cylinder

Eq. (3) can be generalized for various wave motions of an anisotropic media. For the
axisymmetric wave propagating along the axis of a hollow infinitely long cylinder (Fig. 1), the
displacements in the radial ðrÞ and axial ðxÞ co-ordinates in the cylindrical system ðr; y;xÞ are

ur ¼ U cos½Kðx � ctÞ�; ux ¼ W sin½Kðx � ctÞ�; ð4Þ

where U and W are the amplitudes of the waves and they are functions of r only. The meaning of
the other quantities is explained in the previous section. The displacement in the circumferential
direction uy ¼ 0:
The kinetic and potential energy densities are

wk ¼ 1
2
rK2c2fU2 sin2½Kðx � ctÞ� þ W 2 cos2½Kðx � ctÞ�g;

wp ¼ 1
2
ðsrer þ syey þ sxex þ trxgrxÞ: ð5Þ
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Here the indexed quantities s; t; e and g express the stresses and strains in the usual notation in a
cylindrical co-ordinate system.
By using the procedure presented in Ref. [3], that is by dividing the thick wall of the cylinder

into several laminae and by determining the quantities U ; V ; e; g; s and t on the boundaries of the
laminae, the energy densities wk and wp can be determined.
The generalized Hooke’s law equations (constitutive equations) for each lamina are given in the

matrix form

sx

sy
sr

try

txr

txy

2
6666666664

3
7777777775

¼

C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66

2
6666666664

3
7777777775




ex
ey
er

ery

gxr

gxy

2
6666666664

3
7777777775

: ð6Þ

The strains can be expressed as

ex ¼
@ux

@x
; ey ¼

ur

r
; er ¼

@ur

@r
; gxr ¼

@ux

@r
þ

@ur

@x
: ð7Þ

The differential equations of motion are

1

r

@ðrsrÞ
@r

þ
@txr

@x
�

sy
r
¼ r

@2ur

@t2
;

1

r

@ðrtxrÞ
@r

þ
@sx

@x
¼ r

@2ux

@t2
; ð8Þ

where r is the density of the material and t is time.
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Fig. 1. The geometry and co-ordinate system of the cylinder.
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After substituting Eqs. (6) and (7) into Eqs. (8), the governing equations in terms of the
displacements for each lamina become

C33
@2ur

@r2
þ C33

@ur

r@r
þ C55

@2ur

@x2
� C22

ur

r2
þ ðC13 � C12Þ

@ux

r@x

þ ðC13 � C12Þ
@2ux

@x@r
¼ r

@2ur

@t2
;

ðC12 þ C55Þ
@ur

r@x
þ ðC13 þ C55Þ

@2ur

@r@x
þ C11

@2ux

@x2

þ C55
@2ux

@r2
þ C55

@ux

r@r
¼ r

@2ux

@t2
: ð9Þ

These equations are coupled partial differential equations with variable coefficients. It is not
possible to solve them in a closed form. Introducing the local radial co-ordinate xk ¼ r � Rk

located at the centre of kth lamina with the radius Rk ðk ¼ 1; 2;y;M; M is the lamina’s count)
and making the approximation xk=Rk51; the following equations for the variable parts of the
coefficients are assumed:

1

r
E
1

Rk

ð1� ZkÞ;
1

r2
E
1

R2
k

ð1� 2ZkÞ; ð10Þ

where Zk ¼ xk=Rk: Each of the two thick cylinders is being split into N laminae, each of thickness
h1=N: This thickness must satisfy the approximation h1=ðNRkÞ51:
Inserting Eqs. (10) and (4) into Eqs. (9), with using index k for the lamina’s number, yields for

each lamina

ðC22 þ C55K
2R2

kÞUk þ ðC12 � C13ÞKRkWk � C33U
0
k

� ðC13 þ C55ÞKRkW 0
k � C33U

00
k ¼ c2rK2R2

kUk;

ðC12 þ C55ÞKRkUk þ C11K
2R2

kWk þ ðC13 þ C55ÞKRkU 0
k

� C55W
0
k � C55W

00
k ¼ c2rK2R2

kWk: ð11Þ

The prime denotes the derivative with respect to Zk: These equations are coupled ordinary
differential equations with constant coefficients for the amplitudes Uk and Wk: The general
solution of Eqs. (11) for kth lamina is assumed in the form

Uk ¼
X4
i¼1

Aki expðakiZkÞ; Wk ¼
X4
i¼1

AkiCki expðakiZkÞ: ð12Þ

The procedure for obtaining the unknown coefficients aki; Aki and Cki is described in Ref. [3]. It is
not possible to explain in detail here due to its mathematical complication. It can be noted that the
boundary conditions on the inner and outer surfaces and the continuity conditions for stresses
and displacements on the boundaries between coincident laminae must be satisfied.
After determining the amplitudes Uk and Wk given by Eqs. (12), the displacements ur and ux

can be computed from Eqs. (4). Here U ¼ Uk and W ¼ Wk for r ¼ Rkð1þ ZkÞ: The strains ex; ey;
er and gxr can be determined from Eqs. (7) and the stresses sr; sx; sy; sr; try; txr; and txy from
Eqs. (6). The kinetic and potential energy densities wk and wp are given by Eqs. (5). The mean
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value of the total energy flow density is their sum. An explicit expression of this quantity is very
complicated and therefore it is not written here. All required computations were made by means
of a computational program created by the author in the language of the Wolfram’s software
system, Mathematica [5].

4. Numerical results

As it was mentioned, the energy flow densities were determined for the axisymmetric elastic
wave propagation along the axis of a three-layered, transtropic–isotropic–transtropic, cylinder
with the same geometry and material properties as were considered in Ref. [1].
The three-layered cylinder, Fig. 1, has the inner and outer transtropic layers (GFRP—glass

fibres, resin polyester) of equal thickness h1: The thickness of the middle isotropic layer (rubber) is
h2 ¼ h1=5: The outer radius to the total thickness ratio R2=h ¼ 4; h ¼ 2h1 þ h2: The mechanical
properties of the GFRP layers are: the in-plane Young’s moduli Ex ¼ Ey ¼ 15:65 GPa; the
transverse Young’s modulus Er ¼ 7:7 GPa; the shear modulus Gxr ¼ 5:0 GPa; the Poisson ratios
nxy ¼ 0:31; nxr ¼ 0:315; nyr ¼ 0:215; and the density r1 ¼ 1576 kg m�3: The corresponding elastic
modules are

CGFRP ¼

21 9 7 0 0 0

9 21 7 0 0 0

7 7 10 0 0 0

0 0 0 5 0 0

0 0 0 0 5 0

0 0 0 0 0 6

2
6666666664

3
7777777775

GPa: ð13Þ

The mechanical properties of the rubber layer are: Young’s modulus E ¼ 0:279 GPa; the shear
modulus G ¼ 0:094 GPa; the Poisson ratio n ¼ 0:478; the density r2 ¼ 1056 kg m�3: The
corresponding elastic modulae are

Crubb ¼

2:24 2:05 2:05 0 0 0

2:05 2:24 2:05 0 0 0

2:05 2:05 2:24 0 0 0

0 0 0 0:094 0 0

0 0 0 0 0:094 0

0 0 0 0 0 0:094

2
6666666664

3
7777777775

GPa: ð14Þ

For simplicity, the non-dimensional wave number K 0 and the non-dimensional phase velocity c0

were defined by these formulas:

K 0 ¼
RM

l
; c0 ¼

cffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=r1

p ; ð15Þ

where RM ¼ ðR1 þ R2Þ=2 is the middle radius of the cylinder, C44 is the elastic module of the
GFRP, l and r1 are already known quantities.
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The phase velocity c0 was computed for some values of the wave number K 0 from the interval
ð0; 3S for M ¼ 22 laminae (2 times 10 for the two transtropic layers and 2 for the isotropic layer
in case of the three-layered cylinder). The thickness of each the lamina satisfied the approximation
h1=ðNRkÞ51 (0.015 for k ¼ 1 and 0.011 for k ¼ 22; N ¼ 10). The first (lowest) dispersion curve
for the three-layered cylinder is shown in Fig. 2 (the top curve). For comparison, there is also
plotted the first dispersion curve for the pure transtropic GFRP material (the bottom curve). The
count of the laminae used was sufficient for the relative error of the phase velocity less than 1%.
This error was determined by means of computing the phase velocities for 33 laminae.
The curves have similar shape. They distinguish themselves by maxima for K 0-0 (low

frequencies). They take approximately equal values for the greater values (higher frequencies).
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Fig. 2. The first dispersion curves for both three and one layers: —J—, 3 layers; —�—, 1 layer.

Fig. 3. The means of the non-dimensional energy flow densities for three layers: —J—, K 0 ¼ 1; —�—, K 0 ¼ 2; —&—,

K 0 ¼ 3; —\—, K 0 ¼ 4; —W—, K 0 ¼ 5:
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The curve for the three-layered cylinder reflects higher phase velocities than the curve for the one-
layered cylinder.
The mean values of the energy flow density, normalized to 1 at the inner radius, and versus the

lamina’s number are shown in Fig. 3 for the three-layered cylinder and in Fig. 4 for the pure
transtropic cylinder. The curves are plotted for wave number K 0 ¼ 1; 2;y; 5: The shapes of these
curves point at significant differences among them in dependence on the wave number, especially
for K 0 ¼ 5: In both, Figs. 3 and 4 it appears that at some wave numbers more energy is
transported through the middle of the layered cylinder than along its inner and outer edges, while
at other wave numbers the reverse is true. It can be due to some of the waves being predominantly
transversal and others longitudinal. These waves can be identified by a detailed analysis of their
amplitudes. This matter is an object of the contemporary research.

5. Conclusions

The energy flow of elastic waves propagating along the axis of a thick-walled, three-layered
(transtropic–isotropic–transtropic) composite shell was investigated. The inner and outer
transtropic GFRP layers of equal thickness surround the middle isotropic rubber layer. The
dispersion curves were computed and plotted. It was shown how the isotropic rubber core
influences the dispersion curves and the energy flow. The results for some values of the first
dispersion curve were compared with those obtained for the pure transtropic cylinder without the
rubber core.
The mean value of the energy flow density was determined for the cylinder considered. The non-

dimensional phase velocity was computed for some values from a chosen interval of the wave
numbers. The mean values of the energy flow densities were presented graphically for both three
and one-layered cylinder.
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Fig. 4. The means of the non-dimensional energy flow densities for one layer: —J—, K 0 ¼ 1;—�—, K 0 ¼ 2;—&—,

K 0 ¼ 3; —\—, K 0 ¼ 4; —W—, K 0 ¼ 5:
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The presented method and the created computational program can be useful in solving some
energy flow problems in the propagation of elastic waves along arbitrarily laminated cylinders
(bars, pipe ducts, etc.) with various kinds of the anisotropy. By the control of the anisotropy, the
optimization of an energy flow distribution in machine parts, buildings, armatures and
constructions will be possible.
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