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Abstract

In this paper, an exact dynamic field transfer matrix for free vibration analysis of composite beam is
presented. The analysis of composite beams is carried out using a combination between the transfer matrix
and the analog beam methods (TMABM). A composite beam is composed of an upper slab and a lower
beam, connected at the interface by shear transmitting studs. The theory of analogue beam includes the
coupling between the bending and torsional modes of deformation, which is usually present in laminated
composite beams due to ply orientation. The application of this method is demonstrated by investigation of
the free vibration characteristics of a composite beam for which some comparative results are available.
The method developed in this paper can mainly be applied in the field of dynamic analysis of composite
bridges. Although, the method is complicated, it is more accurate and could prove to be a good tool for
design purposes.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The basic idea of the analogue beam method is to replace the real beam with an analogue beam
where all the shear deformation is concentrated in a thin horizontal layer, called the shear layer.
When the correct stiffness is assigned to this layer it is possible to get the real beam, and its
analogue, to behave the same way in the overall sense, i.e., they have the identical deformation,
bending moment, and shear force.
The method of analysis is based on two-kinematical assumptions [1]. In the first one, each sub-

beam behaves as a simple Bernouli-Euler beam, i.e., the shear deformation within each beam is

ARTICLE IN PRESS

*Corresponding author. Tel.: +20-12-379-7046; fax: +20-3-592-1853.

E-mail address: elawadly@yahoo.com (K.M. Elawadly).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.09.052



neglected. All shear deformation is therefore concentrated in the shear layer. In the second, the
vertical displacements of the sub-beams are the same, i.e.; the shear layer is transversely rigid.
Most of the studies on composite beams have concentrated on their strength rather than their

elastic behaviour [1–6]. Several authors have investigated the free vibration characteristics of
composite beams [3,5,6], but only a few have taken into account the effects of shear deformation.
Banerjee and Williams [4,5] have developed the dynamic stiffness matrix of composite beams in
order to investigate their free vibration characteristics. However, their work on the subject did not
account for the effects of shear deformation and rotatory inertia, which can be important for
composite beams because they are usually more sensitive to these effects than are their metallic
counterparts, due mainly to the low shear moduli of fibrous composites. In their subsequent work
they extended the dynamic stiffness method to include the effects of shear deformation. The
natural frequencies in this work were calculated using the algorithm of Wittrick and Williams [7].
Lee [8] used the energy method (Rayleigh-Ritz method) to develop his theory to calculate the

natural frequencies of thin orthotropic composite shells.
However, the objective of this paper is to investigate the free vibration characteristics of

composite beams using a combination of the analogue-beam theory and the transfer matrix
method. The analogue beam method is developed first and then used in conjunction with the
stiffness matrix to yield natural frequencies in free vibration.

2. The mathematical model

The model used in this analysis is a composite steel-concrete beam [2] which is composed of a
concrete slab and a steel beam, connected at their interface by a shear transmitting device such as
studs, as shown in Fig. 1.
The purpose of the shear studs is to transmit the horizontal shear force between the slab and the

beam. The shear interface is of course not completely rigid but has a force (Q)–displacement (d)
relationship of the type shown in Fig. 2. As the composite beam is loaded, some slip must take
place at the beam–slab interface. The composite beam therefore will no longer follow the Navier
hypothesis of beam theory, even though the slab and the beam separately can still be expected to
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do so. Shear deformation of the steel beam can be important for composite beams, but it is not
included in this analysis.
To illustrate this method further, the problem of the vibrating beam should be solved taking

into consideration the effect of shear deflection. Consider a beam of length (c), with the following
properties that are constant over the length: cross-sectional area (A), second moment of area (I),
and mass per unit length (m). The slope (dw=dx) of the centreline of the beam is affected by both
the bending moment and the shear force. The action of the bending moment rotates the face of the
cross-section through an angle (c), and from there the shearing action turns the centreline to
adopt the slope (dw=dx), the angle of the face of the beam remaining unchanged (Fig. 3).
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The resultant axial forces NU and NL and the moments MU and ML in the sub-beams are
illustrated in Fig. 4. The total bending moment (M) can be decomposed into two components

M ¼ Mt þ Mc; ð1Þ

where Mt can be identified as the bending moment in the beam from what can be called its ‘‘truss
action’’, i.e., from the axial force in the sub-beams, while Mc represents the combined bending
moment from the individual beam action of the sub-beams acting independently.

Mt ¼ ðEIÞt
dc
dx

; ð2Þ

Mc ¼ �ðEIÞc
d2w

dx2
; ð3Þ

where It is the moment of inertia of the beam as a truss, Ic the moment of inertia of the sub-beams
acting independently, E the elastic modulus and w the deflection. ðEIÞt and ðEIÞc represent the
bending rigidities for the truss component and for the beam component, respectively.
Eq. (1) can be rewritten as

M ¼ ðEIÞt
dc
dx

� ðEIÞc
d2w

dx2
: ð4Þ

The shear force is somewhat more complicated. The horizontal shear force in the shear layer, q per
unit length, can be expressed as

q ¼ kh cþ
dw

dx

� �
; ð5Þ
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where k is the shear stiffness of the shear layer and h is the distance between the centroids of the
sub-beams (the distance between the local z-axis).
The line force (q) acts at the interface between the sub-beams. Moment equilibrium of the two

sub-beams element yields

QU ¼
dMU

dx
þ qCU ; ð6aÞ

QL ¼
dML

dx
þ qCL: ð6bÞ

The total shear force is therefore

Q ¼ QU þ QL ¼
dMU

dx
þ

dML

dx
þ qh ¼

dMC

dx
þ qh; ð7Þ

where MC ¼ MU þ ML; h ¼ CU þ CL and also as shown in Fig. 4 that h ¼ hL � hU :
In a similar way to the total bending moment, the total shear force Q can also be thought of as

having two components such as

Q ¼ Qc þ Qt: ð8Þ

From Eqs. (3), (5) and (7) then,

Q ¼ kh2 cþ
dw

dx

� �
� ðEIÞc

d3w

dx3
: ð9Þ

Then c can be expressed as

c ¼
1

kh2
Q �

1

kh2
dMC

dx
�

dw

dx
: ð10Þ

Differentiation of Eq. (10) and substitution in Eq. (4) yield

M ¼
ðEIÞt
kh2

dQ

dx
þ

ðEIÞtðEIÞc
kh2

d4w

dx4
� EI

d2w

dx2
; ð11Þ

where EI ¼ ðEIÞt þ ðEIÞc:
If a sinusoidal variation of w with circular frequency o; is assumed, then

wðx; tÞ ¼ W ðxÞsinot;

where W ðxÞ; is the amplitude of the sinusoidally varying vertical displacement.
The equilibrium considerations give the equations

dQ

dx
¼ �mo2W ;

dM

dx
¼ Q; ð12Þ

where o is the circular frequency of the beam.
Taking the second derivative of Eq. (11) with respect to x and combining it with Eq. (12) gives

the equation

d6W

dx6
� C1

d4W

dx4
� C2

d2W

dx2
þ C3W ¼ 0; ð13Þ
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where

C1 ¼
kh2EIc2

ðEIÞcðEIÞt
; C2 ¼

o2mc4

ðEIÞc
; C3 ¼

o2mkh2c6

ðEIÞcðEIÞt
:

Since Eq. (13) is an ordinary differential equation with constant coefficients, its solution is of the
form

W ¼ %Celx=c; ð14Þ

where %C is constant.
This solution, substituted in Eq. (13), leads to the characteristic equation in l:

l6 � C1l
4 � C2l

2 þ C3 ¼ 0: ð15Þ

After extensive algebra, the roots of this equation are 7l1; 7l2; and 7l3; where [3–5]:

l1 ¼ ½�2r1=3 cosðf=3Þ þ C1=3�1=2;

l2 ¼ ½�2r1=3 cos½ðf� 2pÞ=3� þ C1=3�1=2;

l3 ¼ ½�2r1=3 cos½ðfþ 2pÞ=3� þ C1=3�1=2;

with

r ¼
1

729
C6

1 þ
1

81
C4

1C2 þ
1

27
C2

1C2
2 þ

1

27
C3

2 ;

f ¼ cos�1 27C3 � 9C1C2 � 2C3
1

2ðC2
1 þ 3C2Þ

3=2

" #
;

and using the relations

e7y ¼ cosh y7sinh y; e7jy ¼ cos y7j sin y:

The solution can be written in the form

W ¼ %C1 cos l1
x

c

� �
þ %C2 sin l1

x

c

� �
þ %C3 cosh l2

x

c

� �
þ %C4 sinh l2

x

c

� �
þ %C5 cosh l3

x

c

� �
þ %C6 sinh l3

x

c

� �
:

Since the solution for all the variables is of the same form, it is better to start off most
conveniently with the solution of Q;

Q ¼A1 cos l1
x

c

� �
þ A2 sin l1

x

c

� �
þ A3 cosh l2

x

c

� �
þ A4 sinh l2

x

c

� �
þ A5 cosh l3

x

c

� �
þ A6 sinh l3

x

c

� �
: ð16Þ

From Eq. (12) the deflection will be:

W ¼ � a1A1 sinh l1
x

c

� �
þ a1A2 cos l1

x

c

� �
þ a2A3 sinh l2

x

c

� �
þ a2A4 cosh l2

x

c

� �
þ a3A5 sinh l3

x

c

� �
þ a3A6 cosh l3

x

c

� �
; ð17Þ
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where

a1 ¼ �
l1

mo2c
; a2 ¼ �

l2
mo2c

; a3 ¼ �
l3

mo2c
:

The derivative of the deflection is given by

W 0 ¼ �
a1l1
c

A1 cos l1
x

c

� �
�

a1l1
c

A2 sin l1
x

c

� �
þ

a2l2
c

A3 cosh l2
x

c

� �
þ
a2l2
c

A4 sinh l2
x

c

� �
þ
a3l3
c

A5 cosh l3
x

c

� �
þ

a3l3
c

A6 sinh l3
x

c

� �
: ð18Þ

Using Eq. (17) and substituting in Eq. (9), then C can be expressed as

c ¼ b1A1 cos l1
x

c

� �
þ b1A2 sin l1

x

c

� �
þ b2A3 cosh l2

x

c

� �
þ b2A4 sinh l2

x

c

� �
þ b2A5 cosh l3

x

c

� �
þ b2A6 sinh l3

x

c

� �
; ð19Þ

where

b1 ¼
1

kh2
1�

ðEIÞcl
4
1

mo2c4

� �
�

l21
mo2c2

� �
; b2 ¼

1

kh2
1�

ðEIÞcl
4
2

mo2c4

� �
þ

l22
mo2c2

� �

b3 ¼
1

kh2
1�

ðEIÞcl
4
3

mo2c4

� �
þ

l23
mo2c2

� �
:

Finally, from Eqs. (2) and (3) the expression for Mt and Mc will be

Mt ¼ � g1A1 sin l1
x

c

� �
þ g1A2 cos l1

x

c

� �
þ g2A3 sinh l2

x

c

� �
þ g2A4 cosh l2

x

c

� �
þ g3A5 sinh l3

x

c

� �
þ g3A6 cosh l3

x

c

� �
; ð20Þ

Mc ¼ d1A1 sin l1
x

c

� �
� d1A2 cos l1

x

c

� �
þ d2A3 sinh l2

x

c

� �
þ d2A4 cosh l2

x

c

� �
þ d3A5 sinh l3

x

c

� �
þ d3A6 cosh l3

x

c

� �
; ð21Þ

where

g1 ¼
ðEIÞtb1l1

c
; g2 ¼

ðEIÞtb2l2
c

; g3 ¼
ðEIÞtb3l3

c
;

d1 ¼
ðEIÞcl

3
1

mo2c3
; d2 ¼

ðEIÞcl
3
2

mo2c3
; d3 ¼

ðEIÞcl
3
3

mo2c3
:

Eqs. (17)–(21) can be expressed in matrix form:
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A
R
TIC

LE
IN

PR
ES

S

W

W 0

c

Mt

Mc

Q

2
66666666666666666666664

3
77777777777777777777775

¼

�a1 sin
l1x
c

� �
a1 cos

l1x
c

� �
a2 sinh

l2x
c

� �
a2 cosh

l2x
c

� �
a3 sinh

l3x
c

� �
a3 cosh

l3x
c

� �

�
l1a1
c

cos
l1x
c

� �
�
l1a1
c

sin
l1x
c

� �
l2a2
c

cosh
l2x
c

� �
l2a2
c

sinh
l2x
c

� �
l3a3
c

cosh
l3x
c

� �
l3a3
c

sinh
l3x
c

� �

b1 cos
l1x
c

� �
b1 sin

l1x
c

� �
b2 cosh

l2x
c

� �
b2 sinh

l2x
c

� �
b3 cosh

l3x
c

� �
b3 sinh

l3x
c

� �

�g1 sin
l1x
c

� �
g1 cos

l1x
c

� �
g2 sinh

l2x
c

� �
g2 cosh

l2x
c

� �
g3 sinh

l3x
c

� �
g3 cosh

l3x
c

� �

d1 sin
l1x
c

� �
�d1 cos

l1x
c

� �
d2 sinh

l2x
c

� �
d2 cosh

l2x
c

� �
d3 sinh

l3x
c

� �
d3 cosh

l3x
c

� �

cos
l1x
c

� �
sin

l1x
c

� �
cosh

l2x
c

� �
sinh

l2x
c

� �
cosh

l3x
c

� �
sinh

l3x
c

� �

2
6666666666666666666664

3
7777777777777777777775

A1

A2

A3

A4

A5

A6

2
66666666666666666666664

3
77777777777777777777775

:

A
.M

.
E

lla
k

a
n

y
et

a
l.

/
J

o
u

rn
a

l
o

f
S

o
u

n
d

a
n

d
V

ib
ra

tio
n

2
7

7
(

2
0

0
4

)
7

6
5

–
7

8
1

7
7
2



Or in another form

zðxÞ ¼ BðxÞa: ð22Þ

At the point (x ¼ 0), zðxÞ ¼ zi�1 , and the matrix equation (22) becomes

W

W 0

c

Mt

Mc

Q

2
6666666664

3
7777777775
¼

0 a1 0 a2 0 a3

�
l1a1
c

0
l2a2
c

0
l3a3
c

0

b1 0 b2 0 b3 0

0 g1 0 g2 0 g3
0 �d1 0 d2 0 d3
1 0 1 0 1 0

2
66666666664

3
77777777775

A1

A2

A3

A4

A5

A6

2
6666666664

3
7777777775
;

or

zi�1 ¼ Bð0Þa: ð23Þ

Therefore, solving for the column vector a, leads to

a ¼ B�1ð0Þzi�1: ð24Þ

Substituting Eq. (24) into Eq. (22) yields

zðxÞ ¼ BðxÞB�1ð0Þzi�1: ð25Þ

At the point x ¼ c , zðxÞ ¼ zi; so that Eq. (25) becomes

zi ¼ BðcÞB�1ð0Þzi�1 ¼ Uizi�1: ð26Þ

Hence the transfer matrix is

Ui ¼ BðcÞB�1ð0Þ: ð27Þ

In this case the inversion of B(0) is found to be

B�1ð0Þ ¼

0 a12 a13 0 0 a16

a21 0 0 a24 a25 0

0 a32 a33 0 0 a36

a41 0 0 a44 a45 0

0 a52 a53 0 0 a56

a61 0 0 a64 a65 0

2
6666666664

3
7777777775
: ð28Þ
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At the point x ¼ c the matrix BðcÞ can be written as

BðcÞ ¼

�a1 sin l1 a1 cos l1 a2 sinh l2 a2 cosh l2 a3 sinh l3 a3 cosh l3

�
l1a1
c

cos l1 �
l1a1
c

sin l1
l2a2
c

cosh l2
l2a2
c

sinh l2
l3a3
c

cosh l3
l3a3
c

sinh l3

b1 cos l1 b1 sin l1 b2 cosh l2 b2 sinh l2 b3 cosh l3 b3 sinh l3
�g1 sin l1 g1 cos l1 g2 sinh l2 g2 cosh l2 g3 sinh l3 g3 cosh l3
d1 sin l1 �d1 cos l1 d2 sinh l2 d2 cosh l2 d3 sinh l3 d3 cosh l3
cos l1 sin l1 cosh l2 sinh l2 cosh l3 sinh l3

2
66666666664

3
77777777775
:

ð29Þ

The final matrix operation BðcÞB�1ð0Þ then produce the transfer matrix, so that

W

W 0

c

Mt

Mc

Q

2
6666666664

3
7777777775

i

¼

T11 T12 T13 T14 T15 T16

T21 T22 T23 T24 T25 T26

T31 T32 T33 T34 T35 T36

T41 T42 T43 T44 T45 T46

T51 T52 T53 T54 T55 T56

T61 T62 T63 T64 T65 T66

2
6666666664

3
7777777775

W

W 0

c

Mt

Mc

Q

2
6666666664

3
7777777775

i�1

; ð30Þ

or

Zi ¼ FZi�1: ð31Þ

The coefficients of the field transfer matrix ‘‘F’’ are illustrated in Appendix A.

3. Transfer matrix scheme

The actual beam is divided into N elements, as shown in Fig. 5, the field matrix F for each
element is determined as a function of o2

N by using Eq. (31). The relation between the state vector
ZN at support N and the state vector ZO at support O; using transfer matrix method is

ZN ¼ TZO; ð32Þ
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where

T ¼
Y1

i¼N�1Fi

which is called over-all transfer matrix. The coefficients of this matrix (T11 to T66) all
being function of the circular frequencies on: Expanding Eq. (32) gives six equations, by
applying the boundary conditions to these equations the frequency determinant can be easily
obtained [9].

3.1. Boundary conditions for analog beam

For the case of simply supported beam, the moments and displacements at both ends are zero,
or in view of Eq. (1) by

M ¼ Mt þ Mc ¼ 0 ð33Þ

and

W ¼ 0: ð34Þ

This can be realized in two different ways [1], either by making the individual moment in each
sub-beam zero, i.e.:

Mt ¼ Mc ¼ 0: ð35Þ

Or, by making the total moment M equal to zero, i.e:

Mt ¼ �Mc: ð36Þ

The first case, Eq. (35), is called a simple support without shear restraint, Fig. 6(a). This type of
support would occur in a simply supported beam without any special restraint at the end. The
boundary conditions for this case are:

W ¼ 0; Mt ¼ 0; Mc ¼ 0:
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The second case, Eq. (35), is called simple supported with restraint, Fig. 6(b). The boundary
conditions for this case are:

W ¼ 0; c ¼ �W 0; Mt ¼
Ic

It

� �
Mc:

4. Application of the model

The above method can now be used to compute the natural frequencies of a simple supported
beam with uniformly distributed mass. It is convenient to introduce the following non-
dimensional parameters,

Z ¼
EIb

EIt

; x ¼
EIt

kh2c2
; e ¼

oTM

oCL

;

where Z represents the relative importance of bending stiffness EIb of the slab and beam
acting independently and the bending stiffness EIt caused by the truss action. For
typical composite beam Z varies from about 0.2 to 1.4 [2]. x represents the relative importance
of the truss bending stiffness EIt and shear stiffness k of the shear layer. A very large variation
in x is possible. x equal to zero corresponds to complete interaction (completely rigid shear
studs k ¼ N), and x equal to infinity corresponds to zero interaction (no shear studs
k ¼ 0). While e represents the relative importance of the natural frequencies calculated by
transfer matrix method (oTM) and the natural frequencies calculated by the classical
method (oCL).
By applying simple supported boundary conditions at each end of the classical beam, the

classical natural frequencies can be expressed as [9,10]

oCL ¼
np
c

� �2

ffiffiffiffiffiffi
EI

m

s
: ð37Þ

From the above equation oCL varies between oCLmax and oCLmin due to the value of EI ; where
oCLmax corresponds to complete interaction between the beam and slab (EI ¼ EIt þ EIc) and
oCLmin corresponds to zero interaction (EI ¼ EIc).
It is very important to note that, in the classical beam it is not possible to distinguish between

boundary condition with and without shear restraints.
For comparison, natural frequencies can be calculated by applying the TMABM and Eq. (37)

using the data listed below:
Bending stiffness for the beam component ðEIÞc ¼ 4	 106 mt2;
Length of the beam ðcÞ ¼ 10 m;
Mass per unit length=1000 kg/m;
Distance between centroids of the sub-beams=0.3m.
The first four natural frequencies of the beam have been calculated for the case of no shear

restraints (k ¼ 0) and Z ¼ 1 and are listed in Table 1. The natural frequencies calculated using
TMABM agreed completely with those obtained using Eq. (37).
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4.1. Case of no shear restraints at both ends

Figs. 7–9 represent the normalized natural frequencies (o1;o2;o3) for the case of no shear
restraints at both ends of the beam. The frequencies are normalized with respect to the maximum
natural frequency obtained by using Eq. (37).
Different values of ‘‘Z‘‘ have been considered to represent the relative importance of bending

stiffness. From the results represented in these figures, it is clear that for sections with complete
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Fig. 7. Variation of normalized natural frequency with shear stiffness (k) for mode 1, o1; [—~— h ¼ 0:2; —K—

h ¼ 0:6; —+— h ¼ 1:0; —%— h ¼ 1:4].

Table 1

Comparison of natural frequencies calculated using TMABM and Refs. [9,10]. For case of no shear restraints (k ¼ 0)

Frequancy Natural frequency (Hz)

TMABM Refs. [9,10]

o1 6.24 6.24

o2 24.96 24.96

o3 56.18 56.17

o4 99.52 99.87
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interaction between the beam and the slab (k > 107 N/m2), the behaviour of the composite beam is
identical to that of the equivalent classical beam. However, when sliding occurs (ko106 N/m2),
the composite beam presented a lower natural frequency than that obtained by the equivalent
classical beam.

5. Conclusions

Explicit expressions for field transfer matrix of a uniform elastic composite beam have been
derived. A combined transfer matrix-analog beam method (TMABM) is presented and applied to
a simple supported beam with uniformly distributed mass to investigate the natural frequencies.
The method can be applied to both cases of the no shear restraint and with shear restraint at both
ends. The results obtained from the present method were verified with that of the classical method
and a good agreement was achieved. Also, the effect of changing the values of significant
parameters Z and K on the natural frequencies of the elastic composite beams has been studied.
The results obtained from this study indicate that the natural frequency strongly depends on these
values and that it is very important to consider these variables especially for the case when
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Fig. 8. Variation of normalized natural frequency with Shear stiffness (k) for mode 2, o2; [—~— h ¼ 0:2; —K—

h ¼ 0:6; —+— h ¼ 1:0; —%— h ¼ 1:4].
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studying the bridges and structures that are exposed to dynamic loading. Although, the method is
more complicated, it is more accurate and could prove to be a good tool for design purposes. The
developed model can be applied to calculate the natural frequencies of multi-span composite
bridges with various intermediate conditions beside the effects of the intermediate conditions such
as rigid supports.

Appendix A. The coefficient of the field transfer matrix ‘‘F’’

T11 ¼ a21a1 cos l1 þ a41a2 cosh l2 þ a61a3 cosh l3;

T12 ¼ �a12a1 sin l1 þ a32a2 sinh l2 þ a52a3 sinh l3;

T13 ¼ �a13a1 sin l1 þ a33a2 sinh l2 þ a53a3 sinh l3;

T14 ¼ a24a1 cos l1 þ a44a2 cosh l2 þ a64a3 cosh l3;

T15 ¼ a25a1 cos l1 þ a45a2 cosh l2 þ a65a3 cosh l3;

T16 ¼ �a16a1 sin l1 þ a36a2 sinh l2 þ a56a3 sinh l3;
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T21 ¼ �a21
l1a1
c

sin l1 þ a41
l2a2
c

sinh l2 þ a61
l3a3
c

sinhl3;

T22 ¼ �a12
l1a1
c

cosl1 þ a32
l2a2
c

cosh l2 þ a52
l3a3
c

cosh l3

T23 ¼ �a13
l1a1
c

cos l1 þ a33
l2a2
c

cosh l2 þ a53
l3a3
c

cosh l33;

T24 ¼ �a24
l1a1
c

sin l1 þ a44
l2a2
c

sinh l2 þ a64
l3a3
c

sinh l3;

T25 ¼ �a25
l1a1
c

sin l1 þ a45
l2a2
c

sinh l2 þ a65
l3a3
c

sinh l3;

T26 ¼ �a16
l1a1
c

cos l1 þ a36
l2a2
c

cosh l2 þ a56
l3a3
c

cosh l3;

T31 ¼ a21b1 sin l1 þ a41b2 sinh l2 þ a61b3 sinh l3;

T32 ¼ a12b1 cos l1 þ a32b2 cosh l2 þ a52b3 cosh l3;

T33 ¼ a13b1 cos l1 þ a33b2 cosh l2 þ a53b3 cosh l3;

T34 ¼ a24b1 sin l1 þ a44b2 sinh l2 þ a64b3 sinh l3;

T35 ¼ a25b1 sin l1 þ a45b2 sinh l2 þ a65b3 sinh l3;

T36 ¼ a16b1 cos l1 þ a36b2 cosh l2 þ a56b3 cosh l3;

T41 ¼ a21g1 cos l1 þ a41g2 cosh l2 þ a61g3 cosh l3;

T42 ¼ �a12g1 sin l1 þ a32g2 sinh l2 þ a52g3 sinh l3;

T43 ¼ �a13g1 sin l1 þ a33g2 sinh l2 þ a53g3 sinh l3;

T44 ¼ a24g1 cos l1 þ a44g2 cosh l2 þ a64g3 cosh l3;

T45 ¼ a25g1 cos l1 þ a45g2 cosh l2 þ a65g3 cosh l3;

T46 ¼ �a16g1 sin l1 þ a36g2 sinh l2 þ a56g3 sinh l3;

T51 ¼ �a21d1 cos l1 þ a41d2 cosh l2 þ a61d3 cosh l3;

T52 ¼ a12d1 sin l1 þ a32d2 sinh l2 þ a52d3 sinh l3;

T53 ¼ a13d1 sin l1 þ a33d2 sinh l2 þ a53d3 sinh l3;

T54 ¼ �a24d1 cos l1 þ a44d2 cosh l2 þ a64d3 cosh l3;

T55 ¼ �a25d1 cos l1 þ a45d2 cosh l2 þ a65d3 cosh l3;

T56 ¼ a16d1 sin l1 þ a36d2 sinh l2 þ a56d3 sinh l3;

T61 ¼ a21 sin l1 þ a41 sinh l2 þ a61 sinh l3; T62 ¼ a12 cos l1 þ a32 cosh l2 þ a52 cosh l3;

T63 ¼ a13 cos l1 þ a33 cosh l2 þ a53 cosh l3; T64 ¼ a24 sin l1 þ a44 sinh l2 þ a64 sinh l3;

T65 ¼ a25 sin l1 þ a45 sinh l2 þ a65 sinh l3; T66 ¼ a16 cos l1 þ a36 cosh l2 þ a56 cosh l3;
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where the following abbreviations have been introduced:

a12 ¼ ðb3 � b2Þ=D1; a13 ¼ ðl2a2 � l3a3Þ=cD1; a16 ¼ ðl3a3b2 � l2a2b3Þ=cD1;

a21 ¼ ðg2d3 � g3d2Þ=D2; a24 ¼ ðd2a3 � d3a2Þ=D2; a25 ¼ ð�a3g2 þ a2g3Þ=D2;

a32 ¼ ðb1 � b3Þ=D1; a33 ¼ ðl3a3 þ l1a1Þ=cD1; a36 ¼ ð�l3a3b1 � l1a1b3Þ=cD1:

a41 ¼ ð�g1d3 � g3d1Þ=D2; a44 ¼ ðd1a3 þ d3a1Þ=D2; a45 ¼ ð�a1g3 þ a3g1Þ=D2;

a52 ¼ ðb2 � b1Þ=D1; a53 ¼ ð�l2a2 � l1a1Þ=cD1; a56 ¼ ðl1a1b2 þ l2a2b1Þ=cD1;

a61 ¼ ðg1d2 þ g2d1Þ=D2; a64 ¼ ð�d1a2 � d2a1Þ=D2; a65 ¼ ða1g2 � a2g1Þ=D2:

and

D1 ¼
b1
c
ðl2a2 � l3a3Þ þ

b2
c
ðl1a1 þ l3a3Þ þ

b3
c
ð�l2a2 � l1a1Þ;

D2 ¼ a1ð�g3d2 þ g2d3Þ þ a2ð�g3d1 � g1d3Þ þ a3ðg1d2 þ g2d1Þ:

References

[1] A. Gjelsvik, Analog-beam method for determining shear-lag effects, Journal of Engineering Mechanics 117 (7)

(1991) 1575–1595.

[2] R. Betti, Gjelsvik, Elastic composite beams, Computers & Structures 59(3) (1996) 437–451.

[3] L.S. Teoh, C.C. Huang, The vibration of beams of fibre reinforced material, Journal of Sound and Vibration 143

(1990) 403–519.

[4] J.R. Banerjee, F.W. Williams, Free vibration of composite beams– an exact method using symbolic computation,

Journal of Aircraft 32 (1995) 636–642.

[5] J.R. Banerjee, F.W. Williams, Exact dynamic stiffness matrix for composite Timoshenko beams with applications,

Journal of Sound and Vibration 194 (1996) 573–585.

[6] R.B. Abarcar, P.F. Cunif, The vibration of cantilever beams of fiber reinforced material, Journal of Composite

Materials 6 (1972) 504–517.

[7] W.H. Wittrick, F.W. Williams, A general algorithm for computing natural frequencies of elastic structures,

Quarterly Journal of Mechanics and Applied Mathematics 24 (1971) 263–284.

[8] D.G. Lee, Calculation of natural frequencies of vibration of thin orthotropic composite shells by energy method,

Journal of Composite Materials 22 (1988) 1102–1114.

[9] G.L. Warburton, The Dynamical Behavior of Structure, Pergmon Press, Oxford, 1976.

[10] C. Pestel, A. Leckie, Matrix Methods in Elastomechanics, McGraw Hill, New York, 1963.

ARTICLE IN PRESS

A.M. Ellakany et al. / Journal of Sound and Vibration 277 (2004) 765–781 781


	A combined transfer matrix and analogue beam method for free vibration analysis of composite beams
	Introduction
	The mathematical model
	Transfer matrix scheme
	Boundary conditions for analog beam

	Application of the model
	Case of no shear restraints at both ends

	Conclusions
	The coefficient of the field transfer matrix ’’F’’
	References


