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Abstract

Differential equations based on the Sanders–Budiansky theory are expressed in a general form for the
linear vibration analysis of thin isotropic shells. The general equations are applied to toroidal and
cylindrical shells and to a torus–cylinder shell assembly (pipe bend). Solutions to the equations are set up
using the differential quadrature method. Sample results obtained for the cylindrical shell are compared
with results given in the literature. Further results are given for some standard-size 90� pipe bends, and
these results are compared with finite element results. The paper ends with an appropriate set of
conclusions.
r 2003 Published by Elsevier Ltd.

1. Introduction

Shell assemblies consisting of two or more simple plate and/or shell components are frequently
encountered in vibration analysis [1–6]. Structures such as these have application in the aircraft,
shipbuilding, and pressure vessel industries, among others. Analytical solutions for such
structures are useful either as primary solutions or as a means to confirm results found using
the finite element method (FEM).

The formulation of analytical vibration solutions for shell assemblies poses a difficult problem
for researchers. The standard approach involves setting up solutions for the individual
components and then satisfying continuity conditions on lines of connection between
components. A complication arises when the various shell components find natural description
in different physical co-ordinate systems.

Analysis of such assemblies has been carried out using a variety of methods, including the
receptance method [1] and the differential quadrature method (DQM) [3,6]. The latter method due
to its implicit use of high order functions can offer great accuracy for relatively small

ARTICLE IN PRESS

*Fax: +1-613-562-5177.

E-mail address: dredekop@tesla.cc.uottawa.ca (D. Redekop).

0022-460X/$ - see front matter r 2003 Published by Elsevier Ltd.

doi:10.1016/j.jsv.2003.09.034



computational effort. A recent paper by Chen et al. [6] indicated some difficulties with the DQM
for multi-domain problems, and explored the use of the differential quadrature element method
for such problems. The difficulties cited were numerical ones arising from differences in the order
of terms in the equations sets.

In the present work, a single set of governing equations is obtained for the vibration analysis of
a thin isotropic shell of arbitrary geometry. Specialization of the equations for specific shell
geometries will involve terms that are of similar order. The linear form of the Sanders–Budiansky
theory [10,11] is used to set up the equations, and the DQM is used to obtain solutions. Vibration
analyses are then conducted for individual toroidal and cylindrical shells, as well as for a
torus–cylinder shell assembly (pipe bend) [7–9]. Comparison is made with results from the
FEM. The paper ends with a set of conclusions about the current approach, and the results
obtained.

2. Geometry

A governing set of equations is developed for a thin shell of arbitrary mid-surface geometry.
The mid-surface is described by a radius vector r ¼ rðq1; q2Þ; where q1; q2 form an orthogonal
co-ordinate system. The Lam!e parameters of the shell are given by a1; a2; and the curvatures
by k1; k2:

The shell assembly studied in this work is a pipe bend (Fig. 1), consisting of a 90� elbow
(toroidal shell) and a straight pipe (cylindrical shell), joined at an interface BC. The elbow has a
bend radius R and the pipe has a length L: The two components have a common radius r of
cross-section, and a common thickness, h: The elbow is clamped at its base and the pipe is free at
its far end.

The geometric parameters for a toroidal shell (Fig. 2) are given by

q1 ¼ Z ¼ f=g; q2 ¼ y; a1t ¼ rz; a2t ¼ r; k1t ¼ cos y=ðRzÞ; k2t ¼ 1=r; ð1Þ
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Fig. 1. Pipe bend.
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where g ¼ r=R; z ¼ 1 þ g cos y; f is the longitudinal angular measure, and y the circumferential
angular measure. For a cylindrical shell, the geometric parameters are

q1 ¼ x=r; q2 ¼ y; a1c ¼ r; a2c ¼ r; k1c ¼ 0; k2c ¼ 1=r; ð2Þ

where x is a local axial co-ordinate, while y is again the circumferential angular measure. The
subscripts t and c in Eqs. (1) and (2) and in subsequent equations refer to the toroidal and
cylindrical shell components, respectively.

The boundary conditions at the base of the elbow are

ut ¼ 0; vt ¼ 0; wt ¼ 0; k1tut � wt;1=a1t ¼ 0; ð3Þ

where ut; vt; and wt are the elbow displacement components in the Z; y; and normal directions
respectively (Fig. 3), and wt;1 represents the derivative in the longitudinal ðZÞ direction. The far end
of the pipe is free and, thus, zero-force boundary equations must be satisfied. According to the
Sanders–Budiansky shell theory [10,11], the conditions are

N1c ¼ 0; T1c � N12c þ 1
2
ð3k2c � k1cÞM12c ¼ 0; ð4Þ

S1c �
1

a1ca2c

½ða2cM1cÞ;1 þ ða1cM12cÞ;2 þ a1c;2M12c � a2c;1M12c	 þ
1

a2c

M12c;2 ¼ 0;

M1c ¼ 0;
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Fig. 2. Toroidal shell geometry.

Fig. 3. Toroidal displacements and resultants.
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where the ð?Þ;1 and ð?Þ;2 indicate differentiation with respect to the q1 and q2 variables, and, for
a cylindrical shell, N1c ¼ Nx; N12c ¼ Nxy; M12c ¼ Mxy; M1c ¼ Mx; and M2c ¼ My: The convention
for the stress resultants in the pipe is shown in Fig. 4. The resultants can be expressed in terms of
the displacement components using the geometric and constitutive relations given in the following
section.

Campatibility at the interface BC necessitates continuity of both displacement and force. The
continuity conditions to be satisfied are

ut ¼ uc; vt ¼ vc; wt ¼ wc; k1tut � wt;1=a1t ¼ k1cuc � wc;1=a1c ð5Þ

and

N1t ¼ N1c; T1t ¼ T1c; S1t ¼ S1c; M1t ¼ M1c; ð6Þ

where the resultants are defined with the help of Eqs. (4).

3. Sanders–Budiansky shell theory

To determine the vibration characteristics of the shell components and shell assembly, the first
order linear version of the Sanders–Budiansky shell theory [10,11] is used, in conjunction with the
D’Alembert principle. The governing equations in this theory, expressed in terms of the stress
resultants and displacements in an arbitrary co-ordinate system, are

ða2N1Þ;1 þ ða1N12Þ;2 þ a1;2N12 � a2;1N2 þ k1ða2M1Þ;1 þ k1ða1M12Þ;2 þ k1a1;2M12

� k1a2;1M2 þ 1
2
a1½ðk1 � k2ÞM12	;2 ¼ a1a2rh .u1;

ða1N2Þ;2 þ ða2N12Þ;1 þ a2;1N12 � a1;2N1 þ k2ða1M2Þ;2 þ k2ða2M12Þ;1 þ k2a2;1M12

� k2a1;2M1 þ 1
2
a2½ðk2 � k1ÞM12	;1 ¼ a1a2rh .u2;
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½ða2M1Þ;1=a1	;1 þ ½ða1M12Þ;2=a1	;1 þ ½a1;2M12=a1	;1 � ½a2;1M2=a1	;1 þ ½ða1M2Þ;2=a2	;2
þ ½ða2M12Þ;1=a2	;2 þ ½a2;1M12=a2	;2 � ½a1;2M1=a2	;2 � a1a2ðk1N1 þ k2N2Þ ¼ a1a2rh .w; ð7Þ

where r is the mass density, and .u1; .u2; .w are the accelerations.
For the boundary and continuity conditions, an elastic law is required. In the Sanders–

Budiansky shell theory, this is given by

N1 ¼ a1u1;1 þ a2u1 þ a3u2;2 þ a4u2 þ a5w;

N2 ¼ a6u1;1 þ a7u1 þ a8u2;2 þ a9u2 þ a10w;

N12 ¼ a11u1;2 þ a12u1 þ a13u2;1 þ a14u2;

M1 ¼ a15u1;1 þ a16u1 þ a17u2;2 þ a18u2 þ a19w;11 þ a20w;1 þ a21w;22 þ a22w;2;

M2 ¼ a23u1;1 þ a24u1 þ a25u2;2 þ a26u2 þ a27w;11 þ a28w;1 þ a29w;22 þ a30w;2;

M12 ¼ a31u1;2 þ a32u1 þ a33u2;1 þ a34u2 þ a35w;1 þ a36w;2 þ a37w;12;

Q1 ¼ ½ða2M1Þ;1 þ ða1M12Þ;2 þ a1;2M12 � a2;1M2	=ða1a2Þ;

Q2 ¼ ½ða1M2Þ;2 þ ða2M12Þ;1 þ a2;1M12 � a1;2M1	=ða1a2Þ; ð8Þ

where the a1–a37 are known functions of the geometric and material properties of the shell.
Substitution of the elastic law (8) into the governing equations (7) and into the boundary-

continuity relations (3)–(6) leads to domain and boundary equations in terms of displacements
that govern the problem. The combined set of differential equations contains as the unknowns the
displacement components and the natural frequency. The solution of this equation set using the
DQM is now considered.

4. Differential quadrature method

The first step in the DQM approach [12,13] is the definition of a grid of sampling points
covering the domain, including the boundary. The spacing of sampling points may be even, but
more generally is irregular. The three displacement components at each of the sampling points
constitute the principal unknowns of the problem.

The second step in the DQM approach is the replacement, in domain and boundary-continuity
equations, of derivatives with series that contain the displacements at the sampling points and
weighting coefficients. This step enables a conversion of the problem from one of differential
equations to one of linear equations. The rth derivative of a generic function of a single variable
f ðxÞ at the sampling point xi is represented as

drf ðxÞ
dxr

����
xi

¼
XM

h¼1

A
ðrÞ
ih f ðxhÞ; ð9Þ

where the A
ðrÞ
ih are the weighting coefficients of the rth order derivative in the x direction for the ith

sampling point, f ðxhÞ is the value of f ðxÞ at the sampling point position xh; and M is the number
of sampling points in the x direction. The ðr þ sÞth partial derivative of a generic function of two
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variables gðx; yÞ at the sampling point xi; yj is represented as

@ðrþsÞgðx; yÞ
@xr@ys

����
xi ;yj

¼
XM

h¼1

A
ðrÞ
ih

XN

k¼1

B
ðsÞ
jk gðxh; ykÞ; ð10Þ

where B
ðsÞ
jk and N are weighting coefficients and number of terms in the series for the y direction,

and gðxh; ykÞ is the value of gðx; yÞ at the sampling point position xh; yk:
In the DQM, the weighting coefficients are determined a priori for a preselected grid, with the

aid of selected trial functions. In the present study, for the longitudinal direction, the well-known
Chebyshev–Gauss–Lobatto spacing of sampling points with ‘delta points’ was adopted, together
with polynomial trial functions. For such a scheme, explicit formulas for the weighting coefficients
A

ðrÞ
ih are available [13]. For the circumferential direction, a system of evenly spaced sampling points

was adopted, together with trigonometric trial functions. Explicit formulas are then available for
the B

ðsÞ
jk weighting coefficients [13].

In the torus–cylinder assembly problem separate grids of sampling points were defined for each
of the components. These grids overlapped on the interface BC, and lines of ‘delta points’ were
situated on either side of the interface. The equations written for the interface and ‘delta point’
sampling points were the set of continuity conditions of Eqs. (5) and (6).

Use of the quadrature rules (9)–(10) for the derivatives in the domain of the governing
differential equations leads to the transformed DQM vibration equations

c1

X
A

ð2Þ
ih Uhj þ c2

X
A

ð1Þ
ih Uhj þ c3

X
B
ð2Þ
jk Uik þ c4

X
B
ð1Þ
jk Uik þ c5Uij

þ c6

X
A

ð1Þ
ih Vhj þ c7

X
B
ð1Þ
jk Vik þ c8

X
A

ð1Þ
ih

X
B
ð1Þ
jk Vhk þ c9Vij

þ c10

X
A

ð3Þ
ih Whj þ c11

X
A

ð2Þ
ih Whj þ c12

X
A

ð1Þ
ih Whj þ c13

X
B
ð2Þ
jk Wik þ c14

X
B
ð1Þ
jk Wik

þ c15

X
A

ð1Þ
ih

X
B
ð2Þ
jk Whk þ c16

X
A

ð1Þ
ih

X
B
ð1Þ
jk Whk þ c17Wij ¼ lUij; ð11Þ

c18

X
A

ð1Þ
ih Uhj þ c19

X
B
ð1Þ
jk Uik þ c20

X
A

ð1Þ
ih

X
B
ð1Þ
jk Uhk þ c21Uij

þ c22

X
A

ð2Þ
ih Vhj þ c23

X
A

ð1Þ
ih Vhj þ c24

X
B
ð2Þ
jk Vik þ c25

X
B
ð1Þ
jk Vik þ c26Vij

þ c27

X
A

ð2Þ
ih Whj þ c28

X
A

ð1Þ
ih Whj þ c29

X
B
ð3Þ
jk Wik þ c30

X
B
ð2Þ
jk Wik þ c31

X
B
ð1Þ
jk Wik

þ c32

X
A

ð2Þ
ih

X
B
ð1Þ
jk Whk þ c33

X
A

ð1Þ
ih

X
B
ð1Þ
jk Whk þ c34Wij ¼ lVij;

c35

X
A

ð3Þ
ih Uhj þ c36

X
A

ð2Þ
ih Uhj þ c37

X
A

ð1Þ
ih Uhj þ c38

X
B
ð2Þ
jk Uik þ c39

X
B
ð1Þ
jk Uik

þ c40

X
A

ð1Þ
ih

X
B
ð2Þ
jk Uhk þ c41

X
A

ð1Þ
ih

X
B
ð1Þ
jk Uhk þ c42Uij

þ c43

X
A

ð2Þ
ih Vhj þ c44

X
A

ð1Þ
ih Vhj þ c45

X
B
ð3Þ
jk Vik þ c46

X
B
ð2Þ
jk Vik þ c47

X
B
ð1Þ
jk Vik

þ c48

X
A

ð2Þ
ih

X
B
ð1Þ
jk Vhk þ c49

X
A

ð1Þ
ih

X
B
ð1Þ
jk Vhk þ c50Vij
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þ c51

X
A

ð4Þ
ih Whj þ c52

X
A

ð3Þ
ih Whj þ c53

X
A

ð2Þ
ih Whj þ c54

X
A

ð1Þ
ih Whj

þ c55

X
B
ð4Þ
jk Wik þ c56

X
B
ð3Þ
jk Wik þ c57

X
B
ð2Þ
jk Wik þ c58

X
B
ð1Þ
jk Wik

þ c59

X
A

ð2Þ
ih

X
B
ð2Þ
jk Whk þ c60

X
A

ð2Þ
ih

X
B
ð1Þ
jk Whk þ c61

X
A

ð1Þ
ih

X
B
ð2Þ
jk Whk

þ c62

X
A

ð1Þ
ih

X
B
ð1Þ
jk Whk þ c63Wij ¼ lWij :

where l ¼ rho2; and o is the natural frequency in Hz. The ci; i ¼ 1; 2;y; 63 in Eq. (11)
signify known functions of the geometric co-ordinates and the material properties, which
include E; the elastic modulus, and n; the Poisson ratio. The Uij ; Vij; Wij are the displace-
ment components at the sampling point i; j; and the summations extend over the full set of
sampling points in the appropriate co-ordinate direction. It is understood that these equations will
be enforced at the various sampling points of a pre-selected grid. DQM equations for the
boundary-continuity conditions to be enforced at the boundary-continuity points may similarly
be written.

The assembly of the domain and boundary-continuity relations yields a matrix equation of the
form

Kbb Kbd

Kdb Kdd

" #
Db

Dd

( )
¼ l

0 0

0 I

" #
Db

Dd

( )
: ð12Þ

The sub-matrices ½Kbb	 and ½Kbd 	 of the ‘stiffness’ matrix stem from the boundary-continuity
conditions, while the sub-matrices ½Kdb	 and ½Kdd 	 stem from the domain equations. Sub-matrix ½I 	
is the identity matrix. The vector fDbg contains the displacements at the boundary-continuity
points, while the vector fDdg represents the displacements at the domain points. Solution of this
equation yields the natural frequencies of vibration of the shell or shell assembly, as well as the
mode shapes.

The theory for vibration of a clamped–clamped toroidal shell, a clamped–free cylindrical shell,
and a clamped–free pipe bend was coded in the two-variable DQM programs sanbudt.m,
sanbudc.m, and benvib.m, respectively. Earlier comparisons of computer times between the DQM
and FEM have indicated the effectiveness of the DQM solution [12]. Results from the mentioned
DQM programs are presented in the following.

5. Finite element method

The commercial FEM program NE-NASTRAN [14] was used to provide an alternate solution
to the vibration problem. A flat four-noded 24 degree-of-freedom shell element is available in this
program for the solution of linear shell vibration problems. Manual meshing was carried out with
element numbers chosen to give nearly square elements. The modelling accounted for the full
geometry, with no account made of the symmetry.
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6. Validation

A comparison with previous work was made for the case of a cylindrical shell with clamped–
free support conditions. The study was for the following values of the geometric and material
parameters: L ¼ 0:5112 m; r ¼ 0:216 m; h ¼ 0:0015 m; E ¼ 0:183e12 Pa; n ¼ 0:3; r ¼
7492 kg=m3: These values corresponded to a cylindrical shell studied by Chung [15] using a
series approach and by Ganesan and Sivadas [16] using the FEM.

A comparison of results for the first 10 natural frequencies is given in Table 1. The #m; #n values
in the table refer to the mode numbers in the axial and circumferential directions, as given in Ref.
[16]. The present values are those obtained using the sanbudc.m DQM program with a mesh
consisting of 27 longitudinal sampling points and 28 circumferential points. Convergence of the
solution is discussed further in the following section. The table indicates that differences between
the present results and the previous FEM results [16] are less than 1%, up to the eight natural
frequency. Differences with the previous series solution [15] are less than 2%, up to the tenth
natural frequency.

7. Results

Natural frequencies of vibration are determined for three pipe bends of standard geometry.
Details of the dimensions are given in Table 2. These bends are similar in geometry to ones studied
by Basaraju and Lee [8], but involve only one straight pipe, the length of which is one pipe
diameter. The results were obtained using the following values for the material properties: E ¼
0:207e12 Pa; n ¼ 0:3; r ¼ 7800 kg=m3:

Frequencies are first obtained for the individual toroidal and cylindrical components of each of
the three pipe bends. For the toroidal components, clamped–clamped boundary conditions are
assumed, while for the cylindrical ones clamped–free conditions are used. Results for the first five
natural frequencies of the components as determined from both the FEM and DQM are
presented in Table 3. Results from one ‘fine’ FEM mesh and for three DQM meshes are given. In
the table, the numbers for the meshes indicate elements or sampling points in the longitudinal and

ARTICLE IN PRESS

Table 1

Validation study

Root #m; #n Ref. [15] Ref. [16] Present

1 1; 4 171.8 173.6 173.24

2 1; 5 199.2 202.3 202.29

3 1; 3 223.3 224.4 223.78

4 1; 6 268.9 273.5 273.76

5 1; 7 361.9 370.1 368.76

6 1; 2 403.7 404.7 404.01

7 2; 6 447.0 448.7 445.81

8 2; 7 464.6 471.3 470.88

9 1; 8 472.5 490.3 481.56

10 2; 5 494.7 500.3 496.62
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circumferential directions, respectively. For the FEM meshes, the element numbers represent an
effort to obtain ‘square’ elements while, for the DQM meshes, the sampling point numbers
represent an effort to give nearly the same order of function in the two co-ordinate directions.

For both the toroidal and cylindrical components, there is excellent agreement in results
between the FEM and DQM for all three geometries (in inverted order). Differences for the
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Table 2

Description of elbows

Elbow RðmÞ rðmÞ hðmÞ LðmÞ r=h H ¼ hR=r2

1 ELB6A 0.2286 0.0858 0.00711 0.1716 12.1 0.221

2 ELB14B 0.5334 0.1730 0.00953 0.3460 18.2 0.170

3 ELB20A 0.7620 0.2492 0.00953 0.4984 26.1 0.117

Table 3

Component natural frequencies—convergence characteristics (Hz)

Model Method Mesh Mode

1 2 3 4 5

6A-Tor FEM 32 � 48 2271.770 2627.810 2913.290 3178.770 3422.830

DQM-3 27 � 28 2273.076 2628.331 2920.583 3198.794 3441.326

DQM-2 19 � 20 2273.077 2628.332 2920.583 3198.794 3441.326

DQM-1 11 � 12 2272.648 2627.957 2921.473 3198.450 3440.829

6A-Cyl FEM 20 � 64 1578.290 2016.920 2795.740 3524.030 4394.390

DQM-3 27 � 28 1600.484 2085.321 2799.311 3626.575 4365.014

DQM-2 19 � 20 1600.485 2085.322 2799.312 3626.575 4365.015

DQM-1 11 � 12 1600.336 2081.834 2800.134 3622.559 4361.829

14B-Tor FEM 36 � 44 967.993 1099.320 1169.130 1209.140 1294.320

DQM-3 27 � 28 966.859 1096.121 1165.342 1204.963 1291.727

DQM-2 19 � 20 966.856 1096.119 1165.342 1204.963 1291.727

DQM-1 11 � 12 965.290 1095.005 1165.712 1205.828 1291.476

14B-Cyl FEM 20 � 64 734.923 735.207 1199.640 1379.670 1811.120

DQM-3 27 � 28 737.485 744.635 1210.153 1380.510 1833.520

DQM-2 19 � 20 737.485 744.636 1210.154 1380.510 1833.520

DQM-1 11 � 12 737.010 741.627 1206.376 1380.802 1831.320

20A-Tor FEM 36 � 44 664.002 734.759 745.094 764.822 850.279

DQM-3 27 � 28 662.308 730.608 739.893 759.333 840.838

DQM-2 19 � 20 662.299 730.605 739.892 759.332 840.834

DQM-1 11 � 12 661.569 727.903 741.023 765.289 837.540

20A-Cyl FEM 20 � 64 405.137 494.177 596.214 926.977 954.883

DQM-3 27 � 28 406.051 494.202 595.383 919.338 955.207

DQM-2 19 � 20 406.052 494.202 595.384 919.339 955.207

DQM-1 11 � 12 402.747 493.357 591.066 915.421 955.212
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fundamental frequency are less than two percent, indicating accuracy in the derived equations and
corresponding codes. The DQM solutions are very steady with increase in sampling points,
permitting a converged accuracy of 5–6 figures without a loss of numerical stability.

Frequencies are next found for the torus–cylinder assemblies, i.e., the complete pipe bends. In
these analyses, clamped support conditions are assumed at the toroidal end and free conditions at
the cylindrical end. Results are given in Table 4 for the first five frequencies as determined by both
the FEM and DQM. Results are given for three FEM meshes as well as three DQM meshes (in
inverted order). The mesh sizes quoted indicate either elements or sample point numbers following
the convention mentioned for Table 3.

For the pipe bends, close agreement is obtained in results between the FEM and DQM for all
three geometries, with differences for the fundamental frequency less than five percent. In the
FEM solution, convergence is seen to be monotonic. In the DQM results, in general, convergence
with an increase in the number of sampling points is steady as well, except for ELB 6A, modes 1
and 2, ELB14B, modes 2 and 5, and ELB20A, modes 1 and 2. The DQM solution for the shell
assembly is less stable than for the individual components, and tends to degrade if large number of
sampling points are used. This tendency of the DQM solution has been noted by previous authors
[6,12]. The solutions obtained, however, clearly are of accuracy suitable for engineering purposes.

The effect of changing the length of the cylindrical shell on the natural frequencies of the three
pipe bends is shown in Table 5. Three cylindrical shell lengths are specified as L1 ¼ 0:5L; L2 ¼ L;
and L3 ¼ 1:5L; where L represents the cylindrical shell length given in Table 2. The first five
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Table 4

Assembly natural frequencies—convergence characteristics (Hz)

Model Method Tor+Cyl Mesh Mode

1 2 3 4 5

ELB6A FEM-1 14 � 22 þ 7 � 22 335.5 350.8 752.5 763.3 1248.0

FEM-2 20 � 32 þ 10 � 32 333.9 349.4 740.5 750.8 1241.0

FEM-3 28 � 44 þ 14 � 44 327.4 342.5 721.1 730.9 1215.0

DQM-3 13 � 14 þ 13 � 14 335.1 356.5 725.4 734.4 1250.0

DQM-2 11 � 12 þ 11 � 12 337.0 352.9 723.4 733.8 1249.0

DQM-1 9 � 10 þ 9 � 10 330.1 353.0 712.4 721.6 1243.0

ELB14B FEM-1 16 � 20 þ 7 � 20 126.0 131.6 263.3 267.1 497.1

FEM-2 24 � 30 þ 10 � 30 125.3 130.8 258.4 262.1 492.5

FEM-3 32 � 40 þ 14 � 40 122.9 128.4 252.1 255.7 482.2

DQM-3 13 � 14 þ 13 � 14 126.6 132.5 250.7 254.9 494.9

DQM-2 11 � 12 þ 11 � 12 125.2 131.2 250.7 254.4 493.2

DQM-1 9 � 10 þ 9 � 10 122.5 132.0 242.7 246.1 492.0

ELB20A FEM-1 16 � 20 þ 7 � 20 76.7 79.9 141.9 144.4 318.1

FEM-2 24 � 30 þ 10 � 30 76.1 79.2 139.2 141.7 309.3

FEM-3 32 � 40 þ 14 � 40 75.9 79.0 138.3 140.7 305.9

DQM-3 13 � 14 þ 13 � 14 75.2 79.9 135.8 138.4 300.7

DQM-2 11 � 12 þ 11 � 12 75.7 79.0 134.1 137.1 298.8

DQM-1 9 � 10 þ 9 � 10 73.3 79.0 128.1 131.3 287.5

D. Redekop / Journal of Sound and Vibration 277 (2004) 919–930928



natural frequencies as found by the FEM and DQM are given. There is again close agreement in
the results. The table indicates that increasing the length of the cylindrical shell substantially
reduces the natural frequencies.

8. Conclusions

General vibration equations have been obtained, which enable the analysis of isotropic shells of
arbitrary geometry, and of shell assemblies. The specific cases of toroidal and cylindrical shells
and a shell assembly consisting of a 90� elbow and a straight pipe are covered in detail. Results
obtained for the cylindrical shell show excellent agreement with results given in the literature.
Results for the two shell types and the shell assembly also compare well with finite element results.
The study demonstrates the suitability of the differential quadrature method for the analysis of
shell assemblies.
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