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Abstract

This contribution focuses on the area of modal analysis and studies the applicability of total least-squares
(TLS) algorithms for the estimation of modal parameters in the frequency-domain from input—-output
Fourier data. These algorithms can be preferable to classical frequency response function based curve-
fitting methods. This is certainly the case when periodic excitation is applied and an errors-in-variables
noise model can be determined. The proposed generalized total least-squares (GTLS) algorithm provides an
accurate modal parameter estimation by the integration of this noise model in the parametric identification
process. Modal-based design and comfort improvement, damage assessment and structural health
monitoring, and finite element model updating are important applications that strongly rely on a high
accuracy of the modal model. In this paper it is shown how frequency-domain TLS and GTLS estimators
can be numerically optimized to handle large amounts of modal data. In order to use an errors-in-variables
noise model, a linear approximation is necessary in order to obtain a fast implementation of the GTLS
algorithm. The validity of this approximation is a function of the signal-to-noise ratio of the input Fourier
data and is evaluated by means of Monte Carlo simulations and experimental data.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Modal parameter estimation has become a common technique used by engineers to analyze
complex mechanical and civil structures such as cars, aircraft, industrial machinery, bridges,
buildings, etc. The representation of the dynamical behaviour of such structures by means of the
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modal parameters (i.e., damped resonance frequencies, damping ratio and mode shapes) allows a
better physical interpretation and a way to get condensed experimental data suitable for a variety
of mechanical design purposes such as finite element model correlation, structural redesign as well
as for structural damage assessment, monitoring and control applications.

The use of total least-squares (TLS) techniques for frequency-domain identification has already
been extensively discussed in several publications (both for single input—single output (SISO) and
multiple input-multiple output (MIMO) models) [1,2]. However, modal analysis has its typical
characteristics such as extensive data sets (e.g., systems with 3 inputs and 500 outputs), high
modal density with closely spaced modes, high dynamical range, and sometimes, depending on the
application, medium to low signal-to-noise ratios. Another important feature of modal analysis
identification is the use of so-called stabilization charts, useful to separate the physical modes
from the mathematical ones. To construct these charts, pole estimates for different model orders
are required. Consequently, TLS algorithms required some important adaptations to become
applicable for modal analysis.

The common approach for experimental modal identification starts from frequency response
functions (FRF), which are derived using a non-parametric FRF estimator such as H; or H,.
Next, the modal parameters are estimated using curve fitting schemes, such as, e.g., least-squares
complex exponential (LSCE) [3], eigensystem realization (ERA) [4] or rational fractional
polynomial (RFP) algorithms [5,6]. One of the most popular identification schemes used in the
industry consists of a 2-step approach. First, based on the inverse FFT of this FRF data, the poles
and modal participation factors (cf. Section 2.1) are estimated with the time-domain polyreference
LSCE estimator for different model orders and poles are selected from a stabilization chart. In the
second step, the poles are fixed in the modal model and the mode shapes are estimated by means
of a Least-Squares frequency-domain (LSFD) solver.

However, as is well known, FRF-based identification can have serious drawbacks. First of all,
FRF data is obtained using an non-parametric FRF estimator, such as the H;, H, or H, estimator
[3]. Restrictive assumptions about the noise model make these FRF estimators inconsistent. FRF-
based errors-in-variables modelling is possible when using the H;, for arbitrary excitation [7] or
H., in case of periodic excitation [8]. Furthermore, it is not meaningful to use these average-based
FRF estimators when only short data sequences are available, since a minimal frequency
resolution is required for accurate system identification. This is often the case for flight flutter
testing and structural health monitoring practices (e.g., rotating machinery) due to cost, safety,
and time-invariance reasons.

In this contribution the FRF-based TLS approach is extended to errors-in-variables modelling
based on input/output Fourier modal data. In case of the generalized TLS (GTLS), the
measurement noise can be incorporated in the estimation process, which improves the accuracy of
the parameter estimates. A similar approach that was used for numerical optimization of the
FRF-based TLS algorithms [7,9] is applied (cf. Section 3). Nevertheless, some important
differences compared to these FRF-based algorithms can be noticed. In the case of the input—
output GTLS approach, a fast implementation is not straightforward once the input noise sources
are also taken into account. In Section 3 it is shown how this can be overcome using a linear
approximation in the problem formulation. A validation of the TLS and GTLS algorithms is
done by means of Monte Carlo simulations (Section 4), and experimental data from an aircraft
slat track (Section 5).
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2. Frequency-domain identification—MIMO systems
2.1. Parametric model

In this contribution, the frequency response function between output o and input i (for o =
1,2,...,N,and i = 1,2, ..., N;) is modelled using a common denominator transfer function model
[10]

o, 0) = "2, 0
with ngi(wr, 0) = 377 Qi(wp)b,; the numerator polynomial and d(awy,0) = 377 Qi(wx)a; the
common-denominator polynomial. Using a discrete-time domain model, the polynomial basis
functions are given by Q;(wx) = e 1V with T the sampling period, k = 1, ..., Ny (Ny the number
of spectral lines) and j = 1, ..., n (n order of the polynomials). The polynomial coefficients ¢; and
bojj are the (unknown) parameters 0 to be estimated.

The goal is to determine the structural dynamics by means of the modal parameters, i.e., the
modal frequencies, damping ratios and modal residues, of a pole-residue parameterization

Ny, Rr Ny, R,*
GO =2 ot 2 Gy @

with p, and R,, respectively, the poles and (N, x N;) residue matrices as model parameters
corresponding to the rth mode of the structure (,, = n — 1, the number of modes).

The modal parameters have to be derived from the estimates of the polynomial coefficients 6 of
the common-denominator model (1), which is done as follows

® Poles: the poles p, (r=1,...,N,) are found as the roots of the common denominator
polynomial d(w, 0) with coefficients 0,. From the poles the modal frequency f4, and damping
ratio {, are readily obtained as

Ja,

_Imp) e Re)

o 7] ®)

® Residues: the residue matrices R, (N, X N;) can be calculated from the coefficients 0 as follows
Roi = lim Hy(Q,0)(2 - py). 4)
= Dr

If a discrete-time pole-residue model (Z-domain) is used, the poles p, and residues R, have to be
transformed to the Laplace domain by means of the impulse-invariant transformation (z = e %),
where the damped natural frequency and damping ratio are subsequently obtained from the poles
as (3).

For modal analysis purposes, the residue matrices are further decomposed using the singular
value decomposition algorithm as R, = Q,.‘P,.‘I'rT = ‘I’rL,T with ¥,, L,, respectively, the mode
shape and modal participation factor vector and @, the modal scale factor for mode r. Modal
participation factors are a result of multiple reference (input) modal parameter estimation and
define how each mode is excited from each of the input locations.
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2.2. Errors-in-variables framework

In practice, the measured responses (velocities and/or accelerations) as well as forces are
affected by errors, i.e., measurement noise and process noise (due to environmental influences
which act as non-measured forces on the structure). Hence, as shown in Fig. 1, the measured 1/O
Fourier data Z(wy) = [FY, X" can be represented using an errors-in-variables stochastic noise
model

=1,...,N, 5
Ho(wk), —In,1Zo(wr) =0 I (5)

with Zo(wi) = [FH,XH] the “true” input—output (I/O) Fourier data and Ez(wy) = [E?,EE}]H
some random perturbations, where the column vectors Z(wy), Zo(wg), Ez(wy)eCNTVox!,

The errors Ez(wy) are assumed to be complex normally distributed with an a priori known
covariance matrix

Z(wy) = Zo(g) + Ez(y) }

(6)

C C
oo = by = £ Conte)

where & the expected value operator. Taking, besides the noise variances, also the cross-
correlations of the errors on the I/O Fourier data into account, can further decrease the
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Fig. 1. Frequency-domain Errors-in-Variables noise model.



P. Verboven et al. | Journal of Sound and Vibration 278 (2004) 21-38 25

uncertainty of the estimates. However, in the case that the output correlations are considered, the
time efficient implementation, presented in Section 3, cannot be applied. Moreover, since the
covariance matrix Cg,(wy) is usually obtained by means of measurements, obtaining a consistent
estimate of the full output covariance matrix Cg,(wx) for a large number of responses (N,)
requires at each response location at least N, measurements [11] and as a result only the output
variances are used in practice. On the other hand, since the number of inputs is typically small
(NV;<5), input correlations as well as input—output correlations can be experimentally determined,
resulting in Cg,(wx) and Cg, g, (@) being full matrices. In the next sections, correlations are only
considered between the inputs, although a fast implementation is still possible when also the
input—output correlations are used.

In practice, in the case that multiple periods are measured under periodic excitation, the
elements of the noise covariance matrix can be simply computed using a sample (co-)variance
approach. However, when arbitrary (e.g., random noise) excitation is used, an errors-in-variables
noise model can still be obtained, although this requires an non-parametric instrumental variables
approach of the Welch method [7].

2.3. Model equations

Using Egs. (1) and (5) under the noise assumptions made in Section 2.2, the model equations
are written for output o and spectral line k as (Levi’s method)

Wo(o)(| no(wx, 0) | {F(wi)} — d(wk, 0)Xo(wr) =0, (7)

where {F(wy)} represents the input Fourier vector and | m,(wy,0) | row o of the (N, x N;)
numerator polynomial matrix. By introducing an adequate (frequency-dependent) weighting
function W,(wy) in Egs. (7), the quality of the parameter estimates can often be improved [2].

By estimating simultaneously initial conditions and the system model parameters, it is possible
to deal with arbitrary signals in the frequency domain without any approximation and under the
same assumptions as in the time-domain [12]. Using this approach, the proposed I/O GTLS
estimator can be made robust against errors due to leakage effects, in a similar way as discussed in
Ref. [13].

As Egs. (7) are linear-in-the-parameters and in the Fourier data, they can be reformulated as
Jo=x0

0,,
Iy 0 0 ce Dy 0
0 I, 0 - @ "
: : . : : 0,,
0 0 - Iy Dy, o
ed )

with J the Jacobian matrix now having NyN,N; rows and (n + 1)(N,N; + 1) columns. A similar
formulation can be obtained for real coefficients for which the number of equations and
coefficients is doubled. The entries of the submatrices I'y = [[y1, ..., Ton] (Np X Ni(n+ 1))
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and @, (Ny x (n+ 1)) are given by
roi(a)k) = Wo(wk)[Q})a Q}: ceey Q;I]E(wk):

(Do(wk) = _Wo(wk)[gg, Q}; () Q?]Xo(wk), (9)

while the parameter vector entries contain the (unknown) coefficients
en,, = [bo10: bl)ll) ---yboNin]T, (10)
04 = [ao, a1, ..., a,]". (11)

3. Fast weighted generalized TLS algorithm

This section, discusses a fast implementation for solving the model equations (8) in a weighted
generalized total least-squares (WGTLS) approach.

Given that Ny>n, formulating the normal equations JHJO~0 results in a more compact
formulation of the identification problem (J"J having (n + 1)(N,.N;) rows and columns)

'Ry O 0 < St (0,

0 R, O S 0,,

R : . R0, (12)
0 0 - Ry, Sy, 0,,,
LS sy sy, T L 6

with matrices R, having (n 4 1).N; rows and columns, S, having (n+ 1).N; rows and (n+ 1)
columns, and T = ) T, having (n + 1) rows and columns. The entries of the sub-matrices are
given by

Ny
- o H e

[RI2], = > W) PFi () Fi(wn)Qy 72,

=1

N/’

_1H _

[T, = fZ Wl Xo(opPe; " Q).

=1

Ny
[Sils = = D IWol@)PF (o) Xo(op)2) " 2571, (13)
/=1

A closer look at Egs. (12) and (13) indicates that these matrices have a Toeplitz structure, which
is beneficial for both computation time and memory usage. Moreover, if the frequencies are
uniformly distributed, the fast Fourier transform (FFT) algorithm can be used to compute the
entries of matrices R,, S, and T, [14,15]. The use of a discrete time-domain model leads to a well-
conditioned Jacobian matrix, which justifies the explicit calculation of the normal equations. In
the case of a continuous time-domain model, orthogonal polynomials (e.g., Forsythe or
Chebyshev) can be used to improve the numerical conditioning [16].
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A GTLS approach formulates Eq. (12) as an generalized eigenvalue problem (14),
JHJ0 = 2CO (14)

with C being the covariance matrix containing a measure for the errors on the entries of the matrix
JHJ as a result from measurement noise on the I/O Fourier data. Considering the errors-in-
variables model with the noise assumptions made in Section 2.2, the generalized eigenvalue
problem (14) is explicitly given as

0, 0,

R, 0 Sy 0‘ Cr, 0 - Cg, 9'

0 R ... 'S m 0 C e C m
R I SEET ) B P (15)

: : . 0 : : . : 0.

H H 1IN,y H H ny,

sftst oo 0, CS1 CS2 e Crp 6,

Vs

where T =352 T, and C; = ijvll Cr,. Given the Jacobian entries (9), the entries of the

o=1

covariance matrix C are computed as (i;,i, = 1, ..., N;)

Ny
[C il = SLOTH 051 = 3 IWoleo))P covar(Fy (o), F ()@ " 257",
/=1

[Cyylhs = —610TE, 000}, = — 3 Wiy covar(Xo(ey), Fulep )2y "5,
f=1
Ny
ZH e
[C7,),s = 6400, 0@} s = > Wilorp) var(Xo(w)) Q2 (16)
f=1

where var(X,(wy)) are the diagonal elements of the (diagonal) output noise covariance matrix Cg,
and covar(Fj,(wy), F;, (wr)) and covar(X,(wy), Fi1(wr)), respectively, the elements of the input noise
Cg,.(wy) and Input/Output noise covariance matrices Cg, g, (o) (cf. Eq. (6)). When a discrete-time
model in the Z-domain is used with uniformly distributed frequencies, entries (16) can again be
computed in a time-efficient manner by means of the FFT algorithm with the matrices Cg,, Cs,
and Cr, having a Toeplitz structure.

The computation time can be further significantly reduced by eliminating the numerator
coefficients 0, , since only the denominator coefficients @, are required to compute the system
poles. In the case of I/O Fourier data, elimination of the numerator coefficients 0,, in (14) yields

0, =[I—J/R,'Cg] '/R,;'Cs, — R, 'S,104, (17)

0?2

from which it can be seen that an additional term in A (with A unknown) appears in the case that
also the input noise sources are taken into account (i.e., Cg, #0 and Cg, #0).

It is noticed that for FRF-based GTLS identification such an additional term in 4 does not
occur since errors are only present on the FRF data, only present in the last (z + 1) columns/rows
of the normal equations [17].

Consequently, a straightforward formulation of a compact generalized eigenvalue problem in
the denominator coefficients 0, is not possible by eliminating 0,, from the last n equations
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of (14), i.e.,
N,
> sHe,, +T0, = iCr, (18)

o=1

and as a result, the exact solution of the GTLS identification problem (14) is only given by solving
(14). However, the computational load for solving this eigenvalue problem, in the case of typical
modal analysis applications (i.e., N, = 500, N; = 3, n = 50), is not acceptable in practice.

One obvious way to benefit from the elimination approach is by considering only errors on the
measured output sequences, with all matrices Cg, and Cg, equal to zero in Egs. (15) and (17)
resulting after eliminating the numerator coefficients in the following generalized eigenvalue
problem in 0,

NI)
T-Y SIR,'S, |0, = 2Cr0,. (19)
0=1

Once the 0, coefficients are known, Eq. (17) (with Cg, = 0 and Cg, = 0) can be used to derive all
numerator coefficients. However, ignoring the input noise sources has the important disadvantage
of loosing the EV noise-model characteristics together with the consistency properties of the
GTLS approach, which in practice implies less accuracy of the modal parameters.

Therefore, another option was considered in order to combine the time-efficient elimination
process with the advantages of EV (GTLS) identification. Using a Taylor expansion, the inverse
matrix [I — iR;lCRO]_l in Eq. (17) can be approximated as

M- JR,'Cg] ' =T+ R, 'Cg, + (IR, 'Cg)* + ---. (20)
Introducing this approximation for the first order in Eq. (17) and substitution in Eq. (18) results
in, after retaining the first order terms in A4

0, =~ —R,'S,0, — IR, 'Cr,R,'S,0, + /R, 'Cs 0,, (1)

which now again yields a compact generalized eigenvalue problem in 0,

N,
> [T, - SiR,'S,]0,

0=1
N,
) Z
o=1

Compared to Eq. (19), two additional terms in 4 appear after linearizing, containing the noise
characteristics of the input and between the input and output Fourier data, i.e., Cg, and Cg, .

Notice that the matrix in the right part of Eq. (22) is the covariance matrix of the compact
normal matrix

0,. (22)

No
Cr, +SHR,'Cr R,'S, — 2herm< > S?R;ICSU)

o=1

N()
D=|T-> SIR;'S,|. (23)

o=1
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Indeed, the covariance matrix Cp = &{0D} where

N, N,
oD =>"o6T, - (sSIR;'S, — SHR;'6R,R;'S, + SHR 5S,) (24)
o=1 o=1

and hence taking the expected value results in

N, N, N,
Cp=|> Cr,+> SIR,'CrR,'S, - 2herm< > S?ROICSU)] (25)
o=1 o=1

o=1

since Cr, = &{0T,}, Cr, = &{0R,} and Cs, = &{5S,}.

Instead of solving Eq. (14) directly, this elimination approach results in an important reduction
of the computation time since the generalized singular value decomposition (GSVD) algorithm is
applied to much smaller matrices (dimensions reduced by N2). From Eq. (20) it follows that the
linear approximation will be valid in the case that EIG(R;IC R,) << A, where R;1C R, 1s @ measure
for the signal-to-noise ratio (SNR) of the input Fourier data. In the next section the validity of
this linear approximation is studied by means of Monte Carlo simulations.

4. Monte Carlo simulation results

A SISO system having 6 modes with poles and residues given in Table 1 was used to generate an
I/O data set of 1200 equally distributed frequencies in the band of 0.6-7.9 Hz: i.e., Fy(wy) = 1,
Xo(wx) = Ho(wy) (k =1, ...,1200). Independent zero-mean Gaussian noise was added to both the
input and output data. In order to evaluate the validity of approximation (20) in the generalized
eigenvalue problem (22), the variance of the input noise was increased over 21 logarithmically
distributed steps in the range of [10~%, 1] while the output noise level remained constant with a
variance of 1E-6. For each I/O noise combination, 1000 disturbed data sets were generated and
for each set the modal parameters of 20 modes (poles, residues) were estimated using the
estimators summarized in Table 2. The frequency weighting function W,(wy) was equal to 1 and
Cs = 0 for all estimators. Over-modelling is applied in order to deal with model errors related to
the use of a discrete-time frequency-domain model (Z-domain).

Table 1

Poles and residues of simulated (exact) SISO transfer function

Mode Pole Residue

1 —1.5234FE — 3+ 0.7500E + 1i 3.9282E — 8 4+ 2.5015E — 3i
2 —1.3441F — 3+ 1.2167TE + 1i 1.2874E — 7+ 1.4997E — 3i
3 —0.7553E — 3+ 2.2164E + 1i —4.9174F — 6 + 1.1966E — 3i
4 —1.2464F — 3 + 2.3837E + 1i 1.0541E — 5+ 1.3087E — 3i
5 —0.5506F — 3 4 2.5336F + 1i —7.9402F — 7+ 1.7064E — 3i
6 —1.1167E — 3+ 4.4167E + 1i 1.2672E — 9 4 1.9000F — 3i
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Table 2

Different estimators studied during Monte Carlo simulations (Cs = 0 for all considered cases)

Estimator Abbreviation Description

Total Least-Squares TLS Eq. (15) with C = diag(1, 1)
Fast TLS FTLS Eq. (19) with Cr =1
Generalized TLS GTLS Eq. (15)

Fast GTLS with input noise assumed zero FGTLSX Eq. (19) with Cg =0

Fast GTLS FGTLS Eq. (22)

It should be noticed that, by using an iterative approach, a fast I/O implementation of the
bootstrapped TLS (BTLS) can be derived from Eq. (22) by choosing W,(wx) equal to the
maximum likelihood weight calculated in the parameters from the previous iteration step [13].

The accuracy of the different estimators can be compared with respect to their squared bias,
total variance and mean squared error (MSE) [18] for both the estimated poles and residues.
These quantities are related as follows

MSE(P) == &{(P — Py)"'(P — Py)}
=E{(P — E{PY)(P — (P} + (1P} — Po) (6{P} — Py)
— total variance(P) + squared bias(P) (26)

with P and P, the estimated and theoretical values of the poles (residues). The Monte Carlo
simulation results can be compared for the different estimators as shown in Fig. 2. As can also be
noted in Table 2, the abbreviations of the different estimators are specially chosen: F indicates the
fast implementation by taking specific matrix structures and elimination approach into account, G
indicates the generalized TLS where an errors-in-variables (input/output) noise model is
considered and X indicates a special case where only the noise sources on the responses are
included in the errors-in-variables noise model (input noise is assumed to be zero).

The important errors in case of both TLS estimators are due to the high bias errors, originating
from the inconsistency properties of the TLS approach, since no noise covariance information is
taken into account. Considering only output noise results in the FGTLSX, improving the
accuracy as long as the input variance is small. However, once the effect of the input noise
outweighs the output noise, the errors for the FGTLSX increase significantly. Since input noise is
disregarded, the FGTLSX is still inconsistent, explaining the increase in bias and the agreement
with the TLS results for high input noise variances. The gain in accuracy by taking input noise
into account is clearly illustrated by comparing the FGTLSX and the GTLS where the MSE is up
to 10dB smaller for the GTLS. The good agreement of the errors for the GTLS and FGTLS
indicates the validity of approximation (20). Only for very high variances of the input noise (SNR
around 0dB), the errors are slightly higher for the FGTLS. This result proves that no loss in
accuracy is encountered when using the approximation (within practical noise levels), making the
fast implementation of the fast algorithm of the (W)GTLS suitable for an accurate analysis of
large modal data sets.
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Fig. 2. Monte Carlo simulation results: mean squared error (MSE), squared bias and total variance for poles (left) and
residues (right): GTLS (dashed-star), FGTLS (dashed-circle), FGTLSX (dots), TLS (dashed), FTLS (solid-cross).
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5. Experimental results

The device under test is a slat track (cf. Fig. 3), which is a safety critical component in the wing
of an aircraft, used to enlarge the wing surface during takeoff and landing when airspeed is
reduced. The response to a single shaker input was measured at 352 points by means of a scanning
laser Doppler vibrometer (SLDV) set-up (cf. Fig. 4). A broadband periodic (multisine) excitation
was applied in a frequency band 0—4 kHz with 3200 spectral lines. Notice that this set-up is
correctly characterized by the errors-in-variables noise model defined in Section 2.2, since every
output is subsequently measured and hence the noise on the outputs is not correlated. In this case,
the noise covariance matrix entries are obtained as the sample variances based on 5 periods
(averages) for each output measurement (i.e., Cg, = 0 and Cg,g, = 0).

Fig. 5 shows the ratio of a measured velocity and force and the transfer function model
estimated by means of the FTLS and FGTLS for a model with 22 modes. The FGTLS has a
better performance, explained by the use of noise covariance matrix information during the
estimation process, making the FGTLS consistent and less sensitive to measurement noise. For
the particular case of an SLDV set-up, measurement noise is mainly due to signal drop-outs and
poor laser beam reflection when scanning points on edges of the ribs on slat track side (cf. Fig. 3).

For modal analysis, a stabilization chart is an important tool that is often used to assist the user
in separating physical poles from mathematical ones (due to over-modelling) in order to select the

LEADING

EDGE | |
OF WING

(b)

Fig. 3. A slat track (a) mounted in the wing of an Airbus320 aircraft (b).
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, SLAT TRAG

Fig. 4. Force (input) measurement with shaker, stinger and force sensor attached to the slat track (a). Velocity (output)
measurement with scanning laser Doppler vibrometer (b).

structural modes. To construct this chart, the poles have to be estimated for increasing model
orders as shown in Fig. 6, with (+) indicating stable poles and (x) unstable poles (i.e., positive
real part), while the line is the averaged sum of all measurements. Since the model equations are
formulated for a given maximum model order, the FGTLS problem can be re-solved for all
smaller model orders by simply taking sub-matrices of the full matrices given in Eq. (22). By doing
so, a set of FGTLS solutions is obtained for an increasing order of the denominator polynomial,
while the order of the numerator polynomial is kept constant and equal to the maximum specified
(polynomial) model order. This approach is very time efficient for constructing the stabilization
chart. Comparing the charts for both estimators, it is clear that the use of a proper noise (EV)
model results in an improved stabilization behaviour of the physical modes. In addition, the
computational poles are estimated as unstable in the case of the FGTLS, improving the user
friendliness of the chart, since in general, only the stable poles are plotted. Another important part
of the modal model is the spatial information present in the estimated mode shapes. Fig. 7 shows
the mode shape for the mode at 1234 Hz. Again the results obtained by the FGTLS are better
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Fig. 5. Parametric results for the slat track using the FTLS (a), FGTLS (b) algorithm: amplitude and phase of the

measurements (dotted line) and the estimated transfer function model (solid line).

since an accurate noise model is taken into account. The mode shape for the FTLS is clearly
corrupted by the measurement noise.

Finally, the numerical efficiency is illustrated in Fig. 8 by comparing the GTLS and FGTLS
algorithms in terms of (MATLAB) flops count for a varying number of outputs N, (with n = 20,
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Fig. 6. Stabilization chart with the stable (+) and unstable (x) poles using FTLS (a), FGTLS (b).
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(b)
Fig. 7. Slat track mode shape for the mode at 1234Hz using FTLS (a), FGTLS (b).

N; = 1) and model order n (with N, = 10, N; = 1). Considering the output dimension N,, the
results indicate that the GTLS problem is solved in ¢(N?) flops, whereas ((N,) flops for the
FGTLS, resulting in a gain of (¢(N,)’ flops, explained by the elimination approach. On the other
hand, for an increasing model order, the number of flops used by the GTLS and FGTLS is
similar, i.e., O(n?).

6. Conclusions

A fast implementation of the frequency-domain input—output GTLS estimator makes it
suitable to analyze large amounts of modal data within an Errors-in-Variables framework. This
algorithm is preferable to classical FRF-based curve-fitting methods, certainly in the case when
periodic excitation is applied and hence an errors-in-variables noise model can be determined. The
proposed GTLS algorithm provides accurate modal parameter estimation by the integration of
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Fig. 8. Flops count for GTLS (dashed line) and FGTLS (solid line) for varying number of (a) outputs and (b) model
order.

this noise model in the parametric identification process. Although a linear approximation is
necessary to obtain a fast GTLS implementation, Monte Carlo simulations show that only a very
small loss of accuracy appears for very high noise levels on the inputs. As a result, in practice the
fast GTLS algorithm has very similar statistical properties as the exact GTLS. Both accuracy as
well as computation speed and memory usage are important issues for modal analysis
applications, such as for modal-based design and comfort improvement, damage assessment
and structural health monitoring, and finite element model updating.
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