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1. Introduction

Long-span bridges undergoing wind excitation exhibit complex dynamic behaviors. Buffeting
vibrations induced by wind turbulence happen throughout the full range of wind speed. As the
wind speed increases, aerodynamic instabilities such as flutter may occur at high wind speed [1].
Much research effort has been made in mitigating excessive buffeting vibrations and improving
aerodynamic stabilities for long-span bridges during construction [2,3] and at service [4–6].
Among all of the control procedures, dynamic energy absorbers such as tuned mass dampers
(TMDs) have been studied in suppressing the excessive dynamic buffeting [7] or enhancing the
flutter stability of bridges [4,8]. As traditional control devices, the dynamic energy absorbers
dissipate external energy through providing supplemental damping to the modes of concern
[9–11].

In a conventional TMD control design, the TMD frequency is designed or tuned to the modal
frequency of the fundamental mode [12] in order to reduce the so-called resonant vibration and
this method is thus called resonant-suppression approach here. When the modal coupling among
the modes is weak, the bridge can be regarded as a simple combination of many single degree-of-
freedom (d.o.f.) systems and single mode analysis is usually applicable [13].

It is well-known that wind-induced aeroelastic effects result in additional aerodynamic damping
and stiffness for long-span bridges [14]. The TMD control efficiency decreases with the increase of
modal damping ratio. This implies that, for coupled mode vibrations of long-span bridges, the
control efficiency of buffeting response of bending mode decreases with the increase of wind
velocity since the aerodynamic damping of bending modes usually increases with the wind speed.
Since bending modes usually contribute significantly to the overall buffeting response among all
of the modes, the decreased control efficiency in bending modes may deteriorate the overall
control efficiency of the bridge vibration.
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The adoption of a slender deck and the increase of bridge span lengths tend to make the
frequencies of modes closer, which increases modal coupling effects through aeroelastic effects in
high wind velocity [15–19]. Modal coupling effects due to strong wind may result in a significant
additional component to the buffeting response of each individual mode, compared with the cases
of weak modal coupling. Accordingly, a more efficient control approach than the traditional
resonant suppression method may exist for the coupled buffeting control of bridges in strong
winds.

The present study aims at introducing an alternative TMD design approach, which is based on
suppression of modal coupling effect among modes under strong wind. With the proposed control
approach, a well-designed TMD system can efficiently suppress wind-induced vibrations for the
strongly coupled modes even at high wind speed. Poorer control performance may otherwise be
anticipated for TMDs designed based on the conventional resonant suppression approach.

2. Analytical formulation of bridge–TMD system

To better understand the coupled vibrations and the interaction of the bridge–TMD system,
closed-form solutions are derived below. This derivation will give insights and facilitate the
discussion in developing a new TMD control approach for coupled vibrations in strong winds.

For a bridge under wind action with a displacement of rðx; tÞ; the buffeting and aeroelastic
forces are expressed as functions of the displacement rðx; tÞ and location ordinate x as fbðx; tÞ and
fsðx; r; ’rÞ; respectively. Assume that a total number of n2 TMDs are attached to the bridge at the
location of xp (p ¼ 1 to n2), then the equation of motion is derived as

L½rðx; tÞ� þD½’rðx; tÞ� þ rðxÞ.rðx; tÞ ¼ fbðx; tÞ þ fsðx; r; ’rÞ þ
Xn2

p¼1

dðx � xpÞfTMDp
ðtÞ; ð1Þ

where L½�� and D½�� are the elastic and viscous damping operators, rðxÞ the mass density, dð�Þ the
Dirac delta function, and fTMDp

the reaction force from the pth TMD on the bridge.
By representing the deflection components of the bridge in terms of the mode shapes and

generalized co-ordinate, Eq. (1) can be expressed in the generalized co-ordinate system as

Ix00 þ Ax0 þ Bx ¼ Qb þ FTMD; ð2Þ

where x is the generalized co-ordinate vector, the superscript prime ‘‘0’’ represents a derivative
with respect to dimensionless time s ¼ Ut=b; I the identity matrix, Qb the excitation force vector
normalized to the generalized mass inertia, FTMD the reaction force vector of TMD on the bridge
normalized to the generalized mass inertia, and A and B the total damping ratio matrix and total
stiffness matrix, respectively. The general terms of matrices A and B are

AijðKÞ ¼ 2ziKidij � JiKZij ; BijðKÞ ¼ K2
i dij � JiK

2Tij ; ð3; 4Þ

where zi is the damping ratio for the ith mode, dij the Kronecker delta function that is equal to 1 if
i ¼ j and equal to 0 if iaj; K ¼ bo=U the reduced frequency, Ki ¼ boi=U the ith reduced
frequency, b the bridge width, oi the ith circular natural frequency, U the mean velocity of the
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oncoming wind; and

Ji ¼
rb4l

2Ii

; ð5Þ

Zij ¼H�
1 Ghihj

þ H�
2 Ghiaj

þ H�
5 Ghipj

þ P�1 Gpipj
þ P�2 Gpiaj

þ P�5 Gpihj
þ A�

1 Gaihj
þ A�

2 Gaiaj
þ A�

5 Gaipj
; ð6Þ

Tij ¼H�
4 Ghihj

þ H�
3 Ghiaj

þ H�
6 Ghipj

þ P�3 Gpiaj
þ P�4 Gpipj

þ P�6 Gpihj
þ A�

3 Gaiaj
þ A�

4 Gaihj
þ A�

6 Gaipj
; ð7Þ

where Ii is the generalized mass inertia for the ith mode, r the air density, l the bridge length,
H�

i ;P
�
i ;A

�
i ði ¼ 1–6Þ the experimentally determined flutter derivatives for the bridge deck; and

the modal integrals ðGrisj
Þ are computed as

Grisj
¼
Z l

0

riðxÞsjðxÞ
dx

l
; ð8Þ

where ri ¼ hi; pi or ai; and sj ¼ hj; pj or aj:
To solve the equation of motion, Eq. (2) is Fourier transformed in the reduced frequency K

domain and the ith equation is written as

ðK2
i � K2Þ%xiðKÞ þ

Xn1

j¼1

iKKjDijðKÞ%xjðKÞ ¼ %Qbi
; ð9Þ

where

DijðKÞ ¼
Aij

Kj

þ

Pn2

p¼1 m
p
ijR

2
pðKÞ

KjK

 !
þ

JiKTij

Kj

�

Pn2

p¼1m
p
ijR

1
pðKÞ

KjK

 !
i: ð10Þ

In Eq. (10), the term associated with R represents the contribution of the TMDs to the bridge
vibrations; the expression is not given here for the sake of brevity. If the cross-modal buffeting
spectrum is omitted [1], the power spectral density (PSD) for the generalized displacements of the
ith mode, xi; is derived, following a similar procedure as in Ref. [20], as

Sxixi
ðKÞESun

xixi
ðKÞ þ

Xn1

jai

gijðKÞSun
xjxj

ðKÞ; ð11Þ

where

Sun
xixi

¼
SQbi

Qbi

½ðBii � K2 þ
Pn2

p¼1m
p
iiR

1
pðKÞÞ2 þ ðKAii þ

Pn2

p¼1m
p
iiR

2
pðKÞÞ2�

; ð12Þ

gijðKÞ ¼
½ð�JiK

2Tij þ
Pn2

p¼1m
p
ijR

1
pðKÞÞ2 þ ð�JiK

2Zij þ
Pn2

p¼1m
p
ijR

2
pðKÞÞ2�

½ðK2
i � K2 � JiK2Tii þ

Pn2

p¼1m
p
iiR

1
pðKÞÞ2 þ ð2ziKKi � JiK2Zii þ

Pn2

p¼1m
p
iiR

2
pðKÞÞ2�

: ð13Þ

Eq. (11) indicates that the coupled response of each mode mainly consists of two parts. The first
part (the first term) is the uncoupled response of the current ith mode, namely the resonant
component of the ith mode buffeting. The second part (the second term) is due to the modal
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coupling between the ith mode and other modes and is called here the coupled component of the ith
mode buffeting. It can be seen from these equations that including TMDs may affect not only the
first term of Eq. (11)—the resonant component, but also the coupling component of the second
term. The traditional control approach of resonant suppression that targets the first term may not
control the coupling component directly. A new control approach may be naturally inspired to
optimize the control efficiency by reducing the total response, not just the resonant vibration. This
new control approach will be discussed below with numerical examples.

3. Coupled vibration control with a typical 2D.O.F. model

As discussed above, conventional TMD control strategy is to suppress resonant vibration that
is essentially represented by the first term of Eq. (11). If the modal coupling among the current ith
mode and the other modes is very weak, the second term of Eq. (11) will be trivial. In that case,
conventional single-mode-based control analysis without considering the effect from the second
term of Eq. (11) could lead to acceptable results. However, for the modes with strong modal
coupling, the contribution of the second term to the total response can be significant. It becomes
necessary to consider both the resonant vibration and that from coupling effects to achieve the
optimal performance.

To examine this concept and verify the closed-form derivation conducted above, a simple
2d.o.f. system attached with two identical TMDs was considered as shown in Figure 1, where the
parameters associated with masses M1; M2 and Mp represent the 1st d.o.f., the 2nd d.o.f., and the
TMD d.o.f., respectively. The springs between the mass blocks are used to simulate the coupling
effects between the different modes of the bridge. The parameters are defined in Table 1.

For TMD vibration control, multiple TMDs can be connected to any mass block [21].
However, the simple 2d.o.f. model with only one TMD attached on each mass block in the present
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study is chosen mainly due to its simplicity. It is also necessary to mention that the single TMD is
the simplest but most representative case compared with the cases of multiple TMDs. While the
former has accurate closed-form solutions in most cases, the latter does not have. Coupled
vibration with two modes is the most typical example whose closed-form results can be more
conveniently derived. Using two identical TMDs makes it easy to distinguish clearly the control
effect on any part of the vibrations. For simplicity but without losing generality, it is assumed that
the external excitation is white noise with a power spectral density of S0:

According to Eqs. (11)–(13), the solution of the 2d.o.f. model ðn1 ¼ 2Þ may reduce to

Sxixi
ðoÞESun

xixi
ðoÞ þ gijðoÞS

un
xjxj

ðoÞ; ð14Þ

where

Sun
x1x1

ðoÞ ¼
S0

½ðo2
1 � o2 þ m11R1

pðoÞÞ
2 þ ð2oo1z1 þ m11R2

pðoÞÞ
2�
; ð15Þ

Sun
x2x2

ðoÞ ¼
S0

½ðo2
2 � o2 þ m22R1

pðoÞÞ
2 þ ð2oo2z2 þ m22R2

pðoÞÞ
2�
; ð16Þ

g12ðoÞ ¼
½ðo2

12 þ m12R1
pðoÞÞ

2 þ ðm12R2
pðoÞÞ

2�

½ðo2
1 � o2 þ m11R1

pðoÞÞ
2 þ ð2z1oo1 þ m11R2

pðoÞÞ
2�
: ð17Þ

Eqs. (15) and (16) are typical response spectra of the main oscillator attached with one TMD,
which can be easily derived. The R terms in Eqs. (15)–(17) will disappear in the cases without
TMDs and these equations will thus reduce to those common response spectra for 1d.o.f. system.
Since Eqs. (15) and (16) are accurate results without approximation, same formulations can be
found from literature like Refs. [7,22]. By assuming that the structural damping ratios of both the
1st d.o.f. ðM1Þ and 2nd d.o.f. ðM2Þ are as low as 0.5% (a typical value for aerodynamic analysis of
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Table 1

Parameters for the 2-d.o.f. system attached with two identical TMDs

2 d.o.f. system TMD system

M1; M2 (kg) 1 Mp (kg) 0.01

K1 ðN=mÞ ð2p
 1Þ2 Kp ðN=mÞ ð2p
 0:1Þ2

ð2p
 0:15Þ
K2 ðN=mÞ ð2p
 1:5Þ2 op ¼ 2pfp ðradÞ 2p
 1

2p
 1:5
K12; K21 ðN=mÞ ð2p
 0:1Þ2 Generalized inertia ratio 0.01

m11; m22

o1 ¼ 2pf1 ðradÞ 2p
 1 zp 0.04

o2 ¼ 2pf2 ðradÞ 2p
 1:5
z1; z2 0.005

S0 1
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long-span bridges), the response power spectra were calculated with the above formulas and
shown in Figs. 2 and 3. In these figures, the top half is the spectra for the 1st d.o.f. and the bottom
half is for the 2nd d.o.f.

Two identical TMDs are still considered here. In Fig. 2, the two identical TMDs are
conventionally designed to suppress the resonant vibration of the 1st d.o.f. For comparison, both
coupled and uncoupled analyses were conducted. It can be seen that when uncoupled vibration
analysis is conducted, the vibration power spectrum for each d.o.f. has only one peak due to
resonant vibration. However, there exist two peaks when coupled analysis is conducted. One peak
is induced by resonant vibration corresponding to its modal frequency, while the other is due to
the modal coupling effect between the 1st d.o.f. and the 2nd d.o.f. The modal coupling effects are
significant to the dynamic response.

It is shown in Fig. 2 that the TMDs designed for the 1st d.o.f. have good control efficiency for
the resonant vibration of the 1st d.o.f. (the first peak of Fig. 2(a)), and also has some effect on the
first peak of Fig. 2(b) that is the contribution of the 1st d.o.f. to the 2nd d.o.f. due to modal
coupling. However, this design of TMDs does not help reduce the vibrations due to the modal
coupling from the 2nd d.o.f. (the second peak of Fig. 2(a)) and the resonant vibration of the 2nd
d.o.f. (the second peak of Fig. 2(b)).
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Fig. 2. Response spectra of 2-d.o.f. model with z1 ¼ 0:005 (TMDs optimally designed for M1): (a) first d.o.f. M1;
(b) second d.o.f. M2: - - -, Uncoupled response w/o control; ——, coupled response w/o control; – - –, coupled response

with control.
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Fig. 3 shows the vibration power spectra when the TMDs are designed for the 2nd d.o.f.
Similarly, the TMD helps reduce only the second peak values that are caused by the 2nd d.o.f.,
but not the peak values that are caused by the 1st d.o.f. (the first peak of both Figs. 3(a) and (b)).
Figs. 2 and 3 suggest that the TMDs should be optimally designed to suppress either the resonant
vibration (first part in Eq. (11)), or the vibration due to modal coupling (second part in Eq. (11))
through weakening the modal coupling. When the overall response of the structure other than any
single mode is considered, multiple TMDs can be designed to achieve the best control
performance under any particular condition.

As stated before, wind-induced vibration results in aeroelastic damping so that the total
vibrational damping of some modes may be large in strong wind. To simulate such a case that is
common for modern long-span bridges, it is arbitrarily assumed that the damping ratio of the 1st
d.o.f. is 3%, while that of the 2nd d.o.f. remains to be 0.5%. The corresponding vibration spectral
density results are shown in Figs. 4 and 5.

It can be found that when the 1st d.o.f. vibrates with high damping ratio, the TMDs designed
for the 1st d.o.f. (Fig. 4) have less control efficiency for its resonant component (the first peak of
Fig. 4(a)) than that of its counterpart when the TMDs are designed for the 2nd d.o.f. (the second
peak of Fig. 5(b)). The component of the 2nd d.o.f. due to coupling even increases slightly as
observed from the first peak of Fig. 4(b). In comparison, it can be seen from Fig. 5 that when
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Fig. 3. Response spectra of 2-d.o.f. model with z1 ¼ 0:005 (TMDs optimally designed for M2): (a) first d.o.f. M1;
(b) second d.o.f. M2: - - -, Uncoupled response w/o control; —–, coupled response w/o control; – - –, coupled response
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TMDs are designed for the 2nd d.o.f. with low damping ratio, the control efficiencies of its
resonant component (the second peak of Fig. 5(b)) and the component of the 1st d.o.f. due to
coupling (the second peak of Fig. 5(a)) are still high, even though the 1st d.o.f. has a very high
damping ratio.

For coupled vibrations, these observations have confirmed that the total modal vibration
consists of mainly one portion from resonant vibration and another portion caused by coupling
effects with other modes. The frequency of conventionally designed TMDs is tuned to that of the
targeted mode to control the resonant vibrations and they may not achieve an efficient control
especially when the coupling effect is significant. An optimal control strategy should aim at not
only the resonant vibration, but also the vibration from modal coupling. Especially for some
strongly coupled modes vibrating in high wind velocity with high damping ratios, there exists a
possibility that the vibration can be optimally suppressed even when the TMD is not designed
around the natural modal frequency of the targeted mode. For example, to control the vibration
of the 1st d.o.f. in strongly coupled vibration, the TMD frequency needs to be tuned to the natural
frequency of the 2nd d.o.f. rather than that of the 1st d.o.f. In other words, weakening the
coupling effects may sometimes be more efficient than reducing the resonant vibrations when
strong modal coupling exists (for maximum efficiency, both resonant and coupling components
should be suppressed, but certainly that will be also more costly).
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Fig. 4. Response spectra of 2-d.o.f. model with z1 ¼ 0:03 (TMDs optimally designed for M1): (a) first d.o.f. M1;
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4. Concluding remarks

The conventional TMD control approach usually focuses on suppressing the resonant vibration
by supplying additional damping to the concerned modes. This approach could be inefficient for
coupled vibration of long-span bridges in strong wind due to two reasons.

The first is the strong modal coupling effects in strong wind. For slender long-span bridges, the
aeroelastic forces from the wind action often cause several vibration modes to couple together.
Such coupling effect increases with the increase of wind speed. The coupled buffeting response of
each mode usually consists of two major parts: one is a resonant component associated with its
modal frequency; the other part of response is due to the modal coupling with other modes. For
bridges with weak modal coupling effects, the second part is trivial. However, for long-span
bridges at high wind speed, modal coupling effects may become quite strong. The latter part of the
response is no longer negligible and a control approach focusing on the first part may be
inefficient.

The second reason is the increased total modal damping, caused by aeroelastic effects in strong
wind, of the concerned modes. Even though damping helps reduce bridge vibration, satisfactory
control performance may be extremely difficult to achieve by supplying additional damping using
the conventionally designed TMDs, since damping of those concerned modes is already high
compared with the additional damping provided by the TMDs.
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Fig. 5. Response spectra of 2-d.o.f. model when z1 ¼ 0:03 (TMDs optimally designed for M2): (a) first d.o.f. M1;
(b) second d.o.f. M2: - - -, Uncoupled response w/o control; —, coupled response w/o control; – - –, coupled response
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The present study proposes a new control approach that is to attenuate the modal coupling
effects, in addition to suppressing the resonant vibration with TMDs. The vibration contributions
to the total response from modal coupling (second part of Eq. (11)) can be significant at high wind
velocity. Weakening the coupling effects with TMDs can significantly reduce the overall
responses. The newly introduced control approach also enables a well-designed TMD system to
be efficient in controlling buffeting vibration of coupled modes even with high modal damping
under high wind velocity. For optimal control efficiency in applications, the TMD frequency
needs to be adaptable in order to switch from resonant suppression to coupling suppression, or
multiple frequency TMDs are needed in order to control both resonant and coupling effects.

The effects of TMDs on reducing both resonant and coupled vibrations have been
demonstrated through the analytically derived closed-form solutions. Numerical analyses on a
2 d.o.f. model have validated that the new control approach may lead to more efficient control
performance than the conventional resonant suppression strategy when the coupling effects are
significant and when the damping ratios of those modes of concern are high.
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