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Abstract

The problem of acoustic radiation from an infinite cylinder undergoing harmonic modal surface
vibrations near a locally reacting planar boundary is considered. The formulation utilizes the appropriate
wave field expansions, the classical method of images, and the translational addition theorem for cylindrical
wave functions, along with a simple local surface reaction model involving a complex amplitude wave
reflection coefficient applied to simulate the relevant boundary conditions for the given configuration. The
analytical results are illustrated with a numerical example in which the cylindrical surface is immersed near
a layer of fibrous material set on an impervious rigid wall. The numerical results reveal the important effects
of interface local surface reaction and source position on the computed modal impedance component
values and the radiated on-axis far-field pressure. The benchmark solution presented can lead to a better
understanding of acoustic radiation from near-interface two-dimensional sources, which are commonly
encountered problems in outdoor acoustics and noise control engineering. Eventually, it could be used to
validate those found by numerical approximation techniques.
© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

There has been a developing interest in acoustics of fluid-saturated porous media due to its
critical applications in various technical and engineering processes ranging from geophysics,
atmospheric acoustics and ocean acoustics, to biophysics, architectural acoustics, and noise
control engineering. In particular, there is an increasing demand to study propagation,
attenuation and dispersion of elastic waves in granular media such as rock formations in
petroleum reservoirs, ocean bed sedimentary layers, sound absorbing (impedance) ground and
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also in fibrous medium such as biological tissues, polymer networks and sound absorbing
materials.

One of the first elastic porous material models was that due to Beranek [1] who showed that two
longitudinal waves can propagate through the flexible fibrous materials. Zwikker and Kosten [2]
also found that two types of compressional waves can coexist in a porous material (i.e., the frame-
borne wave and the airborne wave). Gassmann [3] presented the first concise model for harmonic
plane wave propagation in an infinite fluid-saturated porous solid. His work is considered to be
the first major breakthrough in predicting the elastic moduli of porous media at low frequencies.
Gassmann’s treatment, however, disregarded the relative viscous fluid/elastic solid motion that is
known to be the main cause of energy loss in the high-frequency regime. Approaching the
problem in a more unified manner, Biot [4-6] extended Gassman’s work in statics to non-zero
frequency and developed a straightforward and efficient two-phase theory for wave propagation,
addressing such issues as wave speed, attenuation, dispersion and anisotropy. He formulated the
appropriate constitutive equations and equations of motion in poroelastic media and predicted
the existence of two types of dilatational (compressional) waves along with one rotational (shear)
wave. For many years following the development of Biot theory of dynamic poroelasticity, the
existence of Biot slow compressional (type II) wave remained the most controversial of its
predictions within the seismology and underwater acoustics communities. Recently, the scientific
groundwork for Biot’s model is more firmly established through several experimental validations
of its most fundamental predictions [7-9], leading to a renewed interest in the subject.
Consequently, Biot’s model has in time become the standard model for wave propagation in
elastic porous media.

Many papers deal with absorption of a spherical wave by an absorbing plane. In particular,
prediction of the sound field due to a simple point source in a homogenous medium above an
impedance plane is a fundamentally important problem in many applications of outdoor acoustics
and noise control engineering, which has been pursued by many authors [10-12]. In most of these
studies, the aim has been to obtain simple near- and far-field approximations to describe the
propagation of sound from the source above the impedance plane. On the other hand, the
absorption of a cylindrical wave by an absorbing plane has found comparatively less attention,
although a line source may be a good model for many practical source configurations. For
example, rubber blocks hitting the ground generate a ““line source” at the front edge of the tyre/
road contact surface [13]. In this case the sound absorbing road surface is represented by an
impedance boundary condition. Furthermore, the tyre and the road surface together form a horn-
like geometry that leads to a substantial amplification of the radiated sound power (i.e., the so-
called horn effect). Kropp et al. [14], applied a two-dimensional model based on a multipole
synthesis to study this effect. They used a pair of (source-image) multipoles to fulfil the prescribed
boundary conditions on the tyre and the road (impedance) surface simultaneously. In other
applications the acoustic field due to a line source such as a traffic stream near sound absorbing
traffic noise barriers and absorptive treatments to high rise building elements are investigated
[15,16]. Habault and Filippi [17] analytically treated sound absorption of a cylindrical
wave produced by a line source above an absorbing plane; they applied the method of
solution that they have developed for the point source to the cylindrical wave absorption.
Chandler-Wilde and Hothersall [18] discussed the more general case of an impedance strip in a
plane of different impedance, and a monopole line source parallel to the strip. Rasmussen [19]
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dealt with a line source over a locally reacting plane surface. He transformed the analysis by Chien
and Soroka [20] from the problem of a point source to that of a line source. More recently, Mechel
[21] presented a rigorous analysis for the sound field of a simple (monopole) line source above a
plane absorber. He used saddle point integration to derive fast-computing approximations of the
sound field.

Not all practical noise sources have monopolar characteristics, i.e., they are directional
and do not behave as simple monopoles particularly at close range. In fact, there are many
situations in which the multipole source strength is very large and there is no substantial
contribution from monopole radiation (e.g., sound radiation from an oscillating sphere,
rolling noise and aerodynamic jet noise). Under these circumstances, source description in terms
of multipoles may be more useful [14,22-25]. On the other hand, the solutions of acoustic
radiation problems involving a finite-sized source near a reacting (non-rigid) boundary seem
to be quite sparse. The problem of radiation loading on a cylindrical (spherical) source
freely suspended in a fluid-filled cylindrical (spherical) cavity embedded within a fluid-infiltrated
elastic porous medium is tackled in Refs. [26,27]. Likewise, the more related problem of
modal acoustic radiation impedance load on a spherical surface undergoing angularly
periodic axisymmetric harmonic vibrations while immersed near the locally reacting planar
boundary of an acoustic halfspace is examined in Ref. [28]. The principal objective of present
work is to employ the theory of wave propagation in fluid-saturated porous materials to study
acoustic radiation from a cylindrical surface undergoing harmonic modal vibrations near a
homogeneous locally reacting planar interface. The solution of the problem is generated by
systematically analyzing multi-scattering interaction between the vibrating cylinder and the
impedance boundary that can be strong or weak depending on their separation, local surface
reaction, and frequency.

2. Formulation

The problem geometry is illustrated in Fig. 1. The cylindrical surface is located above the locally
reacting planar boundary of the acoustic halfspace, which is assumed to have a normalized
admittance §. The method of images will be employed to efficiently take the presence of the wall
into account [29]. The mirror image of the cylindrical surface lies at a distance d/2 below the
interface. The problem can be analyzed by means of the standard methods of theoretical
acoustics. The fluid present in the acoustic halfspace is assumed to be inviscid and ideal
compressible that cannot support shear stresses making the state of stress in the fluid purely
hydrostatic. Consequently, the time-harmonic field equations may conveniently be expressed in
terms of a scalar velocity potential as [30]

u=-Vo,
D= _iwpo(p’
V2@ 4+ kK>d =0, (1)

where u is the fluid-particle-velocity vector, p is the acoustic pressure in the fluid, and the complex
wave number, k(w), which is assumed to take the thermoviscous energy losses in the ambient fluid
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Fig. 1. Problem geometry.

(air) into account, is provided by the well-known approximate formula [30]

w Con (4 0, y—1
k =—|1 -+ 2
@=gli+iga( )] g

where ¢y is adiabatic speed of sound, 1 denotes shear viscosity, #, is the bulk viscosity, p, and y are
density and specific heat ratio of the ambient fluid, Pr is the Prandtl number, and harmonic time
variations have been assumed throughout with e~ dependence suppressed for simplicity.

The dynamics of the current multi-scattering problem may be expressed in terms of two scalar
potentials: one corresponding to the waves disseminating from the real cylinder and the other
relating to the waves from the image cylinder. Thus for z-independent motion in bi-cylindrical co-
ordinates

o0
@1(}", 9: CU) = Z an(w)Hl’l(kr)einea
O, 0%, 0) = 3 bu(@H,(kr*)e"” 3)

where H,,( ) is the cylindrical Hankel function of the first kind and order » [31], and a,(w) and
b,(w) are unknown modal coefficients.

In order to satisfy the appropriate boundary conditions the acoustic field contribution of the
image (real) cylinder must be expressed with respect to the co-ordinate system of the real (image)
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cylinder. Thus the classical translational addition theorem for bi-cylindrical co-ordinates [32] must
be used:

H, (ke = 3" 3 (k) Hy(kd)e™,

m=—0o0

Hokne = 3" 3,k Hkd)e™” . 4)

m=—0o0

Next, to include the effect of halfspace boundary impedance on the radiation loading of the
cylindrical source, the lucid theoretical development presented in Section 7.4 of the classical
monograph by Morse and Ingard [29] is followed (see also Ref. [14]). Adopting similar arguments
and incorporating the addition theorem (4) in the field expansions (3) allows the total potential
field in the co-ordinate system of each cylinder to be expressed as

= i an(w)H,(kr)e™ + R i ( i H,,m(kd)bm(w)> 3, (kr)el? 5)
and
(p(}"*, 9*,(,0) — R¢](l", 9’ w) + (pz(r*, 0*’(0)
=R i ( i Hm—n(kd)am(w)> Jo(ler*)e”™ 4 i: bu(@)H,(kr*)e"",  (6)

where the complex amplitude plane wave reflection coefficient, R, for the case when the field point
is near the real cylinder’s surface and the cylindrical surface is not located very close to the
impedance boundary (Fig. 1), is approximated by [28]

1= p)

R~1 + B(w)

(7

where f(w) = pyco/Zn(w) is the relative normal admittance of the locally reacting boundary, in
which the surface normal impedance, Zy(w), can be readily determined by the expression [28]

Zy(w) = i[Z(w)/ po] cotlke(w)L], (8)

where @, is the porosity, L is the thickness of the porous layer, and the characteristic impedance
and the complex propagation constant are, respectively, defined as [33]

Z(w) =/ K(w)p(w),
ke(w) = o/ p(w)/K(w) ©)
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in which the complex effective density and the complex bulk modulus are given as [33]

op
p((i)) = OCPO{I - iwﬁxzo GJ(CU)},
-1
/

-1
K() = yp0 [v Sy 1)<1 = &Gsmzoa)) ] : (10)

iPrampo
where o and ¢ are tortuosity and flow resistivity of the porous material, pg is the ambient pressure,
and Gy(w) and Gj(w) are the dynamic viscosity and thermal correction factors which are written as
[33]

12
R TN
a2 A2} ’

GJ(CO) = {1

1/2
4 2 PZ
—i ANpPo LT } (11)

0/2/1/2@%

Gy (Prrw) = {1

in which the viscous and thermal characteristic lengths are, respectively, determined from
Ax\/8an/pyo/c, A'~+\/8un/p,o/c’, where ¢ is a shape factor whose order of magnitude lies
between 0.3 and 3.0 for most materials, ¢ = \/0’/0 is a coefficient that is smaller or equal to c.

The unknown modal coefficients a,(w) and b,(w), which are explicitly present in Egs. (5) and
(6), must be determined by the application of suitable boundary conditions. Accordingly, the
continuity of normal velocity at the surface of each cylinder requires

_6@(r,9,w)} _ Z ()",

or S
oD(r*, 0", w) - ino®
B or* % - Z u;k (@)e ’ ’ (12)
rY=a n=—00

where u,(w) and u’(w) represent the modal radial surface velocity amplitudes of the real and
image cylinders, respectively. Next, incorporating the translational addition theorem 4 into
boundary conditions (12) and utilizing the orthogonality of the transcendental harmonics yields

() = —kHkaan(@) — REL (k) S Ho (k)b (o),

m=—ao0

u*(w) = —RkY, (ka) i Hp_n(kd)ay(w) — kH. (ka)b,(c). (13)

m=—0o0

Now, following the analysis presented in [29, pp. 370-375] for inclusion of the boundary
impedance effects on radiation load of a multipole source, the real and the image sources are
taken to be of equal strength. Accordingly, as with the rigid boundary case, u*(w) = (—1)"u,(w) in
Eq. (13), which leads to the following significant result: b,(w) = (—1)"a,(w) [28]. Consequently,
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the expression for modal surface velocities of the real cylinder is conveniently reduced to

up(©) = —kH, (ka)a,(w) — Rk, (ka) i (=1)"am(w)Hy—m(kd)

m=—ao0

n=..-3-2-1,01273,..). (14)

Similarly, Fourier components of the surface pressure of the real cylinder is written as

pn(w) = —iwpoHy(ka)a,(w) — iwp R, (ka) zw: (=" ap(0)H,—m(kd)

m=—0o0

(n=..,-3,-2,-1,0,1,2,3,...). (15)

The fluctuating acoustic pressure on the surface of the vibrating cylinder constitutes its radiation
loading. The radiation loading on the cylindrical surface excited in vibrational modes of various
order (i.e., monopole, dipole, quadrupole, and other multipole-like radiators), as described
through an acoustic radiation impedance matrix, is determined in two simple steps as follows.
First, the truncated (2N + 1) x (2N + 1) systems of Egs. (14) and (15) are advantageously put in
the matrix form

u(w) = R(ka, kd, R)c(w), (16)
p(w) = S(ka, kd, R)e(w), (17)
where
() = [U_n, ..., U_2,U_1,Up, Uy, U, ..., uy]",
c(w) =[a_y, ...,a_s,a_y,ap, a1, a, ...,ay]",
P(@) = [P-Ns s P-2.P-1,P0: P15 P25 - PN] - (18)

Next, incorporating Eq. (16) into Eq. (17), the column vector containing the modal surface
pressures can conveniently be expressed in terms of modal surface velocities as

p(w) = Z(ka, kd, Rju(w), (19)
where the modal specific acoustic impedance matrix Z(ka, kd, R) is given by
Z(ka, kd, R) = S(ka,kd, R)R ' (ka, kd, R). (20)

Here it can be noted that each element of the above fully populated impedance matrix may
beneficially be put in terms of a resistive and a reactive component as [34]

Zpm(ka, kd, R) = ryy(ka, kd, R) — ix,,(ka, kd, R). (21)

3. Numerical results

In order to illustrate the nature and general behaviour of solution, a number of specific
numerical examples are considered in this section. The ambient fluid is assumed to be air at
atmospheric pressure and room temperature. To comply with the local surface reaction model, the
absorbing surface material was selected to be a layer of (rigidly backed) ‘“Domisol Coffrage’ glass
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Table 1

Input parameter values used in calculations

Parameter Numerical value
po (Pa) 1.00 x 10°
T(°K) 300.00

co (m/s) 346.2

po (kg/m’) 1.18

1 (kg/m s) 1.83 %1073
1, (kg/ms) 1.10x 1077
y 1.40

Pr 0.70

a (m) 0.10

L (m) 0.10

N 0.94

o 1.06

o (Nm*s) 4.00 x 10*
o (Nm™s) 1.32 x 10*
c 1.15

wool (manufactured by St. Gobain-Isover, Rantigny France). The numerical values for the
physical properties of the medium, which are used in the calculations, are summarized in Table 1
[33]. Accurate computation of Bessel functions is achieved by employing MATLAB specialized
math functions “besselh” and “besselj”’. Subsequently, a MATLAB code was constructed for
treating boundary conditions, to determine the unknown modal coefficients, and to compute the
modal impedance matrix, Z = SR, as functions of non-dimensional frequencies ka = wa/cy and
kd = wd/cy. Accurate computations for derivatives of cylindrical Bessel functions were
accomplished by utilizing (9.1.27) in Ref. [31]. The computations were performed in double
precision on a Pentium IV personal computer with a truncation constant of N = 30 to assure
convergence in the high-frequency range, and also in case of close proximity of the source to the
wall.

Before presenting the numerical results, the terminology used in the calculations has to be made
clear in order to avoid possible confusion. In particular, by the term “pulsating cylindrical
surface” or just “pulsating cylinder” refers to a cylindrical surface of radius “«’ vibrating in the
n =0 (monopole-like or breathing or expanding) mode. Similarly, the term ‘‘transversely
oscillating cylinder” or just “oscillating cylinder” denotes a cylindrical surface of radius “‘a”
vibrating in the n =1 (dipole-like or rigid body or shaking) mode. Furthermore, the term
“monopole (dipole) line source” implies an array of point monopole (dipole) sources (i.e., no size/
radius is involved). Figs. 2 and 3 show the resistive and the reactive components of radiation load
on the pulsating and transversely oscillating cylinders, positioned near the impedance boundary of
the acoustic halfspace as a function of the non-dimensional frequency kd at selected non-
dimensional acoustic frequencies (ka = 0.1,1,2,3,4) and basic medium properties as given in
Table 1. Also shown are the modal impedance components for the cylindrical surface located near
a very high impedance (nearly rigid) surface. Thus, the computations are made for a very low
(high) porosity (tortuosity) layer of (dense) porous material with following assumptions for its
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Fig. 2. Resistive and reactive components of modal acoustic impedance load on a pulsating cylinder positioned near the

halfspace boundary as a function of the distance parameter kd at selected nondimensional frequencies.
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physical property values: ¢, =0.001, «=31.62, 6 =9 x 10°(Nm™*s), and ¢ =1x
10° (N m~* s). Furthermore, in order to make clear evaluations, all modal impedance values
are divided by the corresponding infinite medium radiation components. Comparison of the
figures leads to the following observations. First, as the non-dimensional frequency is increased,
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all modal resistance (reactance) values approach the free field value of unity (zero) in an
oscillatory manner. Second, markedly smaller modal impedance component magnitudes in the
locally reacting boundary case are observed in comparison to the “‘rigid”” wall situation, especially
at the intermediate and higher frequencies (ka>1). In addition, relatively milder oscillations in the
modal impedance curves for the source near the passive wall are seen in all figures. Moreover, in
the “rigid” interface case, a negative modal reactance is detected (i.e., the reactance becomes
predominantly stiffness controlled in these regions [34]) for a relatively wide range of frequencies
as compared to the locally reacting example.

Fig. 4 displays the change in the on-axis radiated far-field acoustic pressure (i.e.,
lim, ., o [p(r, 0 = 0,w)|/pyci) with the excitation frequency at the selected distance parameters.
The farfield value of the radial coordinate in each case is numerically determined by making
several computer runs with increasing radial co-ordinates while looking for a fixed radiated
farfield pressure directivity pattern. The choice of r,, = 100a is computed to be adequate in all
cases. It is informative to study the change in the on-axis radiated far-field pressure as the source
excitation frequency and position are varied. The main effect of the presence of the locally
reacting boundary (solid lines) in comparison with the rigid wall case (dashed lines) is the
widespread disappearance of sharp dips from the radiated pressure curves. Furthermore, a general
reduction in pressure magnitudes, especially for the pulsating cylinder located not very close to the
boundary, is observed. There is also a relatively wide variation of the pressure magnitudes in the
transversely oscillating cylinder case in comparison with the pulsating cylinder situation. The
primary effect of increasing the distance parameter is to superimpose small oscillations and
increase the overall sharpness of the pressure curves. Last but not least, the most surprising

1.6 1

=
N

Relative Resistance
o
[ee]

0.4 1

0 2 a 6 8 10
Nondimensional Frequency, kd

Fig. 5. Comparison of the relative radiation resistance of a very small sized pulsating (transversely oscillating)

cylindrical surface positioned near the locally reacting wall with that of a monopole (dipole) line source as a function of

the distance parameter kd (— monopole line source; --- dipole line source; O pulsating cylinder (ka = 0.05); A

oscillating cylinder (ka = 0.05)).
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observation is the adverse effect of the locally reacting boundary on the radiated farfield pressure
for the transversely oscillating cylinder in the low-frequency range.

Finally, in order to check overall validity of the work, the code for the case of a particularly
small cylindrical surface vibrating near the locally reacting wall was first executed at a very low
non-dimensional frequency (ka = 0.05). Fig. 5 compares the outcome with the corresponding line
source results that are computed using Egs. (A.1) and (A.9) in Appendix A. In order to make clear
evaluations, all resistance values are divided by the corresponding infinite medium radiation
components. Evidently, excellent agreement is obtained in the pulsating cylinder case. This is due
to the fact that Eq. (A.1) is indeed an exact approximation for a pulsating cylindrical surface of
small radius (ka<« 1) [35]. On the other hand, the numerical comparison appears to be less good
for the transversely oscillating cylinder as the physical nature and the mathematical representation
used for a dipole line source are entirely different from that of the oscillating cylinder. This can
readily be observed by (numerical) comparison of the general field radiated from a unit amplitude
dipole line source (i.e., Eq. (A.6)) with that of a transversely oscillating cylindrical surface (i.e.,
H(kr)cos 0). Next, to further assess the accuracy of the work, the code was used to compute the
total acoustic pressure (|p(kX,kY)|) due to unit pressure amplitude pulsation of a cylindrical
surface of small radius (ka<« 1) positioned very close to a constant impedance planar boundary
(kd~0, =1+ 0.51). Fig. 6 compares the results with that of geometric acoustic approximation
for a simple (monopole) line source at an impedance boundary. The agreement is good in all
points. The geometric acoustic plot (Fig. 6b) is generated using the following approximation [21]:

cos0 —

p(kX,kY) = Hy(kr) + cos 0 1 f Ho(kr™), (22)

where r,r* = \/ (X Fd/2)* + Y2 (see Fig. 1). Lastly, it is noted that all modal impedance results

[i.e., roo(w), r11(w), ...] are simultaneously generated using a single code based on our impedance
matrix formulation which increases the confidence in the computational technique and the
computer code used for generating these results.

4. Conclusions

The modal acoustic radiation impedance load and the on-axis farfield radiated pressure have
been computed for a cylindrical surface undergoing modal vibrations close to a finite impedance
boundary. These results are the product of an exact treatment of the fluid/structure interaction
that involves utilization of the appropriate wave field expansions and boundary conditions along
with the method of images, translational addition theorems for cylindrical wave functions, and the
proper description of dynamic permeability effects in the rigid-frame porous materials. It also
incorporates a simple approximate analytical model describing the radiation of sound from the
cylindrical surface located close to the locally reacting planar interface through a complex
amplitude wave reflection coefficient. The numerical results display relatively smaller amplitudes
and milder oscillations of the modal impedance components and the on-axis farfield radiated
pressure for both modes of cylindrical surface vibrations near the locally reacting boundary in
comparison to the “‘rigid” wall situation. Furthermore, the modal reactance values predominantly
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Fig. 6. Comparison of the total sound pressure field for (a) unit pressure amplitude pulsation of a cylindrical surface of

small radius located very close to a constant impedance planar boundary (kd=x0, f =1+ 0.5i), with (b) geometric

acoustic approximation of a simple (monopole) line source at the impedance boundary.
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remain positive in the entire frequency range of interest, which is in direct contrast to the “rigid”
interface (largely stiffness controlled) case. The most surprising behaviour is the adverse effect of
the absorbing boundary condition on the radiated farfield pressure magnitudes for the
transversely oscillating cylinder in the low-frequency range.
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Appendix A. Radiation from a dipole line source over an impedance plane

First, following the lucid theoretical development by Morse and Ingard [29], the acoustic power
radiated (per unit length) by a pulsating cylindrical source of small radius near an impedance
plane can be proposed from that of two pulsating parallel cylindrical sources of small radii
(ka«<1) as [35]

N = NV[1 + RJo(kd)), (A.1)

where N{ is the power generated by a single source, Jo is cylindrical Bessel function of zero order
[31], and d is the distance between the real and image sources.

Next, it is intended to derive the appropriate expressions for a vertical dipole line source near an
impedance boundary. If a positive monopole line source and a negative sound source are brought
close to each other, an acoustic dipole results. If », is the distance of the field point from the

*x.y.2)

or
— —dx
0x

(Xov Yo Zo)

dx -

Fig. 7. Construction of an acoustic dipole from two monopole line sources.
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Fig. 8. Acoustic dipole line source near an impedance boundary.

positive source and r_ is the distance of the field point from the negative source, the resultant field

becomes (Fig. 7)
—ikry —ikr_
p=A (e © ) (A.2)

NN

where p stands for the pressure or velocity potential. As the distance between the two sources
decreases, the above difference can be expressed by a differential

0 (e o (e *r\ or
=A—|—=|dx=A4—| — | —dx, A3
P 0x¢ (, /kr> c’ir(1 /kr) 0x¢ (A-3)
where (xo, )9, zo) are the coordinates of the source position and (x, y, z) are those of the field point.
Now, employing cartesian co-ordinates

= (= X0+ 0= 30 + - o) (A4)
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gives
%: —aa—):ozcos 0. (A.5)
Hence (A.3) becomes
A* 1 —ikr
p:\/—l_c. l—l-% e " cos0 (A.6)
;

in which 4* = —ikA4 dx.

When a dipole line source is positioned a distance d/2 above an impedance wall, an image
source is formed at a distance d/2 below the wall (Fig. 8). Hence, the resultant far-field sound
pressure may be written as

e ikr g~ ik(r+d cos 0)
p=A*|cos0——+ Rcos 0 (A7)

Vkr Vk(r +dcos )|

Next, assuming r to be large, the term “d cos 0" can be neglected in the denominator, and thus

Lood
eflk(r+§ cos 0) d ) 0 d) 0
p = A* cos 0—(6(' d/2)cos 0 4 Re~(ikd/2) cos > (A.8)
kr
Finally, the total radiated sound power (per unit source length) can be determined by substituting
the above expression into [35]

e
N = / d4A, (A.9)
2pgco

where the above integral may readily be evaluated by numerical integration.
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