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Abstract

This paper presents an experimental and theoretical study of flexural symmetric vibration modes of a
linear elastic plate. A laser interferometer is used as detector of the free vibration of a rectangular
parallelepiped-shaped aluminium plate. The vibration spectrum gives the lowest natural frequencies of the
sample. Assumption that the vibration of the plates may be described by some approximate theories is
proven to be inconsistent. The Ritz method, with products of powers of the co-ordinates as basis functions,
is applied to obtain the lowest flexural natural frequencies. Three-dimensional solutions are obtained,
unlike those provided by simpler theories. The experimental results are compared with the numerical
predictions and a good agreement is obtained. Finally, forced motion is applied to the centre of the plate
and the out-of-plane and in-plane displacement components for the first symmetric mode are measured. A
good fit of the calculated values to the experimental values is found.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Vibration of elastic plates has been widely studied, both from experimental and theoretical
points of view [1–4], since plates are important components in many engineering applications. A
vast literature exists for the flexural vibration of rectangular plates. Vibration of a plate can be
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excited and detected with an appropriate experimental set-up. A correct interpretation of the
results leads to useful information on elastic properties of materials and structural vibrations.
The classical theory of Kirchhoff assumes that plane sections remain plane and perpendicular

to the mid-plane. Although many developments in approximate theories have occurred, the
approach that has become prevalent was first applied to plates by Mindlin [5]. His theory includes
the shear and rotary inertia effects.
The Ritz method is one of several possible procedures for obtaining approximate solutions for

the frequencies and modes of vibration of elastic plates. It was applied by its inventor to the study
of free vibration of a plate a century ago [6]. The Ritz method proposes a suitable set of basis
functions, depending on the co-ordinates. The displacements are assumed to be a sum of such
functions multiplied by constant coefficients. The Ritz method, with use of beam functions [7,8]
and characteristic orthogonal polynomials [9], has been applied to obtain the flexural natural
frequencies of thin rectangular plates giving good results. In order to study the free vibration of
Mindlin plates, Dawe and Roufaeil [10] apply the Ritz method with Timoshenko beam functions
as admissible functions for the displacements. The referred works do not deal with the general
problem of displacements which depend on the three co-ordinates. The approximate solutions
yield frequencies of sufficient accuracy for some engineering applications.
Three-dimensional (3-D) vibration analysis yields accurate results for thick plates. The

solutions obtained show the range of applicability of the classic plate and Mindlin plate theories.
Hutchinson and Zillmer [11] used a series solution of the general equations of linear elasticity to
determine natural frequencies of vibration of a rectangular parallelepiped plate. In a paper by
Liew et al. [12], the Ritz formulation is applied to the vibration analysis of thick rectangular
plates; the displacements are expressed by sets of orthogonally generated polynomial functions.
Lim [13] investigated the effects of neglecting transverse normal stress in the vibration analysis for
a cantilevered parallelepiped plate. The results show that transverse normal stress becomes
significant for large thickness ratios. 3-D solutions for cantilevered parallelepipeds have been
derived by Leissa and Zhang [14]. Such solutions are obtained by the Ritz method with algebraic
polynomials. Because of the relative simplicity of the algebraic polynomial displacement
functions, the differentiations and integrations can be carried out exactly. The polynomial series
chosen does not affect convergence directly [15].
Many articles have been published on experimental studies of vibration of plates. Most of the

experimental papers are concerned with the characterization of vibration modes using
accelerometers [16,17]. Therefore, detection is through contact and the average out-of-plane
displacement component of the detection area is measured. Optical methods have also been
applied in order to study the vibration. The out-of-plane displacement component of a vibrating
cylinder has been accurately detected by a laser interferometer [18]. Low et al. [19] use a TV-
holographic system as a detector of the vibration and Ritz’s method with unidirectional
displacements for non-free plates. The detection is qualitative: the mode shapes show the nodes
and the amplitude distribution, but the total deformation is not quantified. The work by Ma and
Lin [20] accounts for the detection of only the out-of-plane displacements of a vibrating plate by
electronic speckle interferometry and excitation by a glued transducer; mode shapes are
represented by lines of constant amplitude.
The present paper reports an almost free vibration of an aluminium plate generated

by a percussion. The lowest natural frequencies are obtained from an accurate detection of the
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out-of-plane displacements by laser interferometry. In contrast to the aforementioned studies,
experimental research of the first mode shape and the lowest natural frequencies is carried out by
detecting both the out-of-plane and in-plane components of the displacement components with a
sensitivity of approximately 1 nm by means of an I/O laser interferometer, i.e. detection is two-
dimensional, point-like and without contact.
The establishment of a method to estimate the error of the experimental measures permits the

calculation of systematic uncertainties of the elastic constants and frequencies.
It is analytically demonstrated that the vibration of the plate cannot be described exactly in

terms of displacements perpendicular to its plane nor in terms of Kirchhoff theory or Mindlin
theory.
3-D vibration modal analysis is performed here by means of the Ritz method. In the application

of this method, series of products of the co-ordinates to certain powers are used as basis functions.
This selection is correct from the mathematical point of view as well as suitable from the
conceptual point of view. The Ritz method is implemented in Maple on a PC. A straightforward
procedure, a didactic series, and an easily adjustable program have been developed. Three
approaches are studied using the Ritz procedure to find the simplest and best solution for the
displacements: one where the Kirchhoff theory is assumed, another where the Mindlin theory is
applied, and the third where displacement components dependent upon the three spatial co-
ordinates, 3-D method. The error of the frequency numerical calculations due to the elastic
constants and dimensional uncertainties is estimated.
Comparison of experimental and numerical results permits the validation of the accuracy of

both methods. Taking the respective frequency uncertainties into account, the experimental
results and the numerical predictions intersect for the two lowest natural frequencies, whereas a
difference smaller than 0.5% is found for the third frequency.
When the plate is set into vibration by applying a periodic force to its centre, both the out-of-

plane and the in-plane displacement components for the first symmetric mode are measured. The
experimentally detected mode shape for the lowest frequency is in agreement with the theoretical
predictions.

2. Experimental set-up and results

An aluminium plate, rectangular parallelepiped-shaped, with dimensions width L1 ¼
0:09990 m; length L2 ¼ 0:15100 m; and thickness L3 ¼ 0:02490 m; is used for the tests in the
laboratory. The mass m of the sample is 0:9951 kg; and its density r ¼ 2649 kg=m3: Fig. 1 shows a
sketch of the plate and the set of co-ordinate axes OX1; OX2; and OX3; with its origin O coincident
with the centre of the plate. A point of the plate is determined by its co-ordinates x1; x2; x3:
The P- and S-wave velocities are measured in the aluminium plate by the pulse-echo method in

order to evaluate the elastic constants. The transit times for a path length of 2� 0:02490 m is
tp ¼ 8:030� 10�6 s and ts ¼ 15:588� 10�6 s for the P- and S-wave respectively. Consequently,
the velocities are equal to cp ¼ 6202 m=s and cs ¼ 3195 m=s: From the expressions for cp and cs in
terms of G and n; cp ¼ ðG=rÞ1=2½2ð1� nÞ=ð1� 2nÞ�1=2; cs ¼ ðG=rÞ1=2; and from the definitions
cp ¼ 2L3=tp and cs ¼ 2L3=ts; the elastic constants can be determined from the relations:
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* Shear modulus

G ¼ rc2s ¼
4mL3

L1L2t2s
: ð1Þ

* The Poisson ratio

n ¼
ðcp=csÞ

2 � 2

2ðcp=csÞ
2 � 2

¼
ðts=tpÞ

2 � 2

2ðts=tpÞ
2 � 2

: ð2Þ

The magnitudes measured directly in the laboratory appear explicitly in the right-hand terms of
Eqs. (1) and (2). The values of the elastic constants obtained for the aluminium plate are G ¼
27:04 GPa and n ¼ 0:3194 (Young’s modulus being E ¼ 71:35 GPa).
The experimental set-up for quasi-free vibration is shown in Fig. 2. The plate is placed with the

face on the plane x3 ¼ L3=2 in front of the detection system and it is supported on two small
rubber blocks. Therefore, its movement is softly restrained. Symmetrical flexural vibration is
induced by applying an impact perpendicular to the plate at the central point, x1 ¼ x2 ¼ 0;
x3 ¼ �L3=2: Symmetric modes mean that the third displacement component u3 is symmetric with
respect to the planes X1OX3 and X2OX3:
A pendulum consisting of a thread and a steel sphere is used to strike the sample. This type of

excitation allows the plate to oscillate freely in its natural flexural modes, since following the
impact, no further forces act upon the sample. In other words, once the impact has finished, the
sample vibrates quasi freely, so that the vibration is not due to continuous action from external
forces, as is common in conventional methods. The sphere is 3:45 mm in diameter. The time for
the sound to go and to come back through the sphere may be estimated in 1 ms: Therefore the
bandwidth is about 1 MHz; much more than the highest frequency found in the experiments
described. To estimate better the bandwidth caused by the ball used to excite the vibration, a
theory of impact of two solid spheres is applied [21]. To simplify, suppose that both the ball and
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Fig. 1. The tested aluminium plate, with dimensions L1 ¼ 99:90; L2 ¼ 151:00; L3 ¼ 24:90 mm: An impact at the central
point, x3 ¼ �L3=2; induces vibrations, detected at x3 ¼ L3=2: The plate is supported on two small rubber blocks.
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the plate are made of steel, E ¼ 200 GPa; n ¼ 0:3; r ¼ 7900 kg=m3; and that the velocity of the
ball before the impact is v ¼ 0:6 m=s: The size and mass of the ball are much smaller than those of
the plate. When neglecting the ball radius and mass mb; the impact duration time is calculated
as t ¼ 3:78ðm2

bð1� n2Þ2=ðRbE2vÞÞ1=5 ¼ 13� 10�6 s: Hence the maximal excited frequency to be
expected is 74 kHz: This bandwidth is adequate to excite the lowest natural frequencies of
the plate.
A laser interferometer OP-35 I/O (Ultra Optec Inc.) [22] detects the resulting vibration at the

central point, x3 ¼ L3=2: This system permits the detection of both out-of-plane and in-plane
displacement components at a point, though not simultaneously, with a resolution in amplitude of
about 1 nm: Both components of the displacements are measured in this paper for flexural
oscillations. The detection principle is based on the speckle phenomenon, which is observed when
coherent light strikes on a scattering surface producing a pattern with bright and dark spots. The
size of the illuminated area is approximately 20 mm; consequently, detection is point-like and
without contact. The bandwidth ranges from 1 kHz to 35 MHz; allowing simultaneous detection
of several natural vibration frequencies.
The interferometer works in the out-of-plane configuration as is shown in Fig. 2. The laser

beam is split in two by a Bragg cell; one with the same frequency as the original, the other with a
frequency shifted by 40 MHz: The unshifted beam is focused on the surface of the sample. The
resulting scattered light is collected in the direction symmetrical to that of the incident beam and is
directed to the beam mixer where it interferes with the reference beam. An out-of-plane
displacement dw; in the OX3-direction, causes a phase change equal to 4p cos ydw=ll ; where ll is
the wavelength of the laser. A 40-MHz frequency signal, modulated in phase by the
displacements, is obtained in the detector. The signal is processed by a demodulating unit to
yield an output proportional to the instantaneous displacement of the surface at the detection
point. Finally, a Tektronic TDS430A oscilloscope digitizes the signal and gives the spectrum of
the vibration, calculated by using the fast Fourier transform (FFT). The natural frequencies will
be those associated with the maximum amplitudes in the spectrum. The spectrum of the out-of-
plane component obtained for the sample is that of Fig. 3. The lowest flexural frequencies
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Fig. 2. The experimental set-up for detection of out-of-plane displacement. The unshifted laser beam is focused on the

sample by the lens L1. The scattered light, collected by the lens L3, interferes with the reference beam. The mirrors are

drawn in thick black and the shutters D1 and D2 in thin black.
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detected are f1 ¼ 5:36 kHz; f2 ¼ 11:59 kHz; and f3 ¼ 18:87 kHz: In the in-plane mode the
unshifted and the shifted beams strike at the same point of the sample in symmetric directions.
The scattered light is collected in the direction of the bisector corresponding to these directions,
which coincides with the normal to the surface of the sample and later is processed. This operation
mode will also be used in the detection of the mode shape.
The peaks of the spectrum shown in Fig. 3 may be fitted to a sinc function whose bandwidth

provides the duration of the impact. A bandwidth of 3� 104 Hz is estimated, which corresponds
to a duration time of about 3� 10�5 ms: This result confirms the goodness of the percussion
apparatus. In order to check the freedom of the cylinder, four experiments are carried out
corresponding to different locations of the supports. In a first series, the sample is supported on
two small rubber blocks placed 0:17L2; 0:24L2; and 0.33L2 apart from both ends respectively. The
detected frequencies are exactly the same for the three locations. When only a rubber block is
located at the centre, the first and second frequencies have the same values as those detected with
two rubber support. However, the third frequency sometimes differs from the value obtained in
the first series by 0.2%.

3. Uncertainties

Since one of the objectives of this paper is to compare the experimental results with the
theoretical ones, it would appear convenient to calculate the uncertainty of the experimental
measures of directly or indirectly obtained magnitudes.
The systematic uncertainty methodology states that [23], if a physical magnitude y is a function,

y ¼ FðfxigÞ; of a set of physical magnitudes xi; which have been measured directly and they are
affected by their respective uncertainties, Uxi

; then the uncertainty of an indirect measurement Uy

is estimated by means of the differential of this function using the absolute values of the partial
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Fig. 3. The spectrum for the aluminium plate shows its first natural frequencies for flexural modes.
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derivatives, that is, Uy ¼ Sj@F=@xijUxi
: It is supposed that all the measuring instruments are well

calibrated and their uncertainties are only due to their sensitivities.
The uncertainties in the measurement of lengths, mass and transit times are 5� 10�5 m;

10�4 kg and 10�9 s, respectively. From these, the absolute value of the systematic uncertainty in
the indirect measurement of the shear modulus, deduced from Eq. (1), is UG ¼ 0:08 GPa: In the
same way, from Eq. (2), the systematic uncertainty for the Poisson ratio is found to be Un ¼
0:0001: These values obtained for the uncertainties of G and n must be considered minimum
values, because neither random uncertainties nor calibration errors have been taken into account.
Uncertainties UG and Un will be used in the determination of the systematic uncertainty for the
frequencies calculated by Ritz’s method.
The resolution of the used Fourier analyzer is 10 Hz: Hence the systematic uncertainty of

experimental frequencies is 10 Hz for every value of the frequencies f1; f2; and f3:

4. Non-3-D theories

As the general analytical calculation of the vibration normal modes and natural frequencies of a
free plate is not possible, approximate solutions have been obtained historically.
The thickness L3 of the plate is small with respect to the lengths of the other edges. Therefore

some authors take as a fact, that the co-ordinate x3 of the points of the plate do not require
consideration [8,16]. Other authors [24] understand that it is only the displacement of the points of
the plate belonging to the neutral surface in flexion which must be included in the calculations. In
studying vibration of plates, it is sometimes an accepted assumption that the displacements are:
u1 ¼ u2 ¼ 0; u3 ¼ u3 ðx1;x2; tÞ: That is highly unreasonable because motion in the free plate would
be too constrained.
The basic kinematics of the classical theory of thin plates is the same as that of Bernouilli–Euler

beams [24]. If small deflection u3 and slopes are assumed, the curvatures may be approximated by
the partial derivatives of the deflection from the middle plane of the plate, x3 ¼ 0: In this case
u3 ¼ u3ðx1; x2; tÞ; and the displacement components u1 and u2 may be written by the particular and
simple expressions:

u1 ¼ �x3
@u3

@x1

� �
x3¼0

; u2 ¼ �x3
@u3

@x2

� �
x3¼0

: ð3Þ

Mindlin assumed that u1 and u2 are proportional to x3 and u3 is independent of x3:

u1 ¼ x3j1ðx1; x2; tÞ;

u2 ¼ x3j2ðx1; x2; tÞ;

u3 ¼ j3ðx1; x2; tÞ: ð4Þ

If the solution of motion of the plate is stated in this manner, an objection appears as
demonstrated here.
The components of the fundamental equation of dynamics, Navier–Cauchy equation [24(1)], is

Fi þ G
@2ui

@xj@xj

þ ðG þ lÞ
@

@xi

@uj

@xj

� �
¼ r

@2ui

@t2
; ð5Þ
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where Fi are body forces, the displacements ui are functions of class C1; and l is the second
Lam!e’s elastic coefficient.
If body forces are null, Fi ¼ 0; and a harmonic solution of Mindlin’s type is assumed:

u1 ¼ x3f1ðx1;x2Þ sinðotÞ;

u2 ¼ x3f2ðx1;x2Þ sinðotÞ;

u3 ¼ f3ðx1;x2Þ sinðotÞ: ð6Þ

The third component of Eq. (5) with Eqs. (6) gives

G
@

@x1
f1 þ

@f3

@x1

� �
þ G

@

@x2
f2 þ

@f3

@x2

� �
þ l

@f1

@x1
þ

@f2

@x2

� �
¼ �ro2f3: ð7Þ

At the boundary x3 ¼ L3=2 the stress tensor is null and Hooke’s law gives

0 ¼ p13 ¼ 2Ge13 ¼ G f1 þ
@f3

@x1

� �
sinðotÞ; ð8Þ

where pij and eij refer to the components of the stress and strain tensors respectively.
Therefore f1 þ @f3=@x1 ¼ 0 at the boundary. As f1 þ @f3=@x1 is independent on x3; it implies

f1 þ @f3=@x1 ¼ 0 for all the plate.
A similar argument for p23 gives f2 þ @f3=@x2 ¼ 0 and @f1=@x1 þ @f2=@x2 ¼ 0 for p33:
With these results, Eq. (7) implies that f3 ¼ 0; therefore u3 ¼ 0 for all the points of the plate. In

other words, the plate does not move.
If solutions given by Eqs. (3) are assumed, a particular case of Eqs. (6) is

f1ðx1; x2Þ � �
@f3

@x1
;

f2ðx1; x2Þ � �
@f3

@x2
: ð9Þ

Analogously, there is no motion in this case.
It is concluded that the last two hypotheses for the motion are not acceptable. In other words,

the proposed motions are incompatible with dynamics equations and boundary conditions. The
two displacements exposed as a hypothesis may at most be considered as a solution similar to that
found in the strength of materials. Similar simplifications such as neglecting the transverse normal
stress [13] are inherently erroneous. 3-D solutions for displacements of a vibrating plate should
thus be sought, which is performed in the next section. 3-D analysis not only provides realistic
results but also brings out physical insights, which cannot otherwise be predicted by any 2-D
analysis [25].
When a plate vibrates with free boundary conditions, an expectable mode is the simplest one of

symmetrical bending, where the points of the plate, belonging to the OX2 axis before the
deformation, present at an instant of the motion a shape similar to the curve s1 drawn in Fig. 4.
Since a plate is easily deformable in the shown shape, a very low frequency probably corresponds
to this mode, becoming the first symmetric mode. Therefore, in a first approximation the
wavelength is equal to the length L2 of the plate. The expected normal modes s1 (first symmetric),
a1 (first antisymmetric) and s2 (second symmetric) from these elementary theories remind one of
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those drawn in Fig. 4. All the modes have maxima of amplitude on the edges and the symmetrical
ones have another maximum at the centre. Since this paper is focused on the symmetrical modes,
they are excited by applying an impact on the plate in a central point of one of its largest faces. In
addition, as the displacements are also detected at the centre, the antisymmetrical vibration
modes, possibly generated by lack of precision in the impact, are excluded. These reasons lead to
impact and detection at the centres of opposite faces. Correct mode shapes are not known a priori,
but it will always be true that symmetrical modes will have a maximum or antinode in the middle
and antisymmetrical ones a null value or node at this point. Therefore the percussion and the
detection must be done at the centres.

5. Ritz’s method

Hamilton’s principle postulates as the fundamental equation of dynamics for a free system that
the integral between two given instants of Lagrange’s functional of a system of particles is
stationary. For a harmonic solution of the type ui ¼ Ui ðx1; x2;x3Þ sinðot þ fÞ; i ¼ 1; 2 and 3, it is
enough to consider the maximum kinetic energy in a period of the motion

Tm ¼ 1
2
o2

Z
t
rðU2

1 þ U2
2 þ U2

3 Þ dt; ð10Þ

and the maximum potential energy

Vm ¼ G

Z
t

eijeij þ
n

1� 2n
eiieii

� �
dt; ð11Þ

where r; G; and n must be substituted by their aforementioned values, dt is a volume element, and
eij are calculated from Ui:
In Ritz’s method, a solution for the displacements is proposed as a linear combination of a

suitable set of basis functions [26] which satisfy the boundary conditions for the displacements, if
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these are predetermined. Adequate functions, chosen here, are monomials formed by products of
powers of the co-ordinates,

Ui ¼
X
pqr

Aipqrx
p
1x

q
2x

r
3: ð12Þ

The formed algebraic polynomials have unknown coefficients fAipqrg; whose values are found
by minimizing the difference between the maximum kinetic and potential energies, that is, the
partial derivatives of such a difference with respect to each coefficient must be null,

@ðTm � VmÞ
@Aipqr

¼ 0: ð13Þ

These conditions constitute a set of linear homogeneous algebraic equations in the unknown
coefficients. The natural frequencies of vibration are obtained from the condition of compatibility
of the set of equations, and the solution of the system gives the eigenvectors or coefficients.
Substitution of Eqs. (12) into Eq. (10) yields its integrand as a function of x1; x2; x3; and fAipqrg;
hence a symbolic integration gives Tm as a function on fAipqrg and o2: Substitution of Eqs. (12)
into Eq. (11) yields Vm as a function on fAipqrg: The difference between the maximum kinetic and
potential energies becomes a function on fAipqrg and o2; hence the set of equations, Eq. (13),
depends on o2 and fAipqrg: By introducing the nondimensional frequency parameter
O ¼ 1

2
oL2

ffiffiffiffiffiffiffiffiffi
r=G

p
the set of equations (13) may be written in matrix notation as

KA ¼ O2MA; ð14Þ

where A is the column matrix of the elements fAipqrg; K is the stiffness matrix and M is the mass
matrix. The Maple program computes the eigenvalues and eigenvectors, i.e., the non-dimensional
natural frequencies O and the corresponding coefficients fAipqrg for each O:
The method has as an advantage that the solution can be obtained with the desired precision,

except for the limitations of the computer and the spent time of computation. In addition, the
obtained frequencies are always higher than the ones corresponding to the correct solution, reason
why a more accurate value is found by simply adding a new term to the polynomial.
The expected most important displacement in flexural symmetric vibration of the plate is u3:

Therefore the exponents in the polynomial for U3 must be high.
For flexural symmetric vibration modes the exponents of the co-ordinates in formula (12) for

U1 are successively odd, even, odd, while in the formula of U2 are even, odd, odd and in the one of
U3 they are even, even, even.
A Maple program is developed to apply Ritz’s method to the study of the free vibrations of a

plate. The above-mentioned monomials are taken as the basis functions. For the validation of the
program, the problem of vibrations of a cube, which has already been solved by the Ritz method
with Legendre polynomials as well as verified experimentally [27] is solved. It is found that there is
close agreement for the frequencies calculated for the lowest modes, which confirm the goodness
of the program. The computer used is a PC, Pentium II.
In order to obtain the best and simplest solution for the flexural displacements of the vibrating

plate, three different approaches to the problem are proposed:
(A) In a first approach, the amplitude U3 given in Eqs. (15) is proposed and substituted into the

approximate Eqs. (3). This yields the following displacements, corresponding to the classical thin
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plate theory (Kirchhoff plate theory):

U1 ¼ �x3

XP�1;Q
p¼0;q¼0

pA3pqx
p�1
1 x

q
2;

U2 ¼ �x3

XP;Q�1

p¼0;q¼0

qA3pqx
p
1x

q�1
2 ;

U3 ¼
XP;Q

p¼0;q¼0

A3pqx
p
1x

q
2: ð15Þ

With the maximum values for the exponents P ¼ 8 and Q ¼ 8; which means 25 unknown
coefficients, the three smallest symmetric frequencies are 5851, 13 850, 24 408 Hz respectively.
(B) In a second approach, a linear in x3; Mindlin assumption [28], Eq. (4), is studied:

U1 ¼ x3

XP1;Q1

p¼1;q¼0

A1pqx
p
1x

q
2;

U2 ¼ x3

XP2;Q2

p¼0;q¼1

A2pqx
p
1x

q
2;

U3 ¼
XP3;Q3

p¼0;q¼0

A3pqx
p
1x

q
2: ð16Þ

With the maximum exponents: P1 ¼ 3; Q1 ¼ 2; P2 ¼ 2; Q2 ¼ 3; P3 ¼ 6; Q3 ¼ 6; after few seconds
of computing time, the three lowest frequencies result: 5692, 12 971, and 22 965 Hz:
(C) In a third approach, the general case is studied. Displacements are assumed to be 3-D and

to depend on the three spatial co-ordinates and time (3-D theory).
Considering the symmetries of the problem in the solution, a 3-D solution is given by:

U1 ¼
XP1;Q1;R1

p¼1;q¼0;r¼1

A1pqrx
p
1x

q
2x

r
3;

U2 ¼
XP2;Q2;R2

p¼0;q¼1;r¼1

A2pqrx
p
1x

q
2x

r
3;

U3 ¼
XP3;Q3;R3

p¼0;q¼0;r¼0

A3pqrx
p
1x

q
2x

r
3: ð17Þ

With the smallest possible non-null values for P1; Q1;y;R3; that is 1; 2; 1; 2; 1; 1; 2; 2; 2;
respectively and after a computation time of half a minute, the obtained frequencies are 6018.6,
13 104.3 and 24 091:6 Hz: Repeating the calculation and after 5 h of computation, the three lowest
frequencies 5345, 11 602, and 19 050 Hz were obtained, with the exponents up to 7, 6, 7; 6, 7, 7; 6,
6, 6, which means 192 unknown coefficients.
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The systematic uncertainty in the numerical calculation of the frequencies in the 3-D solution is
estimated by repeating the last calculation with the lengths of the sample increased, or decreased if
it was required, by their corresponding uncertainties. The same process was repeated for the
values of m; ts and tp: The absolute differences between the previously calculated frequencies and
those obtained with shifted L; m and t have been considered as systematic uncertainties. These
uncertainties originate from the lack of sensibility of measuring apparati and they have turned out
to be 28, 62, and 91 Hz respectively for the three lowest natural frequencies.
Comparison of Eqs. (16) and (17) shows Eq. (16) as a particular case of Eq. (17) in which the

maximum exponents R1 and R2 are unity and R3 zero.

6. Symmetric mode frequency dependence upon thickness

In order to compare the quality of the different approaches studied, a calculation of natural
frequencies of a plate as a function of its thickness is carried out. The approximations described
by Eqs. (15)–(17) are applied to each thickness L3 ¼ 24:9; 20.0, 15.0, 10.0 and 5:0 mm: The
numbers of unknown coefficients are 25 for Eqs. (15), 24 for Eqs. (16) and (17), that is, the
computation times are of the same order. The results are given in Table 1.
The first row of Table 1 shows the five thicknesses studied. The first row of each sub-table

shows the applied approach, given by the equations chosen and the maximum exponents of the
co-ordinates x1; x2; x3 taken: P1; Q1; R1 for U1; P2; Q2; R2 for U2; and P3; Q3; R3 for U3: The rest
of the cells contain the first three lowest natural frequencies for each thickness and each approach.
The sub-table corresponding to the approach A shows the three frequencies calculated by the
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Table 1

The three lowest natural frequencies of a plate as a function of its thickness L3

L3 (mm)

5.0 10.0 15.0 20.0 24.9

Approach A Eqs. (15): 7, 8, 1; 8, 7, 1; 8, 8, 0

f1 1241 2464 3653 4792 5851

f2 3096 6101 8935 11544 13850

f3 5879 11122 16139 20607 24408

Approach B Eqs. (16): 3, 2, 1; 2, 3, 1; 6, 6, 0

f1 1252 2469 3628 4712 5692

f2 3124 6067 8717 11027 12971

f3 6517 12083 16640 20228 22965

Approach C Eqs. (17): 1, 2, 1; 2, 3, 1; 4, 4, 2

f1 1182 2337 3441 4478 5420

f2 3308 6408 9168 11543 13519

f3 6625 12336 16912 20481 23195

The approaches described by Eqs. (15), (16), and (17) are applied. The numbers of unknown coefficients are around 24.

The first row of each sub-table shows the equations chosen and the maximum exponents of the co-ordinates x1; x2; x3

taken. The lowest and best frequencies are typed boldface.
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trial (15). The sub-table for the approach B; Eqs. (16), corresponds to Mindlin plates. The last
sub-table (Approach C) corresponds to a simple 3-D theory. In all the three approaches it has
been assumed that the displacement u3 for low frequencies is predominant. Comparing the values
of f1 in Table 1 given by the approaches A, B, and C for thickness 5:0 mm; it is found that the
value 1182 Hz results to be the lowest and therefore the best. This value, corresponding to the
approach C, is typed boldface. Analogously the other lowest values of frequency for each
thickness are marked in Table 1.
The tabulated values yield:
(1) Looking at the bold printed numbers in Table 1 it is deduced that for thin plates and high

frequencies approach A, Eqs. (15), is the best. A reason for this conclusion may be that Eqs. (15)
is based on the semi-analytic equations (3). Eqs. (3) becomes exact for plates with null thickness.
Once more, a well-known statement is arrived at: Analytical solutions are the best.
(2) The first natural frequencies obtained with Eqs. (17) are lower than the frequencies

calculated by Eqs. (15) and (16). Therefore, the solution obtained from Eqs. (17) seems better than
that calculated from Mindlin theory for low frequencies.
(3) The results obtained with the few exponents chosen show that the best approximation

depends on both the thickness and the frequency to be calculated. Fig. 5 shows the three lowest
natural frequencies for each of the approaches A, B, C.
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Fig. 5. Calculated natural frequencies ðf1; f2; f3Þ of a plate as a function of its thickness for a similar computation time:

Dot-dashed lines for Kirchhoff theory (approach A), dashed lines for Mindlin theory (approach B), and solid lines for

3-D theory (approach C).
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(4) At sight of (3), the first three natural frequencies for the aluminium test plate have been
calculated with an increasing number of coefficients. For a number of coefficients given, the result
depends on the election of the maximum exponents. With about 50 coefficients and estimating the
optimal exponents, the three values are found to be smaller in the 3-D analysis than in Mindlin
theory. Thus with optimal choice of exponents in 3-D theory (5,6,3;8,6,3;4,6,4), which
corresponds to 100 coefficients, the calculated frequencies are 5345, 11 619 and 19 082 Hz: The
frequencies are 5644, 12 791 and 20 043 Hz; when applying the theory of Mindlin, with an optimal
election of exponents (9,12,1;10,11,1;8,10,0), that implies 101 coefficients. These results indicate
differences higher than 5% in favour of the three-dimensional theory.
(5) Furthermore, if the number of coefficients increases, the 3-D theory will be the best, since an

exact solution will be found.

7. Forced motion

A last experiment is carried out on the plate. The plate being supported as described before, a
small transducer, 0:3 g in mass and 15 mm in diameter, is glued to the central point x1 ¼ x2 ¼ 0;
x3 ¼ �L3=2: A sinusoidal signal generator drives the transducer. By scanning the frequency
around the lowest natural frequency ð5360 HzÞ; the resonance frequency of the plate results
5346 Hz: The decrease in frequency below the natural frequency may be due to the added mass of
the transducer. Twelve points, approximately 7 mm apart, on the straight line x1 ¼ 0; x3 ¼ L3=2;
and located at x2 ¼ 0:08; 4:85;y; 74:27 mm are explored by the interferometer. Out-of-plane
and in-plane motion of every point is detected, whereby both amplitude and phase are
measured.
The measurement of the amplitude and phase of the displacement at a point of the lamina

should be taken when the exciting frequency is near to the resonance. Therefore the displacement
can be easily detected since a large amplitude is expected. However, if the exciting frequencies are
too close to the resonance, any parasitic variation of frequency causes sharp changes of amplitude
and phase. For this reason, a frequency of 5340 Hz is applied, which is similar to that of
resonance but away from the peak.
Fig. 6 shows the out-of-plane and the in-plane displacements of three significant points. The

three parts of Fig. 6 are obtained by averaging about a thousand scans. The maximum peak-to-
peak displacement value is approximately 9 nm: Fig. 6(a) shows the out-of-plane displacement, u3;
and the in-plane displacement, u2; of the point placed at x2 ¼ 0:08 mm from the centre. At this
central point there is an antinode (maximum relative amplitude) for u3 and a minimum for u2: Fig.
6(b) shows the out-of-plane and in-plane displacements of the point placed at x2 ¼ 39:2 mm (from
the centre). This point has a null amplitude U3; which is a node for u3: At the point placed at
x2 ¼ 74:27 mm; very close to the edge of the plate, amplitude U3 and amplitude U2 reach a
maximum, as is shown in Fig. 6(c). Fig. 7(a) shows the experimental amplitudes U2 and U3

(eigenvectors) pictured as arrows, for all 12 points.
In order to compare these experimental amplitudes, the Ritz method is applied with the

approach C, which gives the lowest frequency f ¼ 5420 Hz: The eigenvector corresponding to
that first eigenvalue, substituted in Eqs. (17), gives the amplitudes U2 and U3 at x1 ¼ 0 and
x3 ¼ L3=2; for the 12 aforementioned points, with values of x2 ¼ 0:08; 4:85;y; 74:27 mm: These
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amplitudes appear in Fig. 7(b), as 2-D arrows. Note the good agreement with respect to the
experimental values shown in Fig. 7(a).
The vibration amplitude component U3 is calculated by Eqs. (17) and approach C, for points in

the surface x3 ¼ L3=2: The results are drawn in Fig. 8 for the first lowest symmetric mode,
f ¼ 5420 Hz: An axonometric view is shown at the top; it reminds us of the symmetric mode s1
supposed by elementary theory and drawn in Fig. 4. At the bottom of Fig. 8, a plot of isolines of
U3 on the surface x3 ¼ L3=2 of the lamina is shown. A significant line is that of U3 ¼ 0; the nodal
line, labelled with the symbol 0. This particular line allows qualitative comparison of its shape
with that obtained experimentally by Waller [29], cited on ½1ð1Þ�; on a brass plate; the shapes are
very similar. Figs. 9 and 10 show the same kind of graphics for the second, f ¼ 13519 Hz; and
third, f ¼ 23195 Hz; lowest symmetric modes, respectively. Fig. 9 is similar to the symmetric
flexural mode of a beam parallel to the OX1 axis and it is completely different in shape to the s2 of
Fig. 4. The shape of the third mode, Fig. 10, cannot be previewed by a rod theory.
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Fig. 6. The out-of-plane, u3; and the in-plane, u2; displacements of the three selected points at: (a) x2 ¼ 0:08 mm; (b)
x2 ¼ 39:2 mm; and (c) x2 ¼ 74:27 mm: The maximum peak-to-peak displacement value is about 9 nm; corresponding
to the out-of-plane amplitude at the edge.
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8. Conclusions

The main conclusions from the experimental and theoretical studies made on free flexural
vibration of a lineal elastic plate and described in this paper, are

1. The assumption that in-plane displacements are proportional to the normal co-ordinate and
the out-of-plane displacement is independent of the normal co-ordinate contradicts the laws of
physics and therefore it is not admissible as an exact solution in any rectangular plate.

2. The application of Ritz’s variational method to 3-D displacements yields the lowest vibration
frequency of the tested plate, 5345 Hz; with a systematic uncertainty of 28 Hz; that is to say a
relative systematic uncertainty of 0.5%. The second frequency is 11 602 Hz with its uncertainty
62 Hz and the third 19 050 Hz with 91 Hz:

3. The lowest quasi-free vibration frequencies of an aluminium plate are measured in the
laboratory by speckle interferometry. The results are: 5.36, 11.59, and 18:87 kHz; with a
sensitivity of 0:01 kHz:
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Fig. 7. (a) Experimental eigenvectors at the 12 analyzed points along the straight-line x1 ¼ 0; x3 ¼ L3=2: Amplitudes
and phases may be seen. (b) Numerical calculated values of the eigenvectors by Ritz’s method. Note the agreement

between the experimental and calculated values.
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4. Taking into account all calculated uncertainties, the experimental results for the lowest
frequencies are in good agreement with those obtained by numerical calculation. Note the
coincidence of the experimental result 5:3670:01 kHz with the result of the 3-D theory,
5:34570:028 kHz: The second experimental frequency 11:5970:01 kHz also agrees with the
calculated frequency 11:60270:062 kHz: The third experimental frequency 18:8770:01 kHz
does not intersect the theoretical 19:0570:091 kHz by 0.5%, due to other uncertainty sources
or non optimal choice of exponents in the Ritz method.

5. The in-plane and out-of-plane displacements experimental measurements give a symmetric
mode shape for the lowest frequency in agreement with the theoretical prediction.

6. The coincidences expressed in conclusions 4 and 5 prove the accuracy of the experimental
measurement by laser-interferometry to the same degree as do the numerical calculations by
the Ritz method.

7. The general 3-D theory is equal to or better than the Mindlin theory for the same number of
coefficients in the series, and hence for similar times of computation. Furthermore, if optimal
exponents are chosen and the number of coefficients is great enough, the 3-D general theory
will provide better results than Mindlin’s one.
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Fig. 8. Axonometric view and plot of isolines of U3 on the surface x3 ¼ L3=2 of the lamina, for the first lowest

symmetric mode. Nodal lines, U3 ¼ 0; are labelled with the symbol 0 only on the first quadrant.
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Fig. 9. Same as Fig. 8 for the second lowest symmetric mode.

Fig. 10. Same as Fig. 8 for the third lowest symmetric mode.
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